Пример #1
0
/* Construct a basic set described by the "n" equalities of "bset" starting
 * at "first".
 */
static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
	unsigned first, unsigned n)
{
	int i, k;
	isl_basic_set *eq;
	unsigned total;

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	total = isl_basic_set_total_dim(bset);
	eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
	if (!eq)
		return NULL;
	for (i = 0; i < n; ++i) {
		k = isl_basic_set_alloc_equality(eq);
		if (k < 0)
			goto error;
		isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total);
	}

	return eq;
error:
	isl_basic_set_free(eq);
	return NULL;
}
Пример #2
0
/* Return 1 if "bmap" contains the point "point".
 * "bmap" is assumed to have known divs.
 * The point is first extended with the divs and then passed
 * to basic_map_contains.
 */
int isl_basic_map_contains_point(__isl_keep isl_basic_map *bmap,
	__isl_keep isl_point *point)
{
	int i;
	struct isl_vec *vec;
	unsigned dim;
	int contains;

	if (!bmap || !point)
		return -1;
	isl_assert(bmap->ctx, isl_dim_equal(bmap->dim, point->dim), return -1);
	if (bmap->n_div == 0)
		return isl_basic_map_contains(bmap, point->vec);

	dim = isl_basic_map_total_dim(bmap) - bmap->n_div;
	vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
	if (!vec)
		return -1;

	isl_seq_cpy(vec->el, point->vec->el, point->vec->size);
	for (i = 0; i < bmap->n_div; ++i) {
		isl_seq_inner_product(bmap->div[i] + 1, vec->el,
					1 + dim + i, &vec->el[1+dim+i]);
		isl_int_fdiv_q(vec->el[1+dim+i], vec->el[1+dim+i],
				bmap->div[i][0]);
	}

	contains = isl_basic_map_contains(bmap, vec);

	isl_vec_free(vec);
	return contains;
}
Пример #3
0
/* Compute a common lattice of solutions to the linear modulo
 * constraints specified by B and d.
 * See also the documentation of isl_mat_parameter_compression.
 * We put the matrix
 * 
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * on a common denominator.  This denominator D is the lcm of modulos d.
 * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
 * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
 * Putting this on the common denominator, we have
 * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
 */
static struct isl_mat *parameter_compression_multi(
			struct isl_mat *B, struct isl_vec *d)
{
	int i, j, k;
	isl_int D;
	struct isl_mat *A = NULL, *U = NULL;
	struct isl_mat *T;
	unsigned size;

	isl_int_init(D);

	isl_vec_lcm(d, &D);

	size = B->n_col - 1;
	A = isl_mat_alloc(B->ctx, size, B->n_row * size);
	U = isl_mat_alloc(B->ctx, size, size);
	if (!U || !A)
		goto error;
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_cpy(U->row[0], B->row[i] + 1, size);
		U = isl_mat_unimodular_complete(U, 1);
		if (!U)
			goto error;
		isl_int_divexact(D, D, d->block.data[i]);
		for (k = 0; k < U->n_col; ++k)
			isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
		isl_int_mul(D, D, d->block.data[i]);
		for (j = 1; j < U->n_row; ++j)
			for (k = 0; k < U->n_col; ++k)
				isl_int_mul(A->row[k][i*size+j],
						D, U->row[j][k]);
	}
	A = isl_mat_left_hermite(A, 0, NULL, NULL);
	T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
	T = isl_mat_lin_to_aff(T);
	if (!T)
		goto error;
	isl_int_set(T->row[0][0], D);
	T = isl_mat_right_inverse(T);
	if (!T)
		goto error;
	isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
	T = isl_mat_transpose(T);
	isl_mat_free(A);
	isl_mat_free(U);

	isl_int_clear(D);
	return T;
error:
	isl_mat_free(A);
	isl_mat_free(U);
	isl_int_clear(D);
	return NULL;
}
Пример #4
0
static void expand_constraint(isl_vec *v, unsigned dim,
	isl_int *c, int *div_map, unsigned n_div)
{
	int i;

	isl_seq_cpy(v->el, c, 1 + dim);
	isl_seq_clr(v->el + 1 + dim, v->size - (1 + dim));

	for (i = 0; i < n_div; ++i)
		isl_int_set(v->el[1 + dim + div_map[i]], c[1 + dim + i]);
}
Пример #5
0
static int tab_add_divs(struct isl_tab *tab, __isl_keep isl_basic_map *bmap,
	int **div_map)
{
	int i, j;
	struct isl_vec *vec;
	unsigned total;
	unsigned dim;

	if (!bmap)
		return -1;
	if (!bmap->n_div)
		return 0;

	if (!*div_map)
		*div_map = isl_alloc_array(bmap->ctx, int, bmap->n_div);
	if (!*div_map)
		return -1;

	total = isl_basic_map_total_dim(tab->bmap);
	dim = total - tab->bmap->n_div;
	vec = isl_vec_alloc(bmap->ctx, 2 + total + bmap->n_div);
	if (!vec)
		return -1;

	for (i = 0; i < bmap->n_div; ++i) {
		isl_seq_cpy(vec->el, bmap->div[i], 2 + dim);
		isl_seq_clr(vec->el + 2 + dim, tab->bmap->n_div);
		for (j = 0; j < i; ++j)
			isl_int_set(vec->el[2 + dim + (*div_map)[j]],
					bmap->div[i][2 + dim + j]);
		for (j = 0; j < tab->bmap->n_div; ++j)
			if (isl_seq_eq(tab->bmap->div[j],
					vec->el, 2 + dim + tab->bmap->n_div))
				break;
		(*div_map)[i] = j;
		if (j == tab->bmap->n_div) {
			vec->size = 2 + dim + tab->bmap->n_div;
			if (isl_tab_add_div(tab, vec) < 0)
				goto error;
		}
	}

	isl_vec_free(vec);

	return 0;
error:
	isl_vec_free(vec);

	return -1;
}
Пример #6
0
/* Compute and return the matrix
 *
 *		U_1^{-1} diag(d_1, 1, ..., 1)
 *
 * with U_1 the unimodular completion of the first (and only) row of B.
 * The columns of this matrix generate the lattice that satisfies
 * the single (linear) modulo constraint.
 */
static struct isl_mat *parameter_compression_1(
			struct isl_mat *B, struct isl_vec *d)
{
	struct isl_mat *U;

	U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
	if (!U)
		return NULL;
	isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
	U = isl_mat_unimodular_complete(U, 1);
	U = isl_mat_right_inverse(U);
	if (!U)
		return NULL;
	isl_mat_col_mul(U, 0, d->block.data[0], 0);
	U = isl_mat_lin_to_aff(U);
	return U;
}
static struct isl_vec *isl_vec_lin_to_aff(struct isl_vec *vec)
{
	struct isl_vec *aff;

	if (!vec)
		return NULL;
	aff = isl_vec_alloc(vec->ctx, 1 + vec->size);
	if (!aff)
		goto error;
	isl_int_set_si(aff->el[0], 0);
	isl_seq_cpy(aff->el + 1, vec->el, vec->size);
	isl_vec_free(vec);
	return aff;
error:
	isl_vec_free(vec);
	return NULL;
}
Пример #8
0
/* Detect and make explicit all equalities satisfied by the (integer)
 * points in bmap.
 */
struct isl_basic_map *isl_basic_map_detect_equalities(
						struct isl_basic_map *bmap)
{
	int i, j;
	struct isl_basic_set *hull = NULL;

	if (!bmap)
		return NULL;
	if (bmap->n_ineq == 0)
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
		return isl_basic_map_implicit_equalities(bmap);

	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
	if (!hull)
		goto error;
	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
		isl_basic_set_free(hull);
		return isl_basic_map_set_to_empty(bmap);
	}
	bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
					hull->n_eq, 0);
	for (i = 0; i < hull->n_eq; ++i) {
		j = isl_basic_map_alloc_equality(bmap);
		if (j < 0)
			goto error;
		isl_seq_cpy(bmap->eq[j], hull->eq[i],
				1 + isl_basic_set_total_dim(hull));
	}
	isl_vec_free(bmap->sample);
	bmap->sample = isl_vec_copy(hull->sample);
	isl_basic_set_free(hull);
	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
	bmap = isl_basic_map_simplify(bmap);
	return isl_basic_map_finalize(bmap);
error:
	isl_basic_set_free(hull);
	isl_basic_map_free(bmap);
	return NULL;
}
Пример #9
0
static int scan_samples_add_sample(struct isl_scan_callback *cb,
	__isl_take isl_vec *sample)
{
	struct scan_samples *ss = (struct scan_samples *)cb;

	ss->samples = isl_mat_extend(ss->samples, ss->samples->n_row + 1,
						  ss->samples->n_col);
	if (!ss->samples)
		goto error;

	isl_seq_cpy(ss->samples->row[ss->samples->n_row - 1],
		    sample->el, sample->size);

	isl_vec_free(sample);
	return 0;
error:
	isl_vec_free(sample);
	return -1;
}
Пример #10
0
/* Given an unbounded tableau and an integer point satisfying the tableau,
 * construct an initial affine hull containing the recession cone
 * shifted to the given point.
 *
 * The unbounded directions are taken from the last rows of the basis,
 * which is assumed to have been initialized appropriately.
 */
static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
	__isl_take isl_vec *vec)
{
	int i;
	int k;
	struct isl_basic_set *bset = NULL;
	struct isl_ctx *ctx;
	unsigned dim;

	if (!vec || !tab)
		return NULL;
	ctx = vec->ctx;
	isl_assert(ctx, vec->size != 0, goto error);

	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
	if (!bset)
		goto error;
	dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
	for (i = 0; i < dim; ++i) {
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
			    vec->size - 1);
		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
				      vec->size - 1, &bset->eq[k][0]);
		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
	}
	bset->sample = vec;
	bset = isl_basic_set_gauss(bset, NULL);

	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(vec);
	return NULL;
}
Пример #11
0
/* Add stride constraints to "bset" based on the inverse mapping
 * that was plugged in.  In particular, if morph maps x' to x,
 * the the constraints of the original input
 *
 *	A x' + b >= 0
 *
 * have been rewritten to
 *
 *	A inv x + b >= 0
 *
 * However, this substitution may loose information on the integrality of x',
 * so we need to impose that
 *
 *	inv x
 *
 * is integral.  If inv = B/d, this means that we need to impose that
 *
 *	B x = 0		mod d
 *
 * or
 *
 *	exists alpha in Z^m: B x = d alpha
 *
 */
static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
	__isl_keep isl_morph *morph)
{
	int i, div, k;
	isl_int gcd;

	if (isl_int_is_one(morph->inv->row[0][0]))
		return bset;

	isl_int_init(gcd);

	for (i = 0; 1 + i < morph->inv->n_row; ++i) {
		isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
		if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
			continue;
		div = isl_basic_set_alloc_div(bset);
		if (div < 0)
			goto error;
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
			    morph->inv->n_col);
		isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
		isl_int_set(bset->eq[k][morph->inv->n_col + div],
			    morph->inv->row[0][0]);
	}

	isl_int_clear(gcd);

	return bset;
error:
	isl_int_clear(gcd);
	isl_basic_set_free(bset);
	return NULL;
}
Пример #12
0
/* Apply the morphism to the basic set.
 * We basically just compute the preimage of "bset" under the inverse mapping
 * in morph, add in stride constraints and intersect with the range
 * of the morphism.
 */
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
	__isl_take isl_basic_set *bset)
{
	isl_basic_set *res = NULL;
	isl_mat *mat = NULL;
	int i, k;
	int max_stride;

	if (!morph || !bset)
		goto error;

	isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
		    goto error);

	max_stride = morph->inv->n_row - 1;
	if (isl_int_is_one(morph->inv->row[0][0]))
		max_stride = 0;
	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);

	for (i = 0; i < bset->n_div; ++i)
		if (isl_basic_set_alloc_div(res) < 0)
			goto error;

	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_eq; ++i) {
		k = isl_basic_set_alloc_equality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->ineq[k] + mat->n_col,
				bset->ineq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
					1, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_div; ++i) {
		isl_int_mul(res->div[i][0],
				morph->inv->row[0][0], bset->div[i][0]);
		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
		isl_seq_scale(res->div[i] + 1 + mat->n_col,
				bset->div[i] + 1 + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	res = add_strides(res, morph);

	if (isl_basic_set_is_rational(bset))
		res = isl_basic_set_set_rational(res);

	res = isl_basic_set_simplify(res);
	res = isl_basic_set_finalize(res);

	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));

	isl_morph_free(morph);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(mat);
	isl_morph_free(morph);
	isl_basic_set_free(bset);
	isl_basic_set_free(res);
	return NULL;
}
Пример #13
0
/* Given a set of modulo constraints
 *
 *		c + A y = 0 mod d
 *
 * this function returns an affine transformation T,
 *
 *		y = T y'
 *
 * that bijectively maps the integer vectors y' to integer
 * vectors y that satisfy the modulo constraints.
 *
 * This function is inspired by Section 2.5.3
 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
 * Model.  Applications to Program Analysis and Optimization".
 * However, the implementation only follows the algorithm of that
 * section for computing a particular solution and not for computing
 * a general homogeneous solution.  The latter is incomplete and
 * may remove some valid solutions.
 * Instead, we use an adaptation of the algorithm in Section 7 of
 * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
 * Model: Bringing the Power of Quasi-Polynomials to the Masses".
 *
 * The input is given as a matrix B = [ c A ] and a vector d.
 * Each element of the vector d corresponds to a row in B.
 * The output is a lower triangular matrix.
 * If no integer vector y satisfies the given constraints then
 * a matrix with zero columns is returned.
 *
 * We first compute a particular solution y_0 to the given set of
 * modulo constraints in particular_solution.  If no such solution
 * exists, then we return a zero-columned transformation matrix.
 * Otherwise, we compute the generic solution to
 *
 *		A y = 0 mod d
 *
 * That is we want to compute G such that
 *
 *		y = G y''
 *
 * with y'' integer, describes the set of solutions.
 *
 * We first remove the common factors of each row.
 * In particular if gcd(A_i,d_i) != 1, then we divide the whole
 * row i (including d_i) by this common factor.  If afterwards gcd(A_i) != 1,
 * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
 * In the later case, we simply drop the row (in both A and d).
 *
 * If there are no rows left in A, then G is the identity matrix. Otherwise,
 * for each row i, we now determine the lattice of integer vectors
 * that satisfies this row.  Let U_i be the unimodular extension of the
 * row A_i.  This unimodular extension exists because gcd(A_i) = 1.
 * The first component of
 *
 *		y' = U_i y
 *
 * needs to be a multiple of d_i.  Let y' = diag(d_i, 1, ..., 1) y''.
 * Then,
 *
 *		y = U_i^{-1} diag(d_i, 1, ..., 1) y''
 *
 * for arbitrary integer vectors y''.  That is, y belongs to the lattice
 * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
 * If there is only one row, then G = L_1.
 *
 * If there is more than one row left, we need to compute the intersection
 * of the lattices.  That is, we need to compute an L such that
 *
 *		L = L_i L_i'	for all i
 *
 * with L_i' some integer matrices.  Let A be constructed as follows
 *
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * and computed the Hermite Normal Form of A = [ H 0 ] U
 * Then,
 *
 *		L_i^{-T} = H U_{1,i}
 *
 * or
 *
 *		H^{-T} = L_i U_{1,i}^T
 *
 * In other words G = L = H^{-T}.
 * To ensure that G is lower triangular, we compute and use its Hermite
 * normal form.
 *
 * The affine transformation matrix returned is then
 *
 *		[  1   0  ]
 *		[ y_0  G  ]
 *
 * as any y = y_0 + G y' with y' integer is a solution to the original
 * modulo constraints.
 */
struct isl_mat *isl_mat_parameter_compression(
			struct isl_mat *B, struct isl_vec *d)
{
	int i;
	struct isl_mat *cst = NULL;
	struct isl_mat *T = NULL;
	isl_int D;

	if (!B || !d)
		goto error;
	isl_assert(B->ctx, B->n_row == d->size, goto error);
	cst = particular_solution(B, d);
	if (!cst)
		goto error;
	if (cst->n_col == 0) {
		T = isl_mat_alloc(B->ctx, B->n_col, 0);
		isl_mat_free(cst);
		isl_mat_free(B);
		isl_vec_free(d);
		return T;
	}
	isl_int_init(D);
	/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
		if (isl_int_is_one(D))
			continue;
		if (isl_int_is_zero(D)) {
			B = isl_mat_drop_rows(B, i, 1);
			d = isl_vec_cow(d);
			if (!B || !d)
				goto error2;
			isl_seq_cpy(d->block.data+i, d->block.data+i+1,
							d->size - (i+1));
			d->size--;
			i--;
			continue;
		}
		B = isl_mat_cow(B);
		if (!B)
			goto error2;
		isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
		isl_int_gcd(D, D, d->block.data[i]);
		d = isl_vec_cow(d);
		if (!d)
			goto error2;
		isl_int_divexact(d->block.data[i], d->block.data[i], D);
	}
	isl_int_clear(D);
	if (B->n_row == 0)
		T = isl_mat_identity(B->ctx, B->n_col);
	else if (B->n_row == 1)
		T = parameter_compression_1(B, d);
	else
		T = parameter_compression_multi(B, d);
	T = isl_mat_left_hermite(T, 0, NULL, NULL);
	if (!T)
		goto error;
	isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return T;
error2:
	isl_int_clear(D);
error:
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return NULL;
}
Пример #14
0
/* Given a tableau of a set and a tableau of the corresponding
 * recession cone, detect and add all equalities to the tableau.
 * If the tableau is bounded, then we can simply keep the
 * tableau in its state after the return from extend_affine_hull.
 * However, if the tableau is unbounded, then
 * isl_tab_set_initial_basis_with_cone will add some additional
 * constraints to the tableau that have to be removed again.
 * In this case, we therefore rollback to the state before
 * any constraints were added and then add the equalities back in.
 */
struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
	struct isl_tab *tab_cone)
{
	int j;
	struct isl_vec *sample;
	struct isl_basic_set *hull;
	struct isl_tab_undo *snap;

	if (!tab || !tab_cone)
		goto error;

	snap = isl_tab_snap(tab);

	isl_mat_free(tab->basis);
	tab->basis = NULL;

	isl_assert(tab->mat->ctx, tab->bmap, goto error);
	isl_assert(tab->mat->ctx, tab->samples, goto error);
	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);

	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
		goto error;

	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
	if (!sample)
		goto error;

	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);

	isl_vec_free(tab->bmap->sample);
	tab->bmap->sample = isl_vec_copy(sample);

	if (tab->n_unbounded == 0)
		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
	else
		hull = initial_hull(tab, isl_vec_copy(sample));

	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
		hull = affine_hull(hull,
				isl_basic_set_from_vec(isl_vec_copy(sample)));
	}

	isl_vec_free(sample);

	hull = extend_affine_hull(tab, hull);
	if (!hull)
		goto error;

	if (tab->n_unbounded == 0) {
		isl_basic_set_free(hull);
		return tab;
	}

	if (isl_tab_rollback(tab, snap) < 0)
		goto error;

	if (hull->n_eq > tab->n_zero) {
		for (j = 0; j < hull->n_eq; ++j) {
			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
				goto error;
		}
	}

	isl_basic_set_free(hull);

	return tab;
error:
	isl_tab_free(tab);
	return NULL;
}