Пример #1
0
static cairo_status_t
line_to (void *closure,
         const cairo_point_t *point)
{
    struct stroker *stroker = closure;
    cairo_stroke_face_t start;
    cairo_point_t *p1 = &stroker->current_face.point;
    cairo_slope_t dev_slope;

    stroker->has_sub_path = TRUE;

    if (p1->x == point->x && p1->y == point->y)
        return CAIRO_STATUS_SUCCESS;

    _cairo_slope_init (&dev_slope, p1, point);
    compute_face (p1, &dev_slope, stroker, &start);

    if (stroker->has_current_face) {
        int clockwise = join_is_clockwise (&stroker->current_face, &start);
        /* Join with final face from previous segment */
        outer_join (stroker, &stroker->current_face, &start, clockwise);
        inner_join (stroker, &stroker->current_face, &start, clockwise);
    } else {
        if (! stroker->has_first_face) {
            /* Save sub path's first face in case needed for closing join */
            stroker->first_face = start;
            _cairo_tristrip_move_to (stroker->strip, &start.cw);
            stroker->has_first_face = TRUE;
        }
        stroker->has_current_face = TRUE;

        _cairo_tristrip_add_point (stroker->strip, &start.cw);
        _cairo_tristrip_add_point (stroker->strip, &start.ccw);
    }

    stroker->current_face = start;
    stroker->current_face.point = *point;
    stroker->current_face.ccw.x += dev_slope.dx;
    stroker->current_face.ccw.y += dev_slope.dy;
    stroker->current_face.cw.x += dev_slope.dx;
    stroker->current_face.cw.y += dev_slope.dy;

    _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.cw);
    _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.ccw);

    return CAIRO_STATUS_SUCCESS;
}
Пример #2
0
static void
inner_close (struct stroker *stroker,
             const cairo_stroke_face_t *in,
             cairo_stroke_face_t *out)
{
    const cairo_point_t *inpt;

    if (join_is_clockwise (in, out)) {
        inpt = &out->ccw;
    } else {
        inpt = &out->cw;
    }

    //contour_add_point (stroker, inner, &in->point);
    //contour_add_point (stroker, inner, inpt);
    //*_cairo_contour_first_point (&inner->contour) =
    //*_cairo_contour_last_point (&inner->contour);
}
Пример #3
0
static cairo_status_t
curve_to (void *closure,
          const cairo_point_t *b,
          const cairo_point_t *c,
          const cairo_point_t *d)
{
    struct stroker *stroker = closure;
    cairo_spline_t spline;
    cairo_stroke_face_t face;

    if (stroker->has_limits) {
        if (! _cairo_spline_intersects (&stroker->current_face.point, b, c, d,
                                        &stroker->limit))
            return line_to (closure, d);
    }

    if (! _cairo_spline_init (&spline, spline_to, stroker,
                              &stroker->current_face.point, b, c, d))
        return line_to (closure, d);

    compute_face (&stroker->current_face.point, &spline.initial_slope,
                  stroker, &face);

    if (stroker->has_current_face) {
        int clockwise = join_is_clockwise (&stroker->current_face, &face);
        /* Join with final face from previous segment */
        outer_join (stroker, &stroker->current_face, &face, clockwise);
        inner_join (stroker, &stroker->current_face, &face, clockwise);
    } else {
        if (! stroker->has_first_face) {
            /* Save sub path's first face in case needed for closing join */
            stroker->first_face = face;
            _cairo_tristrip_move_to (stroker->strip, &face.cw);
            stroker->has_first_face = TRUE;
        }
        stroker->has_current_face = TRUE;

        _cairo_tristrip_add_point (stroker->strip, &face.cw);
        _cairo_tristrip_add_point (stroker->strip, &face.ccw);
    }
    stroker->current_face = face;

    return _cairo_spline_decompose (&spline, stroker->tolerance);
}
Пример #4
0
static cairo_status_t
spline_to (void *closure,
           const cairo_point_t *point,
           const cairo_slope_t *tangent)
{
    struct stroker *stroker = closure;
    cairo_stroke_face_t face;

    if (tangent->dx == 0 && tangent->dy == 0) {
        const cairo_point_t *inpt, *outpt;
        cairo_point_t t;
        int clockwise;

        face = stroker->current_face;

        face.usr_vector.x = -face.usr_vector.x;
        face.usr_vector.y = -face.usr_vector.y;
        face.dev_vector.dx = -face.dev_vector.dx;
        face.dev_vector.dy = -face.dev_vector.dy;

        t = face.cw;
        face.cw = face.ccw;
        face.ccw = t;

        clockwise = join_is_clockwise (&stroker->current_face, &face);
        if (clockwise) {
            inpt = &stroker->current_face.cw;
            outpt = &face.cw;
        } else {
            inpt = &stroker->current_face.ccw;
            outpt = &face.ccw;
        }

        add_fan (stroker,
                 &stroker->current_face.dev_vector,
                 &face.dev_vector,
                 &stroker->current_face.point, inpt, outpt,
                 clockwise);
    } else {
        compute_face (point, tangent, stroker, &face);

        if (face.dev_slope.x * stroker->current_face.dev_slope.x +
                face.dev_slope.y * stroker->current_face.dev_slope.y < 0)
        {
            const cairo_point_t *inpt, *outpt;
            int clockwise = join_is_clockwise (&stroker->current_face, &face);

            stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
            stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
            //contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);

            stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
            stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
            //contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);

            if (clockwise) {
                inpt = &stroker->current_face.cw;
                outpt = &face.cw;
            } else {
                inpt = &stroker->current_face.ccw;
                outpt = &face.ccw;
            }
            add_fan (stroker,
                     &stroker->current_face.dev_vector,
                     &face.dev_vector,
                     &stroker->current_face.point, inpt, outpt,
                     clockwise);
        }

        _cairo_tristrip_add_point (stroker->strip, &face.cw);
        _cairo_tristrip_add_point (stroker->strip, &face.ccw);
    }

    stroker->current_face = face;

    return CAIRO_STATUS_SUCCESS;
}
Пример #5
0
static void
outer_close (struct stroker *stroker,
             const cairo_stroke_face_t *in,
             const cairo_stroke_face_t *out)
{
    const cairo_point_t	*inpt, *outpt;
    int	clockwise;

    if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
            in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
    {
        return;
    }
    clockwise = join_is_clockwise (in, out);
    if (clockwise) {
        inpt = &in->cw;
        outpt = &out->cw;
    } else {
        inpt = &in->ccw;
        outpt = &out->ccw;
    }

    switch (stroker->style.line_join) {
    case CAIRO_LINE_JOIN_ROUND:
        /* construct a fan around the common midpoint */
        add_fan (stroker,
                 &in->dev_vector,
                 &out->dev_vector,
                 &in->point, inpt, outpt,
                 clockwise);
        break;

    case CAIRO_LINE_JOIN_MITER:
    default: {
        /* dot product of incoming slope vector with outgoing slope vector */
        double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
                             -in->usr_vector.y * out->usr_vector.y;
        double	ml = stroker->style.miter_limit;

        /* Check the miter limit -- lines meeting at an acute angle
         * can generate long miters, the limit converts them to bevel
         *
         * Consider the miter join formed when two line segments
         * meet at an angle psi:
         *
         *	   /.\
         *	  /. .\
         *	 /./ \.\
         *	/./psi\.\
         *
         * We can zoom in on the right half of that to see:
         *
         *	    |\
         *	    | \ psi/2
         *	    |  \
         *	    |   \
         *	    |    \
         *	    |     \
         *	  miter    \
         *	 length     \
         *	    |        \
         *	    |        .\
         *	    |    .     \
         *	    |.   line   \
         *	     \    width  \
         *	      \           \
         *
         *
         * The right triangle in that figure, (the line-width side is
         * shown faintly with three '.' characters), gives us the
         * following expression relating miter length, angle and line
         * width:
         *
         *	1 /sin (psi/2) = miter_length / line_width
         *
         * The right-hand side of this relationship is the same ratio
         * in which the miter limit (ml) is expressed. We want to know
         * when the miter length is within the miter limit. That is
         * when the following condition holds:
         *
         *	1/sin(psi/2) <= ml
         *	1 <= ml sin(psi/2)
         *	1 <= ml² sin²(psi/2)
         *	2 <= ml² 2 sin²(psi/2)
         *				2·sin²(psi/2) = 1-cos(psi)
         *	2 <= ml² (1-cos(psi))
         *
         *				in · out = |in| |out| cos (psi)
         *
         * in and out are both unit vectors, so:
         *
         *				in · out = cos (psi)
         *
         *	2 <= ml² (1 - in · out)
         *
         */
        if (2 <= ml * ml * (1 - in_dot_out)) {
            double		x1, y1, x2, y2;
            double		mx, my;
            double		dx1, dx2, dy1, dy2;
            double		ix, iy;
            double		fdx1, fdy1, fdx2, fdy2;
            double		mdx, mdy;

            /*
             * we've got the points already transformed to device
             * space, but need to do some computation with them and
             * also need to transform the slope from user space to
             * device space
             */
            /* outer point of incoming line face */
            x1 = _cairo_fixed_to_double (inpt->x);
            y1 = _cairo_fixed_to_double (inpt->y);
            dx1 = in->usr_vector.x;
            dy1 = in->usr_vector.y;
            cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);

            /* outer point of outgoing line face */
            x2 = _cairo_fixed_to_double (outpt->x);
            y2 = _cairo_fixed_to_double (outpt->y);
            dx2 = out->usr_vector.x;
            dy2 = out->usr_vector.y;
            cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);

            /*
             * Compute the location of the outer corner of the miter.
             * That's pretty easy -- just the intersection of the two
             * outer edges.  We've got slopes and points on each
             * of those edges.  Compute my directly, then compute
             * mx by using the edge with the larger dy; that avoids
             * dividing by values close to zero.
             */
            my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
                  (dx1 * dy2 - dx2 * dy1));
            if (fabs (dy1) >= fabs (dy2))
                mx = (my - y1) * dx1 / dy1 + x1;
            else
                mx = (my - y2) * dx2 / dy2 + x2;

            /*
             * When the two outer edges are nearly parallel, slight
             * perturbations in the position of the outer points of the lines
             * caused by representing them in fixed point form can cause the
             * intersection point of the miter to move a large amount. If
             * that moves the miter intersection from between the two faces,
             * then draw a bevel instead.
             */

            ix = _cairo_fixed_to_double (in->point.x);
            iy = _cairo_fixed_to_double (in->point.y);

            /* slope of one face */
            fdx1 = x1 - ix;
            fdy1 = y1 - iy;

            /* slope of the other face */
            fdx2 = x2 - ix;
            fdy2 = y2 - iy;

            /* slope from the intersection to the miter point */
            mdx = mx - ix;
            mdy = my - iy;

            /*
             * Make sure the miter point line lies between the two
             * faces by comparing the slopes
             */
            if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
                    slope_compare_sgn (fdx2, fdy2, mdx, mdy))
            {
                cairo_point_t p;

                p.x = _cairo_fixed_from_double (mx);
                p.y = _cairo_fixed_from_double (my);

                //*_cairo_contour_last_point (&outer->contour) = p;
                //*_cairo_contour_first_point (&outer->contour) = p;
                return;
            }
        }
        break;
    }

    case CAIRO_LINE_JOIN_BEVEL:
        break;
    }
    //contour_add_point (stroker, outer, outpt);
}
Пример #6
0
static void
inner_close (struct stroker *stroker,
	     const cairo_stroke_face_t *in,
	     cairo_stroke_face_t *out)
{
#if 0
    cairo_point_t last;
    const cairo_point_t *p, *outpt, *inpt;
    struct stroke_contour *inner;
    struct _cairo_contour_chain *chain;

    /* XXX line segments shorter than line-width */

    if (join_is_clockwise (in, out)) {
	inner = &stroker->ccw;
	outpt = &in->ccw;
	inpt = &out->ccw;
    } else {
	inner = &stroker->cw;
	outpt = &in->cw;
	inpt = &out->cw;
    }

    if (inner->contour.chain.num_points == 0) {
	contour_add_point (stroker, inner, &in->point);
	contour_add_point (stroker, inner, inpt);
	*_cairo_contour_first_point (&inner->contour) =
	    *_cairo_contour_last_point (&inner->contour);
	return;
    }

    line_width = stroker->style.line_width/2;
    line_width *= CAIRO_FIXED_ONE;

    d_last = sign * distance_from_face (out, outpt);
    last = *outpt;

    for (chain = &inner->contour.chain; chain; chain = chain->next) {
	for (i = 0; i < chain->num_points; i++) {
	    p = &chain->points[i];
	    if ((d_p = sign * distance_from_face (in, p)) >= line_width &&
		distance_from_edge (stroker, inpt, &last, p) < line_width)
	    {
		goto out;
	    }

	    if (p->x != last.x || p->y != last.y) {
		last = *p;
		d_last = d_p;
	    }
	}
    }
out:

    if (d_p != d_last) {
	double dot = (line_width - d_last) / (d_p - d_last);
	last.x += dot * (p->x - last.x);
	last.y += dot * (p->y - last.y);
    }
    *_cairo_contour_last_point (&inner->contour) = last;

    for (chain = &inner->contour.chain; chain; chain = chain->next) {
	for (i = 0; i < chain->num_points; i++) {
	    cairo_point_t *pp = &chain->points[i];
	    if (pp == p)
		return;
	    *pp = last;
	}
    }
#else
    const cairo_point_t *inpt;
    struct stroke_contour *inner;

    if (join_is_clockwise (in, out)) {
	inner = &stroker->ccw;
	inpt = &out->ccw;
    } else {
	inner = &stroker->cw;
	inpt = &out->cw;
    }

    contour_add_point (stroker, inner, &in->point);
    contour_add_point (stroker, inner, inpt);
    *_cairo_contour_first_point (&inner->contour) =
	*_cairo_contour_last_point (&inner->contour);
#endif
}
Пример #7
0
static cairo_status_t
spline_to (void *closure,
	   const cairo_point_t *point,
	   const cairo_slope_t *tangent)
{
    struct stroker *stroker = closure;
    cairo_stroke_face_t face;

#if DEBUG
    _cairo_contour_add_point (&stroker->path, point);
#endif
    if ((tangent->dx | tangent->dy) == 0) {
	const cairo_point_t *inpt, *outpt;
	struct stroke_contour *outer;
	cairo_point_t t;
	int clockwise;

	face = stroker->current_face;

	face.usr_vector.x = -face.usr_vector.x;
	face.usr_vector.y = -face.usr_vector.y;
	face.dev_vector.dx = -face.dev_vector.dx;
	face.dev_vector.dy = -face.dev_vector.dy;

	t = face.cw;
	face.cw = face.ccw;
	face.ccw = t;

	clockwise = join_is_clockwise (&stroker->current_face, &face);
	if (clockwise) {
	    inpt = &stroker->current_face.cw;
	    outpt = &face.cw;
	    outer = &stroker->cw;
	} else {
	    inpt = &stroker->current_face.ccw;
	    outpt = &face.ccw;
	    outer = &stroker->ccw;
	}

	add_fan (stroker,
		 &stroker->current_face.dev_vector,
		 &face.dev_vector,
		 &stroker->current_face.point,
		 clockwise, outer);
    } else {
	compute_face (point, tangent, stroker, &face);

	if ((face.dev_slope.x * stroker->current_face.dev_slope.x +
	     face.dev_slope.y * stroker->current_face.dev_slope.y) < stroker->spline_cusp_tolerance)
	{
	    const cairo_point_t *inpt, *outpt;
	    struct stroke_contour *outer;
	    int clockwise = join_is_clockwise (&stroker->current_face, &face);

	    stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
	    stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
	    contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);

	    stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
	    stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
	    contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);

	    if (clockwise) {
		inpt = &stroker->current_face.cw;
		outpt = &face.cw;
		outer = &stroker->cw;
	    } else {
		inpt = &stroker->current_face.ccw;
		outpt = &face.ccw;
		outer = &stroker->ccw;
	    }
	    add_fan (stroker,
		     &stroker->current_face.dev_vector,
		     &face.dev_vector,
		     &stroker->current_face.point,
		     clockwise, outer);
	}

	contour_add_point (stroker, &stroker->cw, &face.cw);
	contour_add_point (stroker, &stroker->ccw, &face.ccw);
    }

    stroker->current_face = face;

    return CAIRO_STATUS_SUCCESS;
}