Пример #1
0
static void __save_processor_state(struct saved_context *ctxt)
{
	mtrr_save_fixed_ranges(NULL);
	kernel_fpu_begin();

	/*
	 * descriptor tables
	 */
	store_gdt(&ctxt->gdt);
	store_idt(&ctxt->idt);
	store_tr(ctxt->tr);

	/*
	 * segment registers
	 */
	savesegment(es, ctxt->es);
	savesegment(fs, ctxt->fs);
	savesegment(gs, ctxt->gs);
	savesegment(ss, ctxt->ss);

	/*
	 * control registers
	 */
	ctxt->cr0 = read_cr0();
	ctxt->cr2 = read_cr2();
	ctxt->cr3 = read_cr3();
	ctxt->cr4 = read_cr4_safe();
}
static int ctr_crypt(struct blkcipher_desc *desc,
		     struct scatterlist *dst, struct scatterlist *src,
		     unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
		aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	if (walk.nbytes) {
		ctr_crypt_final(ctx, &walk);
		err = blkcipher_walk_done(desc, &walk, 0);
	}
	kernel_fpu_end();

	return err;
}
Пример #3
0
static int ctr_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			              nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	if (walk.nbytes) {
		ctr_crypt_final(ctx, &walk);
		err = skcipher_walk_done(&walk, 0);
	}
	kernel_fpu_end();

	return err;
}
/* No final XOR 0xFFFFFFFF, like crc32_le */
static int __crc32c_pclmul_finup(u32 *crcp, const u8 *data, unsigned int len,
				u8 *out)
{
	kernel_fpu_begin();
	*(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp));
	kernel_fpu_end();
	return 0;
}
Пример #5
0
unsigned long
tdb_hash_calc(const char *data, size_t len)
{
#define MUL	sizeof(long)
	int i;
	unsigned long crc0 = 0, crc1 = 0, h;
	unsigned long *d = (unsigned long *)data;
	size_t n = (len / MUL) & ~1UL;

	/* TODO fallback to plain C for small data. */
	kernel_fpu_begin();

	for (i = 0; i < n; i += 2) {
		CRCQ(crc0, d[i]);
		CRCQ(crc1, d[i + 1]);
	}

	if (n * MUL + MUL <= len) {
		CRCQ(crc0, d[n]);
		n++;
	}

	kernel_fpu_end();

	h = (crc1 << 32) | crc0;

	/*
	 * Generate relatively small and dense hash tail values - they are good
	 * for short strings in htrie which uses less significant bits at root,
	 * however collisions are very probable.
	 */
	n *= MUL;
	switch (len - n) {
	case 7:
		h += data[n] * n;
		++n;
	case 6:
		h += data[n] * n;
		++n;
	case 5:
		h += data[n] * n;
		++n;
	case 4:
		h += data[n] * n;
		++n;
	case 3:
		h += data[n] * n;
		++n;
	case 2:
		h += data[n] * n;
		++n;
	case 1:
		h += data[n] * n;
	}

	return h;
#undef MUL
}
Пример #6
0
static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
						   unsigned int key_len)
{
	int ret = 0;
	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
	struct aesni_rfc4106_gcm_ctx *child_ctx =
                                 aesni_rfc4106_gcm_ctx_get(cryptd_child);
	u8 *new_key_mem = NULL;

	if (key_len < 4) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;
	if (key_len != AES_KEYSIZE_128) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
		return -EINVAL;

	if ((unsigned long)key % AESNI_ALIGN) {
		/*key is not aligned: use an auxuliar aligned pointer*/
		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
		if (!new_key_mem)
			return -ENOMEM;

		new_key_mem = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
		memcpy(new_key_mem, key, key_len);
		key = new_key_mem;
	}

	if (!irq_fpu_usable())
		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
		key, key_len);
	else {
		kernel_fpu_begin();
		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
		kernel_fpu_end();
	}
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
		ret = -EINVAL;
		goto exit;
	}
	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
	memcpy(child_ctx, ctx, sizeof(*ctx));
exit:
	kfree(new_key_mem);
	return ret;
}
static int crc32c_pclmul_update(struct shash_desc *desc, const u8 *data,
			       unsigned int len)
{
	u32 *crcp = shash_desc_ctx(desc);

	kernel_fpu_begin();
	*crcp = crc_pcl(data, len, *crcp);
	kernel_fpu_end();
	return 0;
}
Пример #8
0
static int __chksum_finup(__u16 *crcp, const u8 *data, unsigned int len,
			u8 *out)
{
	if (irq_fpu_usable()) {
		kernel_fpu_begin();
		*(__u16 *)out = crc_t10dif_pcl(*crcp, data, len);
		kernel_fpu_end();
	} else
		*(__u16 *)out = crc_t10dif_generic(*crcp, data, len);
	return 0;
}
static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
				u8 *out)
{
	if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) {
		kernel_fpu_begin();
		*(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp));
		kernel_fpu_end();
	} else
		*(__le32 *)out =
			~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
	return 0;
}
Пример #10
0
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	if (!irq_fpu_usable())
		crypto_aes_decrypt_x86(ctx, dst, src);
	else {
		kernel_fpu_begin();
		aesni_dec(ctx, dst, src);
		kernel_fpu_end();
	}
}
Пример #11
0
static int chksum_update(struct shash_desc *desc, const u8 *data,
			 unsigned int length)
{
	struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);

	if (irq_fpu_usable()) {
		kernel_fpu_begin();
		ctx->crc = crc_t10dif_pcl(ctx->crc, data, length);
		kernel_fpu_end();
	} else
		ctx->crc = crc_t10dif_generic(ctx->crc, data, length);
	return 0;
}
Пример #12
0
static int helper_rfc4106_decrypt(struct aead_request *req)
{
	int ret;

	if (unlikely(!irq_fpu_usable())) {
		WARN_ONCE(1, "__gcm-aes-aesni alg used in invalid context");
		ret = -EINVAL;
	} else {
		kernel_fpu_begin();
		ret = __driver_rfc4106_decrypt(req);
		kernel_fpu_end();
	}
	return ret;
}
Пример #13
0
static int sha512_ssse3_finup(struct shash_desc *desc, const u8 *data,
			      unsigned int len, u8 *out)
{
	if (!irq_fpu_usable())
		return crypto_sha512_finup(desc, data, len, out);

	kernel_fpu_begin();
	if (len)
		sha512_base_do_update(desc, data, len,
				      (sha512_block_fn *)sha512_transform_asm);
	sha512_base_do_finalize(desc, (sha512_block_fn *)sha512_transform_asm);
	kernel_fpu_end();

	return sha512_base_finish(desc, out);
}
Пример #14
0
static int ecb_encrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_enc(ctx, walk.dst
static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx)
{
	u8 *dst = dctx->buffer;

	if (dctx->bytes) {
		u8 *tmp = dst + (GHASH_BLOCK_SIZE - dctx->bytes);

		while (dctx->bytes--)
			*tmp++ ^= 0;

		kernel_fpu_begin();
		clmul_ghash_mul(dst, &ctx->shash);
		kernel_fpu_end();
	}

	dctx->bytes = 0;
}
static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data,
			       unsigned int len)
{
	u32 *crcp = shash_desc_ctx(desc);

	/*
	 * use faster PCL version if datasize is large enough to
	 * overcome kernel fpu state save/restore overhead
	 */
	if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) {
		kernel_fpu_begin();
		*crcp = crc_pcl(data, len, *crcp);
		kernel_fpu_end();
	} else
		*crcp = crc32c_intel_le_hw(*crcp, data, len);
	return 0;
}
Пример #17
0
static void crypto_aegis256_aesni_crypt(struct aead_request *req,
					struct aegis_block *tag_xor,
					unsigned int cryptlen,
					const struct aegis_crypt_ops *ops)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(tfm);
	struct aegis_state state;

	kernel_fpu_begin();

	crypto_aegis256_aesni_init(&state, ctx->key, req->iv);
	crypto_aegis256_aesni_process_ad(&state, req->src, req->assoclen);
	crypto_aegis256_aesni_process_crypt(&state, req, ops);
	crypto_aegis256_aesni_final(&state, tag_xor, req->assoclen, cryptlen);

	kernel_fpu_end();
}
Пример #18
0
static int sha512_ssse3_update(struct shash_desc *desc, const u8 *data,
			       unsigned int len)
{
	struct sha512_state *sctx = shash_desc_ctx(desc);

	if (!irq_fpu_usable() ||
	    (sctx->count[0] % SHA512_BLOCK_SIZE) + len < SHA512_BLOCK_SIZE)
		return crypto_sha512_update(desc, data, len);

	/* make sure casting to sha512_block_fn() is safe */
	BUILD_BUG_ON(offsetof(struct sha512_state, state) != 0);

	kernel_fpu_begin();
	sha512_base_do_update(desc, data, len,
			      (sha512_block_fn *)sha512_transform_asm);
	kernel_fpu_end();

	return 0;
}
Пример #19
0
static int rfc4106_decrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_aead_decrypt(cryptd_req);
	} else {
		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
		kernel_fpu_begin();
		ret = cryptd_child->base.crt_aead.decrypt(req);
		kernel_fpu_end();
		return ret;
	}
}
Пример #20
0
/* Add padding and return the message digest. */
static int sha256_ssse3_final(struct shash_desc *desc, u8 *out)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);
	unsigned int i, index, padlen;
	__be32 *dst = (__be32 *)out;
	__be64 bits;
	static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };

	bits = cpu_to_be64(sctx->count << 3);

	/* Pad out to 56 mod 64 and append length */
	index = sctx->count % SHA256_BLOCK_SIZE;
	padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index);

	if (!irq_fpu_usable()) {
		crypto_sha256_update(desc, padding, padlen);
		crypto_sha256_update(desc, (const u8 *)&bits, sizeof(bits));
	} else {
		kernel_fpu_begin();
		/* We need to fill a whole block for __sha256_ssse3_update() */
		if (padlen <= 56) {
			sctx->count += padlen;
			memcpy(sctx->buf + index, padding, padlen);
		} else {
			__sha256_ssse3_update(desc, padding, padlen, index);
		}
		__sha256_ssse3_update(desc, (const u8 *)&bits,
					sizeof(bits), 56);
		kernel_fpu_end();
	}

	/* Store state in digest */
	for (i = 0; i < 8; i++)
		dst[i] = cpu_to_be32(sctx->state[i]);

	/* Wipe context */
	memset(sctx, 0, sizeof(*sctx));

	return 0;
}
Пример #21
0
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
			      const u8 *in_key, unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
	u32 *flags = &tfm->crt_flags;
	int err;

	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	if (!irq_fpu_usable())
		err = crypto_aes_expand_key(ctx, in_key, key_len);
	else {
		kernel_fpu_begin();
		err = aesni_set_key(ctx, in_key, key_len);
		kernel_fpu_end();
	}

	return err;
}
Пример #22
0
static int ecb_decrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	while ((nbytes = walk.nbytes)) {
		kernel_fpu_begin();
		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		kernel_fpu_end();
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

	return err;
}
Пример #23
0
int ckpt_restore_fpu(ckpt_desc_t desc)
{
    int ret;
    int flag;

    log_restore_fpu("restoring fpu ...");
    if (ckpt_read(desc, &flag, sizeof(int)) != sizeof(int)) {
        log_err("failed to get file");
        return -EIO;
    }

    kernel_fpu_begin();
    clear_used_math();
    if (flag) {
        if (!ckpt_get_i387(current)) {
            init_fpu(current);
            if (!ckpt_get_i387(current)) {
                log_err("failed to get i387");
                return -EFAULT;
            }
        }
        if (ckpt_read(desc, ckpt_get_i387(current), xstate_size) != xstate_size) {
            log_err("failed to get i387");
            return -EFAULT;
        }

        ret = ckpt_check_fpu_state();
        if (ret) {
            log_err("failed to restore i387");
            return ret;
        }
        set_used_math();
    }
    kernel_fpu_end();
    log_restore_pos(desc);
    return 0;
}
static int chacha20_simd(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm);
	u32 *state, state_buf[16 + 2] __aligned(8);
	struct skcipher_walk walk;
	int err;

	BUILD_BUG_ON(CHACHA20_STATE_ALIGN != 16);
	state = PTR_ALIGN(state_buf + 0, CHACHA20_STATE_ALIGN);

	if (req->cryptlen <= CHACHA20_BLOCK_SIZE || !may_use_simd())
		return crypto_chacha20_crypt(req);

	err = skcipher_walk_virt(&walk, req, true);

	crypto_chacha20_init(state, ctx, walk.iv);

	kernel_fpu_begin();

	while (walk.nbytes >= CHACHA20_BLOCK_SIZE) {
		chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
				rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE));
		err = skcipher_walk_done(&walk,
					 walk.nbytes % CHACHA20_BLOCK_SIZE);
	}

	if (walk.nbytes) {
		chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
				walk.nbytes);
		err = skcipher_walk_done(&walk, 0);
	}

	kernel_fpu_end();

	return err;
}
Пример #25
0
static int chacha20_simd(struct blkcipher_desc *desc, struct scatterlist *dst,
                         struct scatterlist *src, unsigned int nbytes)
{
    u32 *state, state_buf[16 + (CHACHA20_STATE_ALIGN / sizeof(u32)) - 1];
    struct blkcipher_walk walk;
    int err;

    if (!may_use_simd())
        return crypto_chacha20_crypt(desc, dst, src, nbytes);

    state = (u32 *)roundup((uintptr_t)state_buf, CHACHA20_STATE_ALIGN);

    blkcipher_walk_init(&walk, dst, src, nbytes);
    err = blkcipher_walk_virt_block(desc, &walk, CHACHA20_BLOCK_SIZE);

    crypto_chacha20_init(state, crypto_blkcipher_ctx(desc->tfm), walk.iv);

    kernel_fpu_begin();

    while (walk.nbytes >= CHACHA20_BLOCK_SIZE) {
        chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
                        rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE));
        err = blkcipher_walk_done(desc, &walk,
                                  walk.nbytes % CHACHA20_BLOCK_SIZE);
    }

    if (walk.nbytes) {
        chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
                        walk.nbytes);
        err = blkcipher_walk_done(desc, &walk, 0);
    }

    kernel_fpu_end();

    return err;
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

#endif

#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_tfm *tfm)
{
	struct cryptd_aead *cryptd_tfm;
	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
	struct crypto_aead *cryptd_child;
	struct aesni_rfc4106_gcm_ctx *child_ctx;
	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	cryptd_child = cryptd_aead_child(cryptd_tfm);
	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
	memcpy(child_ctx, ctx, sizeof(*ctx));
	ctx->cryptd_tfm = cryptd_tfm;
	tfm->crt_aead.reqsize = sizeof(struct aead_request)
		+ crypto_aead_reqsize(&cryptd_tfm->base);
	return 0;
}

static void rfc4106_exit(struct crypto_tfm *tfm)
{
	struct aesni_rfc4106_gcm_ctx *ctx =
		(struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
	if (!IS_ERR(ctx->cryptd_tfm))
		cryptd_free_aead(ctx->cryptd_tfm);
	return;
}

static void
rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
{
	struct aesni_gcm_set_hash_subkey_result *result = req->data;

	if (err == -EINPROGRESS)
		return;
	result->err = err;
	complete(&result->completion);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_ablkcipher *ctr_tfm;
	struct ablkcipher_request *req;
	int ret = -EINVAL;
	struct aesni_hash_subkey_req_data *req_data;

	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
	if (IS_ERR(ctr_tfm))
		return PTR_ERR(ctr_tfm);

	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);

	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
	if (ret)
		goto out_free_ablkcipher;

	ret = -ENOMEM;
	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
	if (!req)
		goto out_free_ablkcipher;

	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
	if (!req_data)
		goto out_free_request;

	memset(req_data->iv, 0, sizeof(req_data->iv));

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	init_completion(&req_data->result.completion);
	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
	ablkcipher_request_set_tfm(req, ctr_tfm);
	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
					CRYPTO_TFM_REQ_MAY_BACKLOG,
					rfc4106_set_hash_subkey_done,
					&req_data->result);

	ablkcipher_request_set_crypt(req, &req_data->sg,
		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);

	ret = crypto_ablkcipher_encrypt(req);
	if (ret == -EINPROGRESS || ret == -EBUSY) {
		ret = wait_for_completion_interruptible
			(&req_data->result.completion);
		if (!ret)
			ret = req_data->result.err;
	}
	kfree(req_data);
out_free_request:
	ablkcipher_request_free(req);
out_free_ablkcipher:
	crypto_free_ablkcipher(ctr_tfm);
	return ret;
}

static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
						   unsigned int key_len)
{
	int ret = 0;
	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
	struct aesni_rfc4106_gcm_ctx *child_ctx =
                                 aesni_rfc4106_gcm_ctx_get(cryptd_child);
	u8 *new_key_align, *new_key_mem = NULL;

	if (key_len < 4) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;
	if (key_len != AES_KEYSIZE_128) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
		return -EINVAL;

	if ((unsigned long)key % AESNI_ALIGN) {
		/*key is not aligned: use an auxuliar aligned pointer*/
		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
		if (!new_key_mem)
			return -ENOMEM;

		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
		memcpy(new_key_align, key, key_len);
		key = new_key_align;
	}

	if (!irq_fpu_usable())
		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
		key, key_len);
	else {
		kernel_fpu_begin();
		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
		kernel_fpu_end();
	}
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
		ret = -EINVAL;
		goto exit;
	}
	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
	memcpy(child_ctx, ctx, sizeof(*ctx));
exit:
	kfree(new_key_mem);
	return ret;
}

/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
				unsigned int authsize)
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);

	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}
	crypto_aead_crt(parent)->authsize = authsize;
	crypto_aead_crt(cryptd_child)->authsize = authsize;
	return 0;
}

static int rfc4106_encrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_aead_encrypt(cryptd_req);
	} else {
		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
		kernel_fpu_begin();
		ret = cryptd_child->base.crt_aead.encrypt(req);
		kernel_fpu_end();
		return ret;
	}
}
Пример #27
0
static int crypto_fpu_encrypt(struct blkcipher_desc *desc_in,
			      struct scatterlist *dst, struct scatterlist *src,
			      unsigned int nbytes)
{
	int err;
	struct crypto_fpu_ctx *ctx = crypto_blkcipher_ctx(desc_in->tfm);
	struct crypto_blkcipher *child = ctx->child;
	struct blkcipher_desc desc = {
		.tfm = child,
		.info = desc_in->info,
		.flags = desc_in->flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
	};

	kernel_fpu_begin();
	err = crypto_blkcipher_crt(desc.tfm)->encrypt(&desc, dst, src, nbytes);
	kernel_fpu_end();
	return err;
}

static int crypto_fpu_decrypt(struct blkcipher_desc *desc_in,
			      struct scatterlist *dst, struct scatterlist *src,
			      unsigned int nbytes)
{
	int err;
	struct crypto_fpu_ctx *ctx = crypto_blkcipher_ctx(desc_in->tfm);
	struct crypto_blkcipher *child = ctx->child;
	struct blkcipher_desc desc = {
		.tfm = child,
		.info = desc_in->info,
		.flags = desc_in->flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
	};

	kernel_fpu_begin();
	err = crypto_blkcipher_crt(desc.tfm)->decrypt(&desc, dst, src, nbytes);
	kernel_fpu_end();
	return err;
}

static int crypto_fpu_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
	struct crypto_fpu_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	return 0;
}

static void crypto_fpu_exit_tfm(struct crypto_tfm *tfm)
{
	struct crypto_fpu_ctx *ctx = crypto_tfm_ctx(tfm);
	crypto_free_blkcipher(ctx->child);
}

static struct crypto_instance *crypto_fpu_alloc(struct rtattr **tb)
{
	struct crypto_instance *inst;
	struct crypto_alg *alg;
	int err;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
	if (err)
		return ERR_PTR(err);

	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
				  CRYPTO_ALG_TYPE_MASK);
	if (IS_ERR(alg))
		return ERR_CAST(alg);

	inst = crypto_alloc_instance("fpu", alg);
	if (IS_ERR(inst))
		goto out_put_alg;

	inst->alg.cra_flags = alg->cra_flags;
	inst->alg.cra_priority = alg->cra_priority;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;
	inst->alg.cra_type = alg->cra_type;
	inst->alg.cra_blkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_blkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_blkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
	inst->alg.cra_ctxsize = sizeof(struct crypto_fpu_ctx);
	inst->alg.cra_init = crypto_fpu_init_tfm;
	inst->alg.cra_exit = crypto_fpu_exit_tfm;
	inst->alg.cra_blkcipher.setkey = crypto_fpu_setkey;
	inst->alg.cra_blkcipher.encrypt = crypto_fpu_encrypt;
	inst->alg.cra_blkcipher.decrypt = crypto_fpu_decrypt;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
}

static void crypto_fpu_free(struct crypto_instance *inst)
{
	crypto_drop_spawn(crypto_instance_ctx(inst));
	kfree(inst);
}
void fpu_begin(void)
{
	/* asm ("fstenv b_SaveFPUReg"); */
	kernel_fpu_begin();
}
Пример #29
0
static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct lrw_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.table_ctx = &ctx->lrw_table,
		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = lrw_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct lrw_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.table_ctx = &ctx->lrw_table,
		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = lrw_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
	int err;

	err = xts_check_key(tfm, key, keylen);
	if (err)
		return err;

	/* first half of xts-key is for crypt */
	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
	if (err)
		return err;

	/* second half of xts-key is for tweak */
	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
				  keylen / 2);
}


static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
{
	aesni_enc(ctx, out, in);
}

#ifdef CONFIG_X86_64

static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
}
Пример #30
0
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

#endif

#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_aead *aead)
{
	struct cryptd_aead *cryptd_tfm;
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
				       CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	*ctx = cryptd_tfm;
	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
	return 0;
}

static void rfc4106_exit(struct crypto_aead *aead)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_free_aead(*ctx);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_cipher *tfm;
	int ret;

	tfm = crypto_alloc_cipher("aes", 0, 0);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	ret = crypto_cipher_setkey(tfm, key, key_len);
	if (ret)
		goto out_free_cipher;

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);

out_free_cipher:
	crypto_free_cipher(tfm);
	return ret;
}

static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
				  unsigned int key_len)
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);

	if (key_len < 4) {
		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));

	return aes_set_key_common(crypto_aead_tfm(aead),
				  &ctx->aes_key_expanded, key, key_len) ?:
	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
			   unsigned int key_len)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
	struct cryptd_aead *cryptd_tfm = *ctx;

	return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
}

static int common_rfc4106_set_authsize(struct crypto_aead *aead,
				       unsigned int authsize)
{
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
				unsigned int authsize)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
	struct cryptd_aead *cryptd_tfm = *ctx;

	return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}

static int helper_rfc4106_encrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	struct scatter_walk src_sg_walk;
	struct scatter_walk dst_sg_walk = {};
	unsigned int i;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length equal */
	/* to 16 or 20 bytes */
	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if (sg_is_last(req->src) &&
	    req->src->offset + req->src->length <= PAGE_SIZE &&
	    sg_is_last(req->dst) &&
	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		assoc = scatterwalk_map(&src_sg_walk);
		src = assoc + req->assoclen;
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
		}
	} else {
		/* Allocate memory for src, dst, assoc */
		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
			GFP_ATOMIC);
		if (unlikely(!assoc))
			return -ENOMEM;
		scatterwalk_map_and_copy(assoc, req->src, 0,
					 req->assoclen + req->cryptlen, 0);
		src = assoc + req->assoclen;
		dst = src;
	}

	kernel_fpu_begin();
	aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
			  ctx->hash_subkey, assoc, req->assoclen - 8,
			  dst + req->cryptlen, auth_tag_len);
	kernel_fpu_end();

	/* The authTag (aka the Integrity Check Value) needs to be written
	 * back to the packet. */
	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst - req->assoclen);
			scatterwalk_advance(&dst_sg_walk, req->dst->length);
			scatterwalk_done(&dst_sg_walk, 1, 0);
		}
		scatterwalk_unmap(assoc);
		scatterwalk_advance(&src_sg_walk, req->src->length);
		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
					 req->cryptlen + auth_tag_len, 1);
		kfree(assoc);
	}
	return 0;
}

static int helper_rfc4106_decrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	unsigned long tempCipherLen = 0;
	__be32 counter = cpu_to_be32(1);
	int retval = 0;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	u8 authTag[16];
	struct scatter_walk src_sg_walk;
	struct scatter_walk dst_sg_walk = {};
	unsigned int i;

	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length */
	/* equal to 16 or 20 bytes */

	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if (sg_is_last(req->src) &&
	    req->src->offset + req->src->length <= PAGE_SIZE &&
	    sg_is_last(req->dst) &&
	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		assoc = scatterwalk_map(&src_sg_walk);
		src = assoc + req->assoclen;
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
		if (!assoc)
			return -ENOMEM;
		scatterwalk_map_and_copy(assoc, req->src, 0,
					 req->assoclen + req->cryptlen, 0);
		src = assoc + req->assoclen;
		dst = src;
	}

	kernel_fpu_begin();
	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
			  ctx->hash_subkey, assoc, req->assoclen - 8,
			  authTag, auth_tag_len);
	kernel_fpu_end();

	/* Compare generated tag with passed in tag. */
	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
		-EBADMSG : 0;

	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst - req->assoclen);
			scatterwalk_advance(&dst_sg_walk, req->dst->length);
			scatterwalk_done(&dst_sg_walk, 1, 0);
		}
		scatterwalk_unmap(assoc);
		scatterwalk_advance(&src_sg_walk, req->src->length);
		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
					 tempCipherLen, 1);
		kfree(assoc);
	}
	return retval;
}