void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
    Info<< "Reading velocity field U\n" << endl;
    volVectorField U
    (
        IOobject
        (
            "U",
            runTime.timeName(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE
        ),
        mesh
    );

    Info<< "Reading/calculating face flux field phi\n" << endl;
    surfaceScalarField phi
    (
        IOobject
        (
            "phi",
            runTime.timeName(),
            mesh,
            IOobject::READ_IF_PRESENT,
            IOobject::NO_WRITE
        ),
        linearInterpolate(U) & mesh.Sf()
    );

    Info<< "Creating LES filter width field LESdelta\n" << endl;
    volScalarField LESdelta
    (
        IOobject
        (
            "LESdelta",
            runTime.timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE
        ),
        mesh,
        dimensionedScalar("LESdelta", dimLength, SMALL)
    );

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::LESModel> sgsModel
    (
        incompressible::LESModel::New(U, phi, laminarTransport)
    );

    LESdelta.internalField() = sgsModel->delta();

    LESdelta.write();

    Info<< "End" << endl;
}
Пример #2
0
void calcIncompressibleYPlus
(
    const fvMesh& mesh,
    const Time& runTime,
    const volVectorField& U,
    volScalarField& yPlus
)
{
    typedef incompressible::RASModels::nutWallFunctionFvPatchScalarField
        wallFunctionPatchField;

    #include "createPhi.H"

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::RASModel> RASModel
    (
        incompressible::RASModel::New(U, phi, laminarTransport)
    );

    const volScalarField::GeometricBoundaryField nutPatches =
        RASModel->nut()().boundaryField();

    bool foundNutPatch = false;
    forAll(nutPatches, patchi)
    {
        if (isA<wallFunctionPatchField>(nutPatches[patchi]))
        {
            foundNutPatch = true;

            const wallFunctionPatchField& nutPw =
                dynamic_cast<const wallFunctionPatchField&>
                    (nutPatches[patchi]);

            yPlus.boundaryField()[patchi] = nutPw.yPlus();
            const scalarField& Yp = yPlus.boundaryField()[patchi];

            Info<< "Patch " << patchi
                << " named " << nutPw.patch().name()
                << " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
                << " average: " << gAverage(Yp) << nl << endl;
        }
    }

    if (!foundNutPatch)
    {
        Info<< "    no " << wallFunctionPatchField::typeName << " patches"
            << endl;
    }
}
Пример #3
0
void calcIncompressibleYPlus
(
    const fvMesh& mesh,
    const Time& runTime,
    const volVectorField& U,
    volScalarField& yPlus
)
{
    #include "createPhi.H"

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::turbulenceModel> turbulenceModel
    (
        incompressible::turbulenceModel::New(U, phi, laminarTransport)
    );

    calcYPlus(turbulenceModel, mesh, U, yPlus);
}
Пример #4
0
int main(int argc, char *argv[])
{
    timeSelector::addOptions();
    #include "setRootCase.H"
#   include "createTime.H"
    instantList timeDirs = timeSelector::select0(runTime, args);
#   include "createMesh.H"

    forAll(timeDirs, timeI)
    {
        runTime.setTime(timeDirs[timeI], timeI);
        Info<< "Time = " << runTime.timeName() << endl;
        fvMesh::readUpdateState state = mesh.readUpdate();

        // Wall distance
        if (timeI == 0 || state != fvMesh::UNCHANGED)
        {
            Info<< "Calculating wall distance\n" << endl;
            wallDist y(mesh, true);
            Info<< "Writing wall distance to field "
                << y.name() << nl << endl;
            y.write();
        }


        volScalarField yPlus
        (
            IOobject
            (
                "yPlus",
                runTime.timeName(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE
            ),
            mesh,
            dimensionedScalar("yPlus", dimless, 0.0)
        );

        Info<< "Reading field U\n" << endl;
        volVectorField U
        (
            IOobject
            (
                "U",
                runTime.timeName(),
                mesh,
                IOobject::MUST_READ,
                IOobject::NO_WRITE
            ),
            mesh
        );

#       include "createPhi.H"

        singlePhaseTransportModel laminarTransport(U, phi);

        autoPtr<incompressible::LESModel> sgsModel
        (
            incompressible::LESModel::New(U, phi, laminarTransport)
        );

        volScalarField::GeometricBoundaryField d = nearWallDist(mesh).y();
        volScalarField nuEff = sgsModel->nuEff();

        const fvPatchList& patches = mesh.boundary();

        forAll(patches, patchi)
        {
            const fvPatch& currPatch = patches[patchi];

            if (isA<wallFvPatch>(currPatch))
            {
                yPlus.boundaryField()[patchi] =
                    d[patchi]
                   *sqrt
                    (
                        nuEff.boundaryField()[patchi]
                       *mag(U.boundaryField()[patchi].snGrad())
                    )
                   /sgsModel->nu().boundaryField()[patchi];
                const scalarField& Yp = yPlus.boundaryField()[patchi];

                Info<< "Patch " << patchi
                    << " named " << currPatch.name()
                    << " y  : min: " << min(d) << " max: " << max(d)
                    << " average: " << average(d) << nl
                    << " y+ : min: " << min(Yp) << " max: " << max(Yp)
                    << " average: " << average(Yp) << nl << endl;
            }
        }

        Info<< "Writing yPlus to field "
            << yPlus.name() << nl << endl;

        yPlus.write();
    }
int main(int argc, char *argv[])
{
    argList::addNote
    (
        "apply a simplified boundary-layer model to the velocity and\n"
        "turbulence fields based on the 1/7th power-law."
    );

    argList::addOption
    (
        "ybl",
        "scalar",
        "specify the boundary-layer thickness"
    );
    argList::addOption
    (
        "Cbl",
        "scalar",
        "boundary-layer thickness as Cbl * mean distance to wall"
    );
    argList::addBoolOption
    (
        "writenut",
        "write nut field"
    );

    #include "setRootCase.H"

    if (!args.optionFound("ybl") && !args.optionFound("Cbl"))
    {
        FatalErrorIn(args.executable())
            << "Neither option 'ybl' or 'Cbl' have been provided to calculate "
            << "the boundary-layer thickness.\n"
            << "Please choose either 'ybl' OR 'Cbl'."
            << exit(FatalError);
    }
    else if (args.optionFound("ybl") && args.optionFound("Cbl"))
    {
        FatalErrorIn(args.executable())
            << "Both 'ybl' and 'Cbl' have been provided to calculate "
            << "the boundary-layer thickness.\n"
            << "Please choose either 'ybl' OR 'Cbl'."
            << exit(FatalError);
    }

    #include "createTime.H"
    #include "createMesh.H"
    #include "createFields.H"

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

    // Modify velocity by applying a 1/7th power law boundary-layer
    // u/U0 = (y/ybl)^(1/7)
    // assumes U0 is the same as the current cell velocity

    Info<< "Setting boundary layer velocity" << nl << endl;
    scalar yblv = ybl.value();
    forAll(U, cellI)
    {
        if (y[cellI] <= yblv)
        {
            mask[cellI] = 1;
            U[cellI] *= ::pow(y[cellI]/yblv, (1.0/7.0));
        }
    }
    mask.correctBoundaryConditions();

    Info<< "Writing U\n" << endl;
    U.write();

    // Update/re-write phi
    #include "createPhi.H"
    phi.write();

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::turbulenceModel> turbulence
    (
        incompressible::turbulenceModel::New(U, phi, laminarTransport)
    );

    if (isA<incompressible::RASModel>(turbulence()))
    {
        // Calculate nut - reference nut is calculated by the turbulence model
        // on its construction
        tmp<volScalarField> tnut = turbulence->nut();
        volScalarField& nut = tnut();
        volScalarField S(mag(dev(symm(fvc::grad(U)))));
        nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;

        // do not correct BC - wall functions will 'undo' manipulation above
        // by using nut from turbulence model

        if (args.optionFound("writenut"))
        {
            Info<< "Writing nut" << endl;
            nut.write();
        }


        //--- Read and modify turbulence fields

        // Turbulence k
        tmp<volScalarField> tk = turbulence->k();
        volScalarField& k = tk();
        scalar ck0 = pow025(Cmu)*kappa;
        k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));

        // do not correct BC - operation may use inconsistent fields wrt these
        // local manipulations
        // k.correctBoundaryConditions();

        Info<< "Writing k\n" << endl;
        k.write();


        // Turbulence epsilon
        tmp<volScalarField> tepsilon = turbulence->epsilon();
        volScalarField& epsilon = tepsilon();
        scalar ce0 = ::pow(Cmu, 0.75)/kappa;
        epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);

        // do not correct BC - wall functions will use non-updated k from
        // turbulence model
        // epsilon.correctBoundaryConditions();

        Info<< "Writing epsilon\n" << endl;
        epsilon.write();

        // Turbulence omega
        IOobject omegaHeader
        (
            "omega",
            runTime.timeName(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE,
            false
        );

        if (omegaHeader.headerOk())
        {
            volScalarField omega(omegaHeader, mesh);
            dimensionedScalar k0("VSMALL", k.dimensions(), VSMALL);
            omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);

            // do not correct BC - wall functions will use non-updated k from
            // turbulence model
            // omega.correctBoundaryConditions();

            Info<< "Writing omega\n" << endl;
            omega.write();
        }

        // Turbulence nuTilda
        IOobject nuTildaHeader
        (
            "nuTilda",
            runTime.timeName(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE,
            false
        );

        if (nuTildaHeader.headerOk())
        {
            volScalarField nuTilda(nuTildaHeader, mesh);
            nuTilda = nut;

            // do not correct BC
            // nuTilda.correctBoundaryConditions();

            Info<< "Writing nuTilda\n" << endl;
            nuTilda.write();
        }
    }

    Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
        << "  ClockTime = " << runTime.elapsedClockTime() << " s"
        << nl << endl;

    Info<< "End\n" << endl;

    return 0;
}
Пример #6
0
void calcIncompressibleR
(
    const fvMesh& mesh,
    const Time& runTime,
    const volVectorField& U
)
{
    #include "createPhi.H"

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::turbulenceModel> model
    (
        incompressible::turbulenceModel::New(U, phi, laminarTransport)
    );

    Info<< "Getting R and k fields" << nl << endl;

    volSymmTensorField& R = model->R()();

    volScalarField& k = model->k()();

    //normalize R field
    volSymmTensorField B = R/(2.0*k) - 1.0/3.0*I;

    //get the eigen values of the normalized B field
    volVectorField B_eigenValues
    (
        IOobject
        (
            "eigenValues",
            runTime.timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE
        ),
        eigenValues(B)
    );

    //calculate the second and third invariants (the first = 0)
    volScalarField IIs
    (
        IOobject
        (
            "IIs",
            runTime.timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE
        ),
        B_eigenValues.component(vector::X)*
        B_eigenValues.component(vector::Y)+
        B_eigenValues.component(vector::Y)*
        B_eigenValues.component(vector::Z)+
        B_eigenValues.component(vector::X)*
        B_eigenValues.component(vector::Z)
    );
    
    volScalarField IIIs
    (
        IOobject
        (
            "IIIs",
            runTime.timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE
        ),
        B_eigenValues.component(vector::X)*
        B_eigenValues.component(vector::Y)*
        B_eigenValues.component(vector::Z)
    );

    Info<< "    Writing IIs and IIIs" << endl;
    IIs.write();
    IIIs.write();
}
Пример #7
0
void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
    bool writeResults = !args.optionFound("noWrite");

    IOobject phiHeader
    (
        "phi",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ
    );

    if (phiHeader.headerOk())
    {
        autoPtr<surfaceScalarField> PePtr;

        Info<< "    Reading phi" << endl;
        surfaceScalarField phi(phiHeader, mesh);

        volVectorField U
        (
            IOobject
            (
                "U",
                runTime.timeName(),
                mesh,
                IOobject::MUST_READ
            ),
            mesh
        );

        IOobject turbulencePropertiesHeader
        (
            "turbulenceProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ_IF_MODIFIED,
            IOobject::NO_WRITE
        );

        Info<< "    Calculating Pe" << endl;

        if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0))
        {
            if (turbulencePropertiesHeader.headerOk())
            {
                singlePhaseTransportModel laminarTransport(U, phi);

                autoPtr<incompressible::turbulenceModel> turbulenceModel
                (
                    incompressible::turbulenceModel::New
                    (
                        U,
                        phi,
                        laminarTransport
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pef",
                            runTime.timeName(),
                            mesh
                        ),
                        mag(phi)
                       /(
                            mesh.magSf()
                          * mesh.surfaceInterpolation::deltaCoeffs()
                          * fvc::interpolate(turbulenceModel->nuEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ_IF_MODIFIED,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar nu(transportProperties.lookup("nu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pef",
                            runTime.timeName(),
                            mesh
                        ),
                        mag(phi)
                       /(
                            mesh.magSf()
                          * mesh.surfaceInterpolation::deltaCoeffs()
                          * nu
                        )
                    )
                );
            }
        }
        else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0))
        {
            if (turbulencePropertiesHeader.headerOk())
            {
                autoPtr<fluidThermo> thermo(fluidThermo::New(mesh));

                volScalarField rho
                (
                    IOobject
                    (
                        "rho",
                        runTime.timeName(),
                        mesh
                    ),
                    thermo->rho()
                );

                autoPtr<compressible::turbulenceModel> turbulenceModel
                (
                    compressible::turbulenceModel::New
                    (
                        rho,
                        U,
                        phi,
                        thermo()
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pef",
                            runTime.timeName(),
                            mesh
                        ),
                        mag(phi)
                       /(
                            mesh.magSf()
                          * mesh.surfaceInterpolation::deltaCoeffs()
                          * fvc::interpolate(turbulenceModel->muEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ_IF_MODIFIED,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar mu(transportProperties.lookup("mu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pef",
                            runTime.timeName(),
                            mesh
                        ),
                        mag(phi)
                       /(
                            mesh.magSf()
                          * mesh.surfaceInterpolation::deltaCoeffs()
                          * mu
                        )
                    )
                );
            }
        }
        else
        {
            FatalErrorInFunction
                << "Incorrect dimensions of phi: " << phi.dimensions()
                    << abort(FatalError);
        }

        Info<< "    Pe max : " << max(PePtr()).value() << endl;

        if (writeResults)
        {
            Info<< "    Writing surfaceScalarField : "
                << PePtr().name() << endl;
            PePtr().write();

            volScalarField Pe
            (
                IOobject
                (
                    "Pe",
                    runTime.timeName(),
                    mesh
                ),
                fvc::average(PePtr())
            );

            Info<< "    Writing volScalarField : "
                << Pe.name() << endl;
            Pe.write();
        }
    }
    else
    {
        Info<< "    No phi" << endl;
    }
}
Пример #8
0
int main(int argc, char *argv[])
{
#   include "setRootCase.H"
#   include "createTime.H"
#   include "createMesh.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //


// Read in the existing solution files.   
Info << "Reading field U" << endl;
volVectorField U
(
    IOobject
    (
        "U",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    ),
    mesh
);

Info << "Reading field T" << endl;
volScalarField T
(
    IOobject
    (
        "T",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    ),
    mesh
);

Info << "Reading field p_rgh" << endl;
volScalarField p_rgh
(
    IOobject
    (
        "p_rgh",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    ),
    mesh
);


// Compute the velocity flux at the faces.  This is needed
// by the laminar transport model.
Info<< "Creating/Calculating face flux field, phi..." << endl;
surfaceScalarField phi
(
    IOobject
    (
        "phi",
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT,
        IOobject::AUTO_WRITE
    ),
    linearInterpolate(U) & mesh.Sf()
);


// Read the gravitational acceleration.  This is needed 
// for calculating dp/dn on boundaries.
Info << "Reading gravitational acceleration..." << endl;
uniformDimensionedVectorField g
(
    IOobject
    (
        "g",
        runTime.constant(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    )
);


// Read the value of TRef in the transportProperties file.
singlePhaseTransportModel laminarTransport(U, phi);
dimensionedScalar TRef(laminarTransport.lookup("TRef"));


// Use Tref and the T field to compute rhok, which is needed
// to calculate dp/dn on boundaries.
Info<< "Creating the kinematic density field, rhok..." << endl;
volScalarField rhok
(
    IOobject
    (
        "rhok",
        runTime.timeName(),
        mesh
    ),
    1.0 - (T - TRef)/TRef
);


// Get access to the input dictionary.
IOdictionary setFieldsABLDict
(
    IOobject
    (
        "setFieldsABLDict",
        runTime.time().system(),
        runTime,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    )
);



// Read in the setFieldsABLDict entries.
word velocityInitType(setFieldsABLDict.lookup("velocityInitType"));
word temperatureInitType(setFieldsABLDict.lookup("temperatureInitType"));
word tableInterpTypeU(setFieldsABLDict.lookupOrDefault<word>("tableInterpTypeU","linear"));
word tableInterpTypeT(setFieldsABLDict.lookupOrDefault<word>("tableInterpTypeT","linear"));
scalar deltaU(setFieldsABLDict.lookupOrDefault<scalar>("deltaU",1.0));
scalar deltaV(setFieldsABLDict.lookupOrDefault<scalar>("deltaV",1.0));
scalar zPeak(setFieldsABLDict.lookupOrDefault<scalar>("zPeak",0.03));
scalar Uperiods(setFieldsABLDict.lookupOrDefault<scalar>("Uperiods",4));
scalar Vperiods(setFieldsABLDict.lookupOrDefault<scalar>("Vperiods",4));
scalar xMin(setFieldsABLDict.lookupOrDefault<scalar>("xMin",0.0));
scalar yMin(setFieldsABLDict.lookupOrDefault<scalar>("yMin",0.0));
scalar zMin(setFieldsABLDict.lookupOrDefault<scalar>("zMin",0.0));
scalar xMax(setFieldsABLDict.lookupOrDefault<scalar>("xMax",3000.0));
scalar yMax(setFieldsABLDict.lookupOrDefault<scalar>("yMax",3000.0));
scalar zMax(setFieldsABLDict.lookupOrDefault<scalar>("zMax",1000.0));
scalar zRef(setFieldsABLDict.lookupOrDefault<scalar>("zRef",600.0));
bool useWallDistZ(setFieldsABLDict.lookupOrDefault<bool>("useWallDistZ",false));
bool scaleVelocityWithHeight(setFieldsABLDict.lookupOrDefault<bool>("scaleVelocityWithHeight",false));
scalar zInversion(setFieldsABLDict.lookupOrDefault<scalar>("zInversion",600.0));
scalar Ug(setFieldsABLDict.lookupOrDefault<scalar>("Ug",15.0));
scalar UgDir(setFieldsABLDict.lookupOrDefault<scalar>("UgDir",270.0));
scalar Tbottom(setFieldsABLDict.lookupOrDefault<scalar>("Tbottom",300.0));
scalar Ttop(setFieldsABLDict.lookupOrDefault<scalar>("Ttop",304.0));
scalar dTdz(setFieldsABLDict.lookupOrDefault<scalar>("dTdz",0.003));
scalar widthInversion(setFieldsABLDict.lookupOrDefault<scalar>("widthInversion",80.0));
scalar TPrimeScale(setFieldsABLDict.lookupOrDefault<scalar>("TPrimeScale",0.0));
scalar z0(setFieldsABLDict.lookupOrDefault<scalar>("z0",0.016));
scalar kappa(setFieldsABLDict.lookupOrDefault<scalar>("kappa",0.40));
List<List<scalar> > profileTable(setFieldsABLDict.lookup("profileTable"));
bool updateInternalFields(setFieldsABLDict.lookupOrDefault<bool>("updateInternalFields",true));
bool updateBoundaryFields(setFieldsABLDict.lookupOrDefault<bool>("updateBoundaryFields",true));

// Change the table profiles from scalar lists to scalar fields
scalarField zProfile(profileTable.size(),0.0);
scalarField UProfile(profileTable.size(),0.0);
scalarField VProfile(profileTable.size(),0.0);
scalarField TProfile(profileTable.size(),0.0);
forAll(zProfile,i)
{
   zProfile[i] = profileTable[i][0];
   UProfile[i] = profileTable[i][1];
   VProfile[i] = profileTable[i][2];
   TProfile[i] = profileTable[i][3];
}
Пример #9
0
void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
    bool writeResults = !args.optionFound("noWrite");

    IOobject phiHeader
    (
        "phi",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ
    );

    if (phiHeader.headerOk())
    {
        autoPtr<surfaceScalarField> PePtr;

        Info<< "    Reading phi" << endl;
        surfaceScalarField phi(phiHeader, mesh);

        volVectorField U
        (
            IOobject
            (
                "U",
                runTime.timeName(),
                mesh,
                IOobject::MUST_READ
            ),
            mesh
        );

        IOobject RASPropertiesHeader
        (
            "RASProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE
        );

        IOobject LESPropertiesHeader
        (
            "LESProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE
        );

        Info<< "    Calculating Pe" << endl;

        if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0))
        {
            if (RASPropertiesHeader.headerOk())
            {
                IOdictionary RASProperties(RASPropertiesHeader);

                singlePhaseTransportModel laminarTransport(U, phi);

                autoPtr<incompressible::RASModel> RASModel
                (
                    incompressible::RASModel::New
                    (
                        U,
                        phi,
                        laminarTransport
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(RASModel->nuEff())
                        )
                    )
                );
            }
            else if (LESPropertiesHeader.headerOk())
            {
                IOdictionary LESProperties(LESPropertiesHeader);

                singlePhaseTransportModel laminarTransport(U, phi);

                autoPtr<incompressible::LESModel> sgsModel
                (
                    incompressible::LESModel::New(U, phi, laminarTransport)
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(sgsModel->nuEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar nu(transportProperties.lookup("nu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mesh.surfaceInterpolation::deltaCoeffs()
                        * (mag(phi)/mesh.magSf())*(runTime.deltaT()/nu)
                    )
                );
            }
        }
        else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0))
        {
            if (RASPropertiesHeader.headerOk())
            {
                IOdictionary RASProperties(RASPropertiesHeader);

                autoPtr<basicPsiThermo> thermo(basicPsiThermo::New(mesh));

                volScalarField rho
                (
                    IOobject
                    (
                        "rho",
                        runTime.timeName(),
                        mesh
                    ),
                    thermo->rho()
                );

                autoPtr<compressible::RASModel> RASModel
                (
                    compressible::RASModel::New
                    (
                        rho,
                        U,
                        phi,
                        thermo()
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(RASModel->muEff())
                        )
                    )
                );
            }
            else if (LESPropertiesHeader.headerOk())
            {
                IOdictionary LESProperties(LESPropertiesHeader);

                autoPtr<basicPsiThermo> thermo(basicPsiThermo::New(mesh));

                volScalarField rho
                (
                    IOobject
                    (
                        "rho",
                        runTime.timeName(),
                        mesh
                    ),
                    thermo->rho()
                );

                autoPtr<compressible::LESModel> sgsModel
                (
                    compressible::LESModel::New(rho, U, phi, thermo())
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(sgsModel->muEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar mu(transportProperties.lookup("mu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mesh.surfaceInterpolation::deltaCoeffs()
                        * (mag(phi)/(mesh.magSf()))*(runTime.deltaT()/mu)
                    )
                );
            }
        }
        else
        {
            FatalErrorIn(args.executable())
                    << "Incorrect dimensions of phi: " << phi.dimensions()
                    << abort(FatalError);
        }


        // can also check how many cells exceed a particular Pe limit
        /*
        {
            label count = 0;
            label PeLimit = 200;
            forAll(PePtr(), i)
            {
                if (PePtr()[i] > PeLimit)
                {
                    count++;
                }

            }

            Info<< "Fraction > " << PeLimit << " = "
                << scalar(count)/Pe.size() << endl;
        }
        */

        Info << "Pe max : " << max(PePtr()).value() << endl;

        if (writeResults)
        {
            PePtr().write();
        }
    }
    else
    {
        Info<< "    No phi" << endl;
    }

    Info<< "\nEnd\n" << endl;
}