Пример #1
0
/* This function is only called on the boot processor */
void __init time_init(void)
{
	time_t sec, old_sec;
	unsigned old_stamp, stamp, elapsed;

        if (ppc_md.time_init != NULL)
                time_offset = ppc_md.time_init();

	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
		/* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
		tb_to_us = 0x418937;
        } else {
                ppc_md.calibrate_decr();
	}

	/* Now that the decrementer is calibrated, it can be used in case the
	 * clock is stuck, but the fact that we have to handle the 601
	 * makes things more complex. Repeatedly read the RTC until the
	 * next second boundary to try to achieve some precision.  If there
	 * is no RTC, we still need to set tb_last_stamp and
	 * last_jiffy_stamp(cpu 0) to the current stamp.
	 */
	stamp = get_native_tbl();
	if (ppc_md.get_rtc_time) {
		sec = ppc_md.get_rtc_time();
		elapsed = 0;
		do {
			old_stamp = stamp;
			old_sec = sec;
			stamp = get_native_tbl();
			if (__USE_RTC() && stamp < old_stamp)
				old_stamp -= 1000000000;
			elapsed += stamp - old_stamp;
			sec = ppc_md.get_rtc_time();
		} while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
		if (sec == old_sec)
			printk("Warning: real time clock seems stuck!\n");
		xtime.tv_sec = sec;
		xtime.tv_usec = 0;
		/* No update now, we just read the time from the RTC ! */
		last_rtc_update = xtime.tv_sec;
	}

	last_jiffy_stamp(0) = tb_last_stamp = stamp;

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);

	/* If platform provided a timezone (pmac), we correct the time
	 * using do_sys_settimeofday() which in turn calls warp_clock()
	 */
        if (time_offset) {
        	struct timezone tz;
        	tz.tz_minuteswest = -time_offset / 60;
        	tz.tz_dsttime = 0;
        	do_sys_settimeofday(NULL, &tz);
        }
}
Пример #2
0
void wakeup_decrementer(void)
{
	set_dec(tb_ticks_per_jiffy);
	/* No currently-supported powerbook has a 601,
	 * so use get_tbl, not native
	 */
	last_jiffy_stamp(0) = tb_last_stamp = get_tbl();
}
Пример #3
0
int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
	int tb_delta;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
	/* Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be update after STA_UNSYNC
	 * is cleared. Tool like clock/hwclock either copy the RTC
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation. Note also that
	 * we don't touch the decrementer since:
	 * a) it would lose timer interrupt synchronization on SMP
	 * (if it is working one day)
	 * b) it could make one jiffy spuriously shorter or longer
	 * which would introduce another source of uncertainty potentially
	 * harmful to relatively short timers.
	 */

	/* This works perfectly on SMP only if the tb are in sync but
	 * guarantees an error < 1 jiffy even if they are off by eons,
	 * still reasonable when gettimeofday resolution is 1 jiffy.
	 */
	tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;

	new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	/* In case of a large backwards jump in time with NTP, we want the
	 * clock to be updated as soon as the PLL is again in lock.
	 */
	last_rtc_update = new_sec - 658;

	time_adjust = 0;                /* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;
	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}
Пример #4
0
static void __init
smp_chrp_setup_cpu(int cpu_nr)
{
	static atomic_t ready = ATOMIC_INIT(1);
	static volatile int frozen = 0;

	if (cpu_nr == 0) {
		/* wait for all the others */
		while (atomic_read(&ready) < smp_num_cpus)
			barrier();
		atomic_set(&ready, 1);
		/* freeze the timebase */
		call_rtas("freeze-time-base", 0, 1, NULL);
		mb();
		frozen = 1;
		/* XXX assumes this is not a 601 */
		set_tb(0, 0);
		last_jiffy_stamp(0) = 0;
		while (atomic_read(&ready) < smp_num_cpus)
			barrier();
		/* thaw the timebase again */
		call_rtas("thaw-time-base", 0, 1, NULL);
		mb();
		frozen = 0;
		smp_tb_synchronized = 1;
	} else {
		atomic_inc(&ready);
		while (!frozen)
			barrier();
		set_tb(0, 0);
		last_jiffy_stamp(0) = 0;
		mb();
		atomic_inc(&ready);
		while (frozen)
			barrier();
	}

	if (OpenPIC_Addr)
		do_openpic_setup_cpu();
}
Пример #5
0
void __init smp_software_tb_sync(int cpu)
{
#define PASSES 4	/* 4 passes.. */
	int pass;
	int i, j;

	/* stop - start will be the number of timebase ticks it takes for cpu0
	 * to send a message to all others and the first reponse to show up.
	 *
	 * ASSUMPTION: this time is similiar for all cpus
	 * ASSUMPTION: the time to send a one-way message is ping/2
	 */
	register unsigned long start = 0;
	register unsigned long stop = 0;
	register unsigned long temp = 0;

	set_tb(0, 0);

	/* multiple passes to get in l1 cache.. */
	for (pass = 2; pass < 2+PASSES; pass++){
		if (cpu == 0){
			mb();
			for (i = j = 1; i < smp_num_cpus; i++, j++){
				/* skip stuck cpus */
				while (!cpu_callin_map[j])
					++j;
				while (cpu_callin_map[j] != pass)
					barrier();
			}
			mb();
			tb_sync_flag = pass;
			start = get_tbl();	/* start timing */
			while (tb_sync_flag)
				mb();
			stop = get_tbl();	/* end timing */
			/* theoretically, the divisor should be 2, but
			 * I get better results on my dual mtx. someone
			 * please report results on other smp machines..
			 */
			tb_offset = (stop-start)/4;
			mb();
			tb_sync_flag = pass;
			udelay(10);
			mb();
			tb_sync_flag = 0;
			mb();
			set_tb(0,0);
			mb();
		} else {
			cpu_callin_map[cpu] = pass;
			mb();
			while (!tb_sync_flag)
				mb();		/* wait for cpu0 */
			mb();
			tb_sync_flag = 0;	/* send response for timing */
			mb();
			while (!tb_sync_flag)
				mb();
			temp = tb_offset;	/* make sure offset is loaded */
			while (tb_sync_flag)
				mb();
			set_tb(0,temp);		/* now, set the timebase */
			mb();
		}
	}
	if (cpu == 0) {
		smp_tb_synchronized = 1;
		printk("smp_software_tb_sync: %d passes, final offset: %ld\n",
			PASSES, tb_offset);
	}
	/* so time.c doesn't get confused */
	set_dec(tb_ticks_per_jiffy);
	last_jiffy_stamp(cpu) = 0;
}
Пример #6
0
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 * We set it up to overflow again in 1/HZ seconds.
 */
void timer_interrupt(struct pt_regs * regs)
{
	int next_dec;
	unsigned long cpu = smp_processor_id();
	unsigned jiffy_stamp = last_jiffy_stamp(cpu);
	extern void do_IRQ(struct pt_regs *);

	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);

	MARK(kernel_trap_entry, "%d struct pt_regs %p", regs->trap, regs);

	irq_enter();

	while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
		jiffy_stamp += tb_ticks_per_jiffy;
		
		profile_tick(CPU_PROFILING, regs);
		update_process_times(user_mode(regs));

	  	if (smp_processor_id())
			continue;

		/* We are in an interrupt, no need to save/restore flags */
		write_seqlock(&xtime_lock);
		tb_last_stamp = jiffy_stamp;
#ifdef CONFIG_LTT
		ltt_reset_timestamp();
#endif //CONFIG_LTT
		do_timer(regs);

		/*
		 * update the rtc when needed, this should be performed on the
		 * right fraction of a second. Half or full second ?
		 * Full second works on mk48t59 clocks, others need testing.
		 * Note that this update is basically only used through
		 * the adjtimex system calls. Setting the HW clock in
		 * any other way is a /dev/rtc and userland business.
		 * This is still wrong by -0.5/+1.5 jiffies because of the
		 * timer interrupt resolution and possible delay, but here we
		 * hit a quantization limit which can only be solved by higher
		 * resolution timers and decoupling time management from timer
		 * interrupts. This is also wrong on the clocks
		 * which require being written at the half second boundary.
		 * We should have an rtc call that only sets the minutes and
		 * seconds like on Intel to avoid problems with non UTC clocks.
		 */
		if ( ppc_md.set_rtc_time && ntp_synced() &&
		     xtime.tv_sec - last_rtc_update >= 659 &&
		     abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ &&
		     jiffies - wall_jiffies == 1) {
		  	if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
				last_rtc_update = xtime.tv_sec+1;
			else
				/* Try again one minute later */
				last_rtc_update += 60;
		}
		write_sequnlock(&xtime_lock);
	}
	if ( !disarm_decr[smp_processor_id()] )
		set_dec(next_dec);
	last_jiffy_stamp(cpu) = jiffy_stamp;

	if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
		ppc_md.heartbeat();

	irq_exit();

 	trace_kernel_trap_exit();
	MARK(kernel_trap_exit, MARK_NOARGS);
}
Пример #7
0
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 * We set it up to overflow again in 1/HZ seconds.
 */
int timer_interrupt(struct pt_regs * regs)
{
	int next_dec;
	unsigned long cpu = smp_processor_id();
	unsigned jiffy_stamp = last_jiffy_stamp(cpu);
	extern void do_IRQ(struct pt_regs *);

	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);

	hardirq_enter(cpu);

	while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) < 0) {
		jiffy_stamp += tb_ticks_per_jiffy;
		if (!user_mode(regs))
			ppc_do_profile(instruction_pointer(regs));
		if (unlikely(!heartbeat_count(cpu)--)
				&& heartbeat_reset(cpu)) {
			ppc_md.heartbeat();
			heartbeat_count(cpu) = heartbeat_reset(cpu);
		}
	  	if (cpu)
			continue;

		/* We are in an interrupt, no need to save/restore flags */
		write_lock(&xtime_lock);
		tb_last_stamp = jiffy_stamp;
		do_timer(regs);

		/*
		 * update the rtc when needed, this should be performed on the
		 * right fraction of a second. Half or full second ?
		 * Full second works on mk48t59 clocks, others need testing.
		 * Note that this update is basically only used through
		 * the adjtimex system calls. Setting the HW clock in
		 * any other way is a /dev/rtc and userland business.
		 * This is still wrong by -0.5/+1.5 jiffies because of the
		 * timer interrupt resolution and possible delay, but here we
		 * hit a quantization limit which can only be solved by higher
		 * resolution timers and decoupling time management from timer
		 * interrupts. This is also wrong on the clocks
		 * which require being written at the half second boundary.
		 * We should have an rtc call that only sets the minutes and
		 * seconds like on Intel to avoid problems with non UTC clocks.
		 */
		if ( ppc_md.set_rtc_time && (time_status & STA_UNSYNC) == 0 &&
		     xtime.tv_sec - last_rtc_update >= 659 &&
		     abs(xtime.tv_usec - (1000000-1000000/HZ)) < 500000/HZ &&
		     jiffies - wall_jiffies == 1) {
		  	if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0)
				last_rtc_update = xtime.tv_sec+1;
			else
				/* Try again one minute later */
				last_rtc_update += 60;
		}
		write_unlock(&xtime_lock);
	}
	if (!disarm_decr[cpu])
		set_dec(next_dec);
	last_jiffy_stamp(cpu) = jiffy_stamp;

#ifdef CONFIG_SMP
	smp_local_timer_interrupt(regs);
#endif /* CONFIG_SMP */

	hardirq_exit(cpu);

	if (softirq_pending(cpu))
		do_softirq();

	return 1; /* lets ret_from_int know we can do checks */
}