Пример #1
0
  void print(std::ostream &os) const {
    os << "function(";
    for (int i = 0; i < tf->code[1]; i++) {
      os << localname(tf, i);
      if (i + 1 < tf->code[1])
	os << ", ";
    }
    os << ") -- line " << tf->lineDefined << std::endl;
    decompile(os, tf, indent_str + std::string(4, ' '),
	      upvals, num_upvals);
    os << indent_str << "end";
  }
Пример #2
0
static const char *getobjname (Proto *p, int lastpc, int reg,
                               const char **name) {
  int pc = findsetreg(p, lastpc, reg);
  if (pc != -1) {  /* could find instruction? */
    Instruction i = p->code[pc];
    OpCode op = GET_OPCODE(i);
    switch (op) {
      case OP_GETTABUP:
      case OP_GETTABLE: {
        int k = GETARG_C(i);  /* key index */
        int t = GETARG_B(i);  /* table index */
        const char *vn = (op == OP_GETTABLE)  /* name of indexed variable */
                         ? luaF_getlocalname(p, t + 1)
                         : upvalname(p, t);
        kname(p, pc, k, name);
        return (vn && strcmp(vn, LUA_ENV) == 0) ? "global" : "field";
      }
      case OP_GETLOCAL: {
        *name = localname(p, GETARG_B(i));
        return "local";
      }
      case OP_GETUPVAL: {
        *name = upvalname(p, GETARG_B(i));
        return "upvalue";
      }
      case OP_LOADK:
      case OP_LOADKX: {
        int b = (op == OP_LOADK) ? GETARG_Bx(i)
                                 : GETARG_Ax(p->code[pc + 1]);
        if (ttisstring(&p->k[b])) {
          *name = svalue(&p->k[b]);
          return "constant";
        }
        break;
      }
      case OP_SELF: {
        int k = GETARG_C(i);  /* key index */
        kname(p, pc, k, name);
        return "method";
      }
      default: break;  /* go through to return NULL */
    }
  }
  return NULL;  /* could not find reasonable name */
}
Пример #3
0
void Decompiler::decompileRange(Byte *start, Byte *end) {
  // First, scan for IFFUPJMP, which is used for repeat/until, so
  // we can recognize the start of such loops.  We only keep the
  // last value to match each address, which represents the outermost
  // repeat/until loop starting at that point.
  std::map<Byte *, Byte *> rev_iffupjmp_map;

  for (Byte *scan = start; end == NULL || scan < end;
       scan += get_instr_len(*scan)) {
    if (*scan == IFFUPJMP)
      rev_iffupjmp_map[scan + 2 - scan[1]] = scan;
    else if (*scan == IFFUPJMPW)
      rev_iffupjmp_map[scan + 3 - (scan[1] | (scan[2] << 8))] = scan;
    else if (*scan == ENDCODE)
      break;
  }

  while (end == NULL || start < end) {
    int locs_here = local_var_defs->count(start);
    if (locs_here > 0) {
      // There were local variable slots just pushed onto the stack
      // Print them out (in the second pass)

      // First, if there are multiple defined, it must be from
      // local x, y, z = f() or local a, b.  So just ignore the extra
      // entries.
      for (int i = 1; i < locs_here; i++) {
	delete stk->top(); stk->pop();
      }
      Expression *def = stk->top(); stk->pop();

      // Print the local variable names, and at the same time push
      // fake values onto the stack
      *os << indent_str << "local ";
      for (int i = 0; i < locs_here; i++) {
	std::string locname = localname(tf, tf->code[1] + stk->size());
	*os << locname;
	if (i + 1 < locs_here)
	  *os << ", ";
	stk->push(new VarExpr(start, "<" + locname + " stack slot>"));
      }

      // Print the definition, unless it's nil
      VarExpr *v = dynamic_cast<VarExpr *>(def);
      if (v == NULL || v->name != "nil")
	*os << " = " << *def;
      *os << std::endl;
	  delete def;

      local_var_defs->erase(start);
    }

    if (rev_iffupjmp_map.find(start) != rev_iffupjmp_map.end()) {
      // aha, do a repeat/until loop
      *os << indent_str << "repeat\n";
      Decompiler indented_dc = *this;
      indented_dc.indent_str += std::string(4, ' ');
      indented_dc.break_pos = rev_iffupjmp_map[start];
      indented_dc.break_pos += get_instr_len(*indented_dc.break_pos);
      indented_dc.decompileRange(start, rev_iffupjmp_map[start]);

      Expression *e = stk->top(); stk->pop();
      *os << indent_str << "until " << *e << std::endl;
      delete e;

      start = indented_dc.break_pos;
      continue;
    }

    Byte opc = *start++;
    int aux;

    switch (opc) {
    case ENDCODE:
      return;

    case PUSHNIL:
      aux = *start++;
      goto pushnil;

    case PUSHNIL0:
      aux = 0;
    pushnil:
      for (int i = 0; i <= aux; i++)
	stk->push(new VarExpr(start, "nil")); // Cheat a little :)
      break;

    case PUSHNUMBER:
      aux = *start++;
      goto pushnumber;

    case PUSHNUMBER0:
    case PUSHNUMBER1:
    case PUSHNUMBER2:
      aux = opc - PUSHNUMBER0;
      goto pushnumber;

    case PUSHNUMBERW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    pushnumber:
      stk->push(new NumberExpr(start, aux));
      break;

    case PUSHCONSTANT:
      aux = *start++;
      goto pushconst;

    case PUSHCONSTANT0:
    case PUSHCONSTANT1:
    case PUSHCONSTANT2:
    case PUSHCONSTANT3:
    case PUSHCONSTANT4:
    case PUSHCONSTANT5:
    case PUSHCONSTANT6:
    case PUSHCONSTANT7:
      aux = opc - PUSHCONSTANT0;
      goto pushconst;

    case PUSHCONSTANTW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    pushconst:
      switch (ttype(tf->consts + aux)) {
      case LUA_T_STRING:
	stk->push(new StringExpr(start, tsvalue(tf->consts + aux)));
	break;
      case LUA_T_NUMBER:
	stk->push(new NumberExpr(start, nvalue(tf->consts + aux)));
	break;
      case LUA_T_PROTO:
	stk->push(new FuncExpr(start, tfvalue(tf->consts + aux), indent_str));
	break;
      default:
	*os << indent_str << "error: invalid constant type "
	    << int(ttype(tf->consts + aux)) << std::endl;
      }
      break;

    case PUSHUPVALUE:
      aux = *start++;
      goto pushupvalue;

    case PUSHUPVALUE0:
    case PUSHUPVALUE1:
      aux = opc - PUSHUPVALUE0;
    pushupvalue:
      {
	if (aux >= num_upvals) {
	  *os << indent_str << "error: invalid upvalue #"
	      << aux << std::endl;
	}

	std::ostringstream s;
	s << "%" << *upvals[aux];
	stk->push(new VarExpr(start, s.str()));
      }
      break;

    case PUSHLOCAL:
      aux = *start++;
      goto pushlocal;

    case PUSHLOCAL0:
    case PUSHLOCAL1:
    case PUSHLOCAL2:
    case PUSHLOCAL3:
    case PUSHLOCAL4:
    case PUSHLOCAL5:
    case PUSHLOCAL6:
    case PUSHLOCAL7:
      aux = opc - PUSHLOCAL0;
    pushlocal:
      stk->push(new VarExpr(start, localname(tf, aux)));
      break;

    case GETGLOBAL:
      aux = *start++;
      goto getglobal;

    case GETGLOBAL0:
    case GETGLOBAL1:
    case GETGLOBAL2:
    case GETGLOBAL3:
    case GETGLOBAL4:
    case GETGLOBAL5:
    case GETGLOBAL6:
    case GETGLOBAL7:
      aux = opc - GETGLOBAL0;
      goto getglobal;

    case GETGLOBALW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    getglobal:
      stk->push(new VarExpr(start, svalue(tf->consts + aux)));
      break;

    case GETTABLE:
      {
	Expression *index = stk->top(); stk->pop();
	Expression *table = stk->top(); stk->pop();

	stk->push(new BracketsIndexExpr(start, table, index));
      }
      break;

    case GETDOTTED:
      aux = *start++;
      goto getdotted;

    case GETDOTTED0:
    case GETDOTTED1:
    case GETDOTTED2:
    case GETDOTTED3:
    case GETDOTTED4:
    case GETDOTTED5:
    case GETDOTTED6:
    case GETDOTTED7:
      aux = opc - GETDOTTED0;
      goto getdotted;

    case GETDOTTEDW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    getdotted:
      {
	Expression *tbl = stk->top(); stk->pop();
	stk->push(new DotIndexExpr(start, tbl, new StringExpr
				(start, tsvalue(tf->consts + aux))));
      }
      break;

    case PUSHSELF:
      aux = *start++;
      goto pushself;

    case PUSHSELF0:
    case PUSHSELF1:
    case PUSHSELF2:
    case PUSHSELF3:
    case PUSHSELF4:
    case PUSHSELF5:
    case PUSHSELF6:
    case PUSHSELF7:
      aux = opc - PUSHSELF0;
      goto pushself;

    case PUSHSELFW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    pushself:
      {
	Expression *tbl = stk->top(); stk->pop();
	stk->push(new SelfExpr(start, tbl, new StringExpr
			       (start, tsvalue(tf->consts + aux))));
	stk->push(new VarExpr(start, "<self>"));
	// Fake value, FuncCallExpr will handle it
      }
      break;

    case CREATEARRAY:
      start++;
      goto createarray;

    case CREATEARRAY0:
    case CREATEARRAY1:
      goto createarray;

    case CREATEARRAYW:
      start += 2;
    createarray:
      stk->push(new ArrayExpr(start));
      break;

    case SETLOCAL:
    case SETLOCAL0:
    case SETLOCAL1:
    case SETLOCAL2:
    case SETLOCAL3:
    case SETLOCAL4:
    case SETLOCAL5:
    case SETLOCAL6:
    case SETLOCAL7:
    case SETGLOBAL:
    case SETGLOBAL0:
    case SETGLOBAL1:
    case SETGLOBAL2:
    case SETGLOBAL3:
    case SETGLOBAL4:
    case SETGLOBAL5:
    case SETGLOBAL6:
    case SETGLOBAL7:
    case SETGLOBALW:
    case SETTABLE0:
    case SETTABLE:
      start--;
      do_multi_assign(start);
      break;

    case SETLIST:
      start++;			// assume offset is correct
      goto setlist;

    case SETLISTW:
      start += 2;

    case SETLIST0:
    setlist:
      aux = *start++;
      {
	ArrayExpr::mapping_list new_mappings;
	for (int i = 0; i < aux; i++) {
	  Expression *val = stk->top(); stk->pop();
	  new_mappings.push_front(std::make_pair((Expression *) NULL, val));
	}
	ArrayExpr *a = dynamic_cast<ArrayExpr *>(stk->top());
	if (a == NULL) {
	  *os << indent_str
	      << "error: attempt to setlist a non-array object\n";
	}
	// Append the new list
	a->mappings.splice(a->mappings.end(), new_mappings);
	a->pos = start;
      }
      break;

    case SETMAP:
      aux = *start++;
      goto setmap;

    case SETMAP0:
      aux = 0;
    setmap:
      {
	ArrayExpr::mapping_list new_mappings;
	for (int i = 0; i <= aux; i++) {
	  Expression *val = stk->top(); stk->pop();
	  Expression *key = stk->top(); stk->pop();
	  new_mappings.push_front(std::make_pair(key, val));
	}
	ArrayExpr *a = dynamic_cast<ArrayExpr *>(stk->top());
	if (a == NULL) {
	  *os << indent_str
	      << "error: attempt to setmap a non-array object\n";
	}
	// Append the new list
	a->mappings.splice(a->mappings.end(), new_mappings);
	a->pos = start;
      }
      break;

    case EQOP:
      do_binary_op(start, 1, false, " == ");
      break;

    case NEQOP:
      do_binary_op(start, 1, false, " ~= ");
      break;

    case LTOP:
      do_binary_op(start, 1, false, " < ");
      break;

    case LEOP:
      do_binary_op(start, 1, false, " <= ");
      break;

    case GTOP:
      do_binary_op(start, 1, false, " > ");
      break;

    case GEOP:
      do_binary_op(start, 1, false, " >= ");
      break;

    case ADDOP:
      do_binary_op(start, 3, false, " + ");
      break;

    case SUBOP:
      do_binary_op(start, 3, false, " - ");
      break;

    case MULTOP:
      do_binary_op(start, 4, false, " * ");
      break;

    case DIVOP:
      do_binary_op(start, 4, false, " / ");
      break;

    case POWOP:
      do_binary_op(start, 6, true, " ^ ");
      break;

    case CONCOP:
      do_binary_op(start, 2, false, " .. ");
      break;

    case MINUSOP:
      do_unary_op(start, 5, "-");
      break;

    case NOTOP:
      do_unary_op(start, 5, "not ");
      break;

    case ONTJMP:
      aux = *start++;
      goto ontjmp;

    case ONTJMPW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    ontjmp:
      // push_expr_1 ontjmp(label) push_expr_2 label:  -> expr_1 || expr_2
      decompileRange(start, start + aux);
      do_binary_op(start + aux, 0, false, " or ");
      start = start + aux;
      break;

    case ONFJMP:
      aux = *start++;
      goto onfjmp;

    case ONFJMPW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    onfjmp:
      // push_expr_1 onfjmp(label) push_expr_2 label:  -> expr_2 && expr_2
      decompileRange(start, start + aux);
      do_binary_op(start + aux, 0, false, " and ");
      start = start + aux;
      break;

    case JMP:
      aux = *start++;
      goto jmp;

    case JMPW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    jmp:
      {
	Byte *dest = start + aux;
	if (dest == break_pos) {
	  *os << indent_str << "break\n";
	  break;
	}

	// otherwise, must be the start of a while statement
	Byte *while_cond_end;
	for (while_cond_end = dest; end == NULL || while_cond_end < end;
	     while_cond_end += get_instr_len(*while_cond_end))
	  if (*while_cond_end == IFTUPJMP || *while_cond_end == IFTUPJMPW)
	    break;
	if (end != NULL && while_cond_end >= end) {
	  *os << indent_str
	      << "error: JMP not in break, while, if/else\n";
	}

	// push the while condition onto the stack
	decompileRange(dest, while_cond_end);

	*os << indent_str << "while " << *stk->top()
	    << " do\n";
	delete stk->top();
	stk->pop();

	// decompile the while body
	Decompiler indented_dc = *this;
	indented_dc.indent_str += std::string(4, ' ');
	indented_dc.break_pos = while_cond_end + get_instr_len(*while_cond_end);
	indented_dc.decompileRange(start, dest);

	*os << indent_str << "end\n";
	start = indented_dc.break_pos;
      }
      break;

    case IFFJMP:
      aux = *start++;
      goto iffjmp;

    case IFFJMPW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    iffjmp:
      {
	// Output an if/end, if/else/end, if/elseif/else/end, ... statement
	Byte *if_part_end = start + aux;
	Decompiler indented_dc = *this;
	indented_dc.indent_str += std::string(4, ' ');

	*os << indent_str << "if " << *stk->top();
	delete stk->top();
	stk->pop();
	*os << " then\n";

	bool has_else;
	Byte *else_part_end;
	get_else_part(start, if_part_end, has_else, else_part_end);

	// Output the if part
      output_if:
	indented_dc.decompileRange(start, if_part_end);
	start = start + aux;

	if (has_else) {
	  // Check whether the entire else part is a single
	  // if or if/else statement
	  Byte *instr_scan = start;
	  while (is_expr_opc(*instr_scan) &&
		 (end == NULL || instr_scan < else_part_end))
	    instr_scan += get_instr_len(*instr_scan);
	  if ((end == NULL || instr_scan < else_part_end) &&
	      (*instr_scan == IFFJMP || *instr_scan == IFFJMPW)) {
	    // OK, first line will be if, check if it will go all
	    // the way through
	    Byte *new_start, *new_if_part_end, *new_else_part_end;
	    bool new_has_else;
	    if (*instr_scan == IFFJMP) {
	      aux = instr_scan[1];
	      new_start = instr_scan + 2;
	    }
	    else {
	      aux = instr_scan[1] | (instr_scan[2] << 8);
	      new_start = instr_scan + 3;
	    }
	    new_if_part_end = new_start + aux;
	    get_else_part(new_start, new_if_part_end, new_has_else,
			  new_else_part_end);
	    if (new_if_part_end == else_part_end ||
		(new_has_else && new_else_part_end == else_part_end)) {
	      // Yes, output an elseif
	      decompileRange(start, instr_scan); // push condition
	      *os << indent_str << "elseif " << *stk->top() << " then\n";
	      delete stk->top();
	      stk->pop();

	      start = new_start;
	      if_part_end = new_if_part_end;
	      has_else = new_has_else;
	      else_part_end = new_else_part_end;
	      goto output_if;
	    }
	  }
	  *os << indent_str << "else\n";
	  indented_dc.decompileRange(start, else_part_end);
	  start = else_part_end;
	}
	*os << indent_str << "end\n";
      }
      break;

    case CLOSURE:
      aux = *start++;
      goto closure;

    case CLOSURE0:
    case CLOSURE1:
      aux = opc - CLOSURE0;
    closure:
      {
	FuncExpr *f = dynamic_cast<FuncExpr *>(stk->top());
	if (f == NULL) {
	  *os << indent_str
	      << "error: closure requires a function\n";
	}
	stk->pop();
	f->num_upvals = aux;
	f->upvals = new Expression*[aux];
	for (int i = aux - 1; i >= 0; i--) {
	  f->upvals[i] = stk->top(); stk->pop();
	}
	stk->push(f);
      }
      break;

    case CALLFUNC:
      aux = *start++;
      goto callfunc;

    case CALLFUNC0:
    case CALLFUNC1:
      aux = opc - CALLFUNC0;
    callfunc:
      {
	int num_args = *start++;
	FuncCallExpr *e = new FuncCallExpr(start);
	e->num_args = num_args;
	e->args = new Expression*[num_args];
	for (int i = num_args - 1; i >= 0; i--) {
	  e->args[i] = stk->top();
	  stk->pop();
	}
	e->func = stk->top();
	stk->pop();
	if (aux == 0) {
	  *os << indent_str << *e << std::endl;
	  delete e;
	}
	else if (aux == 1 || aux == 255) // 255 for return f()
	  stk->push(e);
	else {
	  stk->push(e);
	  for (int i = 1; i < aux; i++)
	    stk->push(new VarExpr(start, "<extra result>"));
	}
      }
      break;

    case RETCODE:
      {
	int num_rets = stk->size() + tf->code[1] - *start++;
	ExprStack rets;

	for (int i = 0; i < num_rets; i++) {
	  rets.push(stk->top());
	  stk->pop();
	}
	*os << indent_str << "return";
	for (int i = 0; i < num_rets; i++) {
	  *os << " " << *rets.top();
	  delete rets.top();
	  rets.pop();
	  if (i + 1 < num_rets)
	    *os << ",";
	}
	*os << std::endl;
      }
      break;

    case SETLINE:
      aux = *start++;
      goto setline;

    case SETLINEW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    setline:
      break;			// ignore line info

    case POP:
      aux = *start++;
      goto pop;

    case POP0:
    case POP1:
      aux = opc - POP0;
    pop:
      for (int i = 0; i <= aux; i++) {
	local_var_defs->insert(stk->top()->pos);
	delete stk->top(); stk->pop();
      }
      break;

    //Nop
    default:
      break;
    }
  }
}
Пример #4
0
// Scan for a series of assignments
void Decompiler::do_multi_assign(Byte *&start) {
  std::queue<Expression *> results;
  ExprStack values;

  bool done;
  int num_tables = 0;
  do {
    int aux, opc;
    done = false;

    opc = *start++;
    switch (opc) {
    case SETLOCAL:
      aux = *start++;
      goto setlocal;

    case SETLOCAL0:
    case SETLOCAL1:
    case SETLOCAL2:
    case SETLOCAL3:
    case SETLOCAL4:
    case SETLOCAL5:
    case SETLOCAL6:
    case SETLOCAL7:
      aux = opc - SETLOCAL0;
    setlocal:
      results.push(new VarExpr(start, localname(tf, aux)));
      break;

    case SETGLOBAL:
      aux = *start++;
      goto setglobal;

    case SETGLOBAL0:
    case SETGLOBAL1:
    case SETGLOBAL2:
    case SETGLOBAL3:
    case SETGLOBAL4:
    case SETGLOBAL5:
    case SETGLOBAL6:
    case SETGLOBAL7:
      aux = opc - SETGLOBAL0;
      goto setglobal;

    case SETGLOBALW:
      aux = start[0] | (start[1] << 8);
      start += 2;
    setglobal:
      results.push(new VarExpr(start, svalue(tf->consts + aux)));
      break;

    case SETTABLE:
      start++;			// assume offset is correct
      num_tables++;
      // this needs stuff from farther up the stack, wait until
      // it's available

    case SETTABLE0:
      results.push(new IndexExpr(start, NULL, NULL));
      break;

    default:
      start--;
      done = true;
    }

    if (! done) {
      Expression *e = stk->top();
      // Check for fake result from function calls with multiple return values
      VarExpr *v = dynamic_cast<VarExpr *>(e);
      if (v != NULL && v->name == "<extra result>")
	delete e;
      else
	values.push(e);
      stk->pop();
    }
  } while (! done);

  // Check for popping tables and indices
  if (num_tables > 0 && (*start == POP || *start == POP0 || *start == POP1)) {
    start++;
    if (start[-1] == POP)
      start++;
  }

  // Now get actual tables and indices from the stack, reversing
  // the list to the right order at the same time

  ExprStack results2;
  while (! results.empty()) {
    Expression *var = results.front(); results.pop();
    IndexExpr *tbl = dynamic_cast<IndexExpr *>(var);
    if (tbl != NULL) {
      tbl->index = stk->top(); stk->pop();
      tbl->table = stk->top(); stk->pop();
    }
    results2.push(var);
  }

  *os << indent_str;
  while (! results2.empty()) {
    Expression *var = results2.top(); results2.pop();
    *os << *var;
    delete var;
    if (! results2.empty())
      *os << ", ";
  }
  *os << " = ";
  while (! values.empty()) {
    Expression *val = values.top(); values.pop();
    *os << *val;
    delete val;
    if (! values.empty())
      *os << ", ";
  }
  *os << std::endl;
}
Пример #5
0
zorba::diagnostic::kind ZorbaWarningQName::kind() const {
    return get_standard_error_kind( localname() );
}
Пример #6
0
zorba::diagnostic::kind JSONiqErrorQName::kind() const {
    return get_standard_error_kind( localname() );
}