Пример #1
0
int CClp_load_warmstart(CClp *lp, CClp_warmstart *warm)
{     /* RESTORES the warmstart information in warm. */
      int i, j, m, n, tagx, type, *rstat, *cstat;
      m = lpx_get_num_rows(lp->lp);
      n = lpx_get_num_cols(lp->lp);
      cstat = warm->cstat;
      rstat = warm->rstat;
      if (cstat == NULL || rstat == NULL)
      {  print("CClp_load_warmstart: no basis information");
         return 0;
      }
      for (j = 0; j < n; j++)
      {  if (cstat[j] == IS_BASIC)
            tagx = LPX_BS;
         else
         {  lpx_get_col_bnds(lp->lp, j+1, &type, NULL, NULL);
            switch (type)
            {  case LPX_FR:
                  tagx = LPX_NF; break;
               case LPX_LO:
                  tagx = LPX_NL; break;
               case LPX_UP:
                  tagx = LPX_NU; break;
               case LPX_DB:
                  tagx = (cstat[j] == AT_UPPER ? LPX_NU : LPX_NL);
                  break;
               case LPX_FX:
                  tagx = LPX_NS; break;
               default:
                  insist(type != type);
            }
         }
         lpx_set_col_stat(lp->lp, j+1, tagx);
      }
      for (i = 0; i < m; i++)
      {  if (rstat[i] == IS_BASIC)
            tagx = LPX_BS;
         else
         {  lpx_get_row_bnds(lp->lp, i+1, &type, NULL, NULL);
            switch (type)
            {  case LPX_FR:
                  tagx = LPX_NF; break;
               case LPX_LO:
                  tagx = LPX_NL; break;
               case LPX_UP:
                  tagx = LPX_NU; break;
               case LPX_DB:
                  tagx = (rstat[i] == AT_UPPER ? LPX_NU : LPX_NL);
                  break;
               case LPX_FX:
                  tagx = LPX_NS; break;
               default:
                  insist(type != type);
            }
         }
         lpx_set_row_stat(lp->lp, i+1, tagx);
      }
      return 0;
}
Пример #2
0
void lpx_std_basis(LPX *lp)
{     int i, j, m, n, type;
      double lb, ub;
      /* all auxiliary variables are basic */
      m = lpx_get_num_rows(lp);
      for (i = 1; i <= m; i++)
         lpx_set_row_stat(lp, i, LPX_BS);
      /* all structural variables are non-basic */
      n = lpx_get_num_cols(lp);
      for (j = 1; j <= n; j++)
      {  type = lpx_get_col_type(lp, j);
         lb = lpx_get_col_lb(lp, j);
         ub = lpx_get_col_ub(lp, j);
         if (type != LPX_DB || fabs(lb) <= fabs(ub))
            lpx_set_col_stat(lp, j, LPX_NL);
         else
            lpx_set_col_stat(lp, j, LPX_NU);
      }
      return;
}
Пример #3
0
void adv_basis(glp_prob *lp)
{     int m = lpx_get_num_rows(lp);
      int n = lpx_get_num_cols(lp);
      int i, j, jj, k, size;
      int *rn, *cn, *rn_inv, *cn_inv;
      int typx, *tagx = xcalloc(1+m+n, sizeof(int));
      double lb, ub;
      xprintf("Crashing...\n");
      if (m == 0)
         xerror("glp_adv_basis: problem has no rows\n");
      if (n == 0)
         xerror("glp_adv_basis: problem has no columns\n");
      /* use the routine triang (see above) to find maximal triangular
         part of the augmented constraint matrix A~ = (I|-A); in order
         to prevent columns of fixed variables to be included in the
         triangular part, such columns are implictly removed from the
         matrix A~ by the routine adv_mat */
      rn = xcalloc(1+m, sizeof(int));
      cn = xcalloc(1+m+n, sizeof(int));
      size = triang(m, m+n, lp, mat, rn, cn);
      if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
         xprintf("Size of triangular part = %d\n", size);
      /* the first size rows and columns of the matrix P*A~*Q (where
         P and Q are permutation matrices defined by the arrays rn and
         cn) form a lower triangular matrix; build the arrays (rn_inv
         and cn_inv), which define the matrices inv(P) and inv(Q) */
      rn_inv = xcalloc(1+m, sizeof(int));
      cn_inv = xcalloc(1+m+n, sizeof(int));
      for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
      for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
      /* include the columns of the matrix A~, which correspond to the
         first size columns of the matrix P*A~*Q, in the basis */
      for (k = 1; k <= m+n; k++) tagx[k] = -1;
      for (jj = 1; jj <= size; jj++)
      {  j = cn_inv[jj];
         /* the j-th column of A~ is the jj-th column of P*A~*Q */
         tagx[j] = LPX_BS;
      }
      /* if size < m, we need to add appropriate columns of auxiliary
         variables to the basis */
      for (jj = size + 1; jj <= m; jj++)
      {  /* the jj-th column of P*A~*Q should be replaced by the column
            of the auxiliary variable, for which the only unity element
            is placed in the position [jj,jj] */
         i = rn_inv[jj];
         /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
            i-th row of A~ the unity element belongs to the i-th column
            of A~; therefore the disired column corresponds to the i-th
            auxiliary variable (note that this column doesn't belong to
            the triangular part found by the routine triang) */
         xassert(1 <= i && i <= m);
         xassert(cn[i] > size);
         tagx[i] = LPX_BS;
      }
      /* free working arrays */
      xfree(rn);
      xfree(cn);
      xfree(rn_inv);
      xfree(cn_inv);
      /* build tags of non-basic variables */
      for (k = 1; k <= m+n; k++)
      {  if (tagx[k] != LPX_BS)
         {  if (k <= m)
               lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
            else
               lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
            switch (typx)
            {  case LPX_FR:
                  tagx[k] = LPX_NF; break;
               case LPX_LO:
                  tagx[k] = LPX_NL; break;
               case LPX_UP:
                  tagx[k] = LPX_NU; break;
               case LPX_DB:
                  tagx[k] =
                     (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
                  break;
               case LPX_FX:
                  tagx[k] = LPX_NS; break;
               default:
                  xassert(typx != typx);
            }
         }
      }
      for (k = 1; k <= m+n; k++)
      {  if (k <= m)
            lpx_set_row_stat(lp, k, tagx[k]);
         else
            lpx_set_col_stat(lp, k-m, tagx[k]);
      }
      xfree(tagx);
      return;
}
Пример #4
0
int lpx_integer(LPX *mip)
{     int m = lpx_get_num_rows(mip);
      int n = lpx_get_num_cols(mip);
      MIPTREE *tree;
      LPX *lp;
      int ret, i, j, stat, type, len, *ind;
      double lb, ub, coef, *val;
#if 0
      /* the problem must be of MIP class */
      if (lpx_get_class(mip) != LPX_MIP)
      {  print("lpx_integer: problem is not of MIP class");
         ret = LPX_E_FAULT;
         goto done;
      }
#endif
      /* an optimal solution of LP relaxation must be known */
      if (lpx_get_status(mip) != LPX_OPT)
      {  print("lpx_integer: optimal solution of LP relaxation required"
            );
         ret = LPX_E_FAULT;
         goto done;
      }
      /* bounds of all integer variables must be integral */
      for (j = 1; j <= n; j++)
      {  if (lpx_get_col_kind(mip, j) != LPX_IV) continue;
         type = lpx_get_col_type(mip, j);
         if (type == LPX_LO || type == LPX_DB || type == LPX_FX)
         {  lb = lpx_get_col_lb(mip, j);
            if (lb != floor(lb))
            {  print("lpx_integer: integer column %d has non-integer lo"
                  "wer bound or fixed value %g", j, lb);
               ret = LPX_E_FAULT;
               goto done;
            }
         }
         if (type == LPX_UP || type == LPX_DB)
         {  ub = lpx_get_col_ub(mip, j);
            if (ub != floor(ub))
            {  print("lpx_integer: integer column %d has non-integer up"
                  "per bound %g", j, ub);
               ret = LPX_E_FAULT;
               goto done;
            }
         }
      }
      /* it seems all is ok */
      if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2)
         print("Integer optimization begins...");
      /* create the branch-and-bound tree */
      tree = mip_create_tree(m, n, lpx_get_obj_dir(mip));
      /* set up column kinds */
      for (j = 1; j <= n; j++)
         tree->int_col[j] = (lpx_get_col_kind(mip, j) == LPX_IV);
      /* access the LP relaxation template */
      lp = tree->lp;
      /* set up the objective function */
      tree->int_obj = 1;
      for (j = 0; j <= tree->n; j++)
      {  coef = lpx_get_obj_coef(mip, j);
         lpx_set_obj_coef(lp, j, coef);
         if (coef != 0.0 && !(tree->int_col[j] && coef == floor(coef)))
            tree->int_obj = 0;
      }
      if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2 && tree->int_obj)
         print("Objective function is integral");
      /* set up the constraint matrix */
      ind = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));
      for (i = 1; i <= m; i++)
      {  len = lpx_get_mat_row(mip, i, ind, val);
         lpx_set_mat_row(lp, i, len, ind, val);
      }
      xfree(ind);
      xfree(val);
      /* set up scaling matrices */
      for (i = 1; i <= m; i++)
         lpx_set_rii(lp, i, lpx_get_rii(mip, i));
      for (j = 1; j <= n; j++)
         lpx_set_sjj(lp, j, lpx_get_sjj(mip, j));
      /* revive the root subproblem */
      mip_revive_node(tree, 1);
      /* set up row attributes for the root subproblem */
      for (i = 1; i <= m; i++)
      {  type = lpx_get_row_type(mip, i);
         lb = lpx_get_row_lb(mip, i);
         ub = lpx_get_row_ub(mip, i);
         stat = lpx_get_row_stat(mip, i);
         lpx_set_row_bnds(lp, i, type, lb, ub);
         lpx_set_row_stat(lp, i, stat);
      }
      /* set up column attributes for the root subproblem */
      for (j = 1; j <= n; j++)
      {  type = lpx_get_col_type(mip, j);
         lb = lpx_get_col_lb(mip, j);
         ub = lpx_get_col_ub(mip, j);
         stat = lpx_get_col_stat(mip, j);
         lpx_set_col_bnds(lp, j, type, lb, ub);
         lpx_set_col_stat(lp, j, stat);
      }
      /* freeze the root subproblem */
      mip_freeze_node(tree);
      /* inherit some control parameters and statistics */
      tree->msg_lev = lpx_get_int_parm(mip, LPX_K_MSGLEV);
      if (tree->msg_lev > 2) tree->msg_lev = 2;
      tree->branch = lpx_get_int_parm(mip, LPX_K_BRANCH);
      tree->btrack = lpx_get_int_parm(mip, LPX_K_BTRACK);
      tree->tol_int = lpx_get_real_parm(mip, LPX_K_TOLINT);
      tree->tol_obj = lpx_get_real_parm(mip, LPX_K_TOLOBJ);
      tree->tm_lim = lpx_get_real_parm(mip, LPX_K_TMLIM);
      lpx_set_int_parm(lp, LPX_K_BFTYPE, lpx_get_int_parm(mip,
         LPX_K_BFTYPE));
      lpx_set_int_parm(lp, LPX_K_PRICE, lpx_get_int_parm(mip,
         LPX_K_PRICE));
      lpx_set_real_parm(lp, LPX_K_RELAX, lpx_get_real_parm(mip,
         LPX_K_RELAX));
      lpx_set_real_parm(lp, LPX_K_TOLBND, lpx_get_real_parm(mip,
         LPX_K_TOLBND));
      lpx_set_real_parm(lp, LPX_K_TOLDJ, lpx_get_real_parm(mip,
         LPX_K_TOLDJ));
      lpx_set_real_parm(lp, LPX_K_TOLPIV, lpx_get_real_parm(mip,
         LPX_K_TOLPIV));
      lpx_set_int_parm(lp, LPX_K_ITLIM, lpx_get_int_parm(mip,
         LPX_K_ITLIM));
      lpx_set_int_parm(lp, LPX_K_ITCNT, lpx_get_int_parm(mip,
         LPX_K_ITCNT));
      /* reset the status of MIP solution */
      lpx_put_mip_soln(mip, LPX_I_UNDEF, NULL, NULL);
      /* try solving the problem */
      ret = mip_driver(tree);
      /* if an integer feasible solution has been found, copy it to the
         MIP problem object */
      if (tree->found)
         lpx_put_mip_soln(mip, LPX_I_FEAS, &tree->mipx[0],
            &tree->mipx[m]);
      /* copy back statistics about spent resources */
      lpx_set_real_parm(mip, LPX_K_TMLIM, tree->tm_lim);
      lpx_set_int_parm(mip, LPX_K_ITLIM, lpx_get_int_parm(lp,
         LPX_K_ITLIM));
      lpx_set_int_parm(mip, LPX_K_ITCNT, lpx_get_int_parm(lp,
         LPX_K_ITCNT));
      /* analyze exit code reported by the mip driver */
      switch (ret)
      {  case MIP_E_OK:
            if (tree->found)
            {  if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
                  print("INTEGER OPTIMAL SOLUTION FOUND");
               lpx_put_mip_soln(mip, LPX_I_OPT, NULL, NULL);
            }
            else
            {  if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
                  print("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION");
               lpx_put_mip_soln(mip, LPX_I_NOFEAS, NULL, NULL);
            }
            ret = LPX_E_OK;
            break;
         case MIP_E_ITLIM:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
               print("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED");
            ret = LPX_E_ITLIM;
            break;
         case MIP_E_TMLIM:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
               print("TIME LIMIT EXCEEDED; SEARCH TERMINATED");
            ret = LPX_E_TMLIM;
            break;
         case MIP_E_ERROR:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 1)
               print("lpx_integer: cannot solve current LP relaxation");
            ret = LPX_E_SING;
            break;
         default:
            xassert(ret != ret);
      }
      /* delete the branch-and-bound tree */
      mip_delete_tree(tree);
done: /* return to the application program */
      return ret;
}