Пример #1
0
/* Differential equation for F(a,b,c,y+z):

   (y+z)(y-1+z) F''(z) + ((y+z)(a+b+1) - c) F'(z) + a b F(z) = 0

   Coefficients in the Taylor series are bounded by

       A * binomial(N+k, k) * nu^k

   using the Cauchy-Kovalevskaya majorant method.
   See J. van der Hoeven, "Fast evaluation of holonomic functions near
   and in regular singularities"
*/
static void
bound(mag_t A, mag_t nu, mag_t N,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t f0, const acb_t f1)
{
    mag_t M0, M1, t, u;
    acb_t d;

    acb_init(d);
    mag_init(M0);
    mag_init(M1);
    mag_init(t);
    mag_init(u);

    /* nu = max(1/|y-1|, 1/|y|) = 1/min(|y-1|, |y|) */
    acb_get_mag_lower(t, y);
    acb_sub_ui(d, y, 1, MAG_BITS);
    acb_get_mag_lower(u, d);
    mag_min(t, t, u);
    mag_one(u);
    mag_div(nu, u, t);

    /* M0 = 2 nu |ab| */
    acb_get_mag(t, a);
    acb_get_mag(u, b);
    mag_mul(M0, t, u);
    mag_mul(M0, M0, nu);
    mag_mul_2exp_si(M0, M0, 1);

    /* M1 = 2 nu |(a+b+1)y-c| + 2|a+b+1| */
    acb_add(d, a, b, MAG_BITS);
    acb_add_ui(d, d, 1, MAG_BITS);
    acb_get_mag(t, d);
    acb_mul(d, d, y, MAG_BITS);
    acb_sub(d, d, c, MAG_BITS);
    acb_get_mag(u, d);
    mag_mul(u, u, nu);
    mag_add(M1, t, u);
    mag_mul_2exp_si(M1, M1, 1);

    /* N = max(sqrt(2 M0), 2 M1) / nu */
    mag_mul_2exp_si(M0, M0, 1);
    mag_sqrt(M0, M0);
    mag_mul_2exp_si(M1, M1, 1);
    mag_max(N, M0, M1);
    mag_div(N, N, nu);

    /* A = max(|f0|, |f1| / (nu (N+1)) */
    acb_get_mag(t, f0);
    acb_get_mag(u, f1);
    mag_div(u, u, nu);
    mag_div(u, u, N);  /* upper bound for dividing by N+1 */
    mag_max(A, t, u);

    acb_clear(d);
    mag_clear(M0);
    mag_clear(M1);
    mag_clear(t);
    mag_clear(u);
}
Пример #2
0
Файл: log1p.c Проект: isuruf/arb
static void
acb_log1p_tiny(acb_t r, const acb_t z, slong prec)
{
    mag_t b, c;
    acb_t t;
    int real;

    mag_init(b);
    mag_init(c);
    acb_init(t);

    real = acb_is_real(z);

    /* if |z| < 1, then |log(1+z) - [z - z^2/2]| <= |z|^3/(1-|z|) */
    acb_get_mag(b, z);
    mag_one(c);
    mag_sub_lower(c, c, b);
    mag_pow_ui(b, b, 3);
    mag_div(b, b, c);

    acb_mul(t, z, z, prec);
    acb_mul_2exp_si(t, t, -1);
    acb_sub(r, z, t, prec);

    if (real && mag_is_finite(b))
        arb_add_error_mag(acb_realref(r), b);
    else
        acb_add_error_mag(r, b);

    mag_clear(b);
    mag_clear(c);
    acb_clear(t);
}
Пример #3
0
void
mag_geom_series(mag_t res, const mag_t x, ulong n)
{
    if (mag_is_zero(x))
    {
        if (n == 0)
            mag_one(res);
        else
            mag_zero(res);
    }
    else if (mag_is_inf(x))
    {
        mag_inf(res);
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_one(t);
        mag_sub_lower(t, t, x);

        if (mag_is_zero(t))
        {
            mag_inf(res);
        }
        else
        {
            mag_pow_ui(res, x, n);
            mag_div(res, res, t);
        }

        mag_clear(t);
    }
}
Пример #4
0
static void
arb_sqrt1pm1_tiny(arb_t r, const arb_t z, slong prec)
{
    mag_t b, c;
    arb_t t;

    mag_init(b);
    mag_init(c);
    arb_init(t);

    /* if |z| < 1, then |(sqrt(1+z)-1) - (z/2-z^2/8)| <= |z|^3/(1-|z|)/16 */
    arb_get_mag(b, z);
    mag_one(c);
    mag_sub_lower(c, c, b);
    mag_pow_ui(b, b, 3);
    mag_div(b, b, c);
    mag_mul_2exp_si(b, b, -4);

    arb_mul(t, z, z, prec);
    arb_mul_2exp_si(t, t, -2);
    arb_sub(r, z, t, prec);
    arb_mul_2exp_si(r, r, -1);

    if (mag_is_finite(b))
        arb_add_error_mag(r, b);
    else
        arb_indeterminate(r);

    mag_clear(b);
    mag_clear(c);
    arb_clear(t);
}
Пример #5
0
void
acb_hypgeom_mag_chi(mag_t chi, ulong n)
{
    mag_t p, q;
    ulong k;

    mag_init(p);
    mag_init(q);

    if (n % 2 == 0)
    {
        mag_one(p);
        mag_one(q);
    }
    else
    {
        /* upper bound for pi/2 */
        mag_set_ui_2exp_si(p, 843314857, -28);
        mag_one(q);
    }

    for (k = n; k >= 2; k -= 2)
    {
        mag_mul_ui(p, p, k);
        mag_mul_ui_lower(q, q, k - 1);
    }

    mag_div(chi, p, q);

    mag_clear(p);
    mag_clear(q);
}
Пример #6
0
void
arb_root_ui_algebraic(arb_t res, const arb_t x, ulong k, slong prec)
{
    mag_t r, msubr, m1k, t;

    if (arb_is_exact(x))
    {
        arb_root_arf(res, arb_midref(x), k, prec);
        return;
    }

    if (!arb_is_nonnegative(x))
    {
        arb_indeterminate(res);
        return;
    }

    mag_init(r);
    mag_init(msubr);
    mag_init(m1k);
    mag_init(t);

    /* x = [m-r, m+r] */
    mag_set(r, arb_radref(x));
    /* m - r */
    arb_get_mag_lower(msubr, x);

    /* m^(1/k) */
    arb_root_arf(res, arb_midref(x), k, prec);

    /* bound for m^(1/k) */
    arb_get_mag(m1k, res);

    /* C = min(1, log(1+r/(m-r))/k) */
    mag_div(t, r, msubr);
    mag_log1p(t, t);
    mag_div_ui(t, t, k);
    if (mag_cmp_2exp_si(t, 0) > 0)
        mag_one(t);

    /* C m^(1/k) */
    mag_mul(t, m1k, t);
    mag_add(arb_radref(res), arb_radref(res), t);

    mag_clear(r);
    mag_clear(msubr);
    mag_clear(m1k);
    mag_clear(t);
}
Пример #7
0
void
arb_div(arb_t z, const arb_t x, const arb_t y, long prec)
{
    mag_t zr, xm, ym, yl, yw;
    int inexact;

    if (arb_is_exact(y))
    {
        arb_div_arf(z, x, arb_midref(y), prec);
    }
    else if (mag_is_inf(arb_radref(x)) || mag_is_inf(arb_radref(y)))
    {
        arf_div(arb_midref(z), arb_midref(x), arb_midref(y), prec, ARB_RND);
        mag_inf(arb_radref(z));
    }
    else
    {
        mag_init_set_arf(xm, arb_midref(x));
        mag_init_set_arf(ym, arb_midref(y));
        mag_init(zr);
        mag_init(yl);
        mag_init(yw);

        /* (|x|*yrad + |y|*xrad)/(y*(|y|-yrad)) */
        mag_mul(zr, xm, arb_radref(y));
        mag_addmul(zr, ym, arb_radref(x));
        arb_get_mag_lower(yw, y);

        arf_get_mag_lower(yl, arb_midref(y));
        mag_mul_lower(yl, yl, yw);

        mag_div(zr, zr, yl);

        inexact = arf_div(arb_midref(z), arb_midref(x), arb_midref(y), prec, ARB_RND);

        if (inexact)
            arf_mag_add_ulp(arb_radref(z), zr, arb_midref(z), prec);
        else
            mag_swap(arb_radref(z), zr);

        mag_clear(xm);
        mag_clear(ym);
        mag_clear(zr);
        mag_clear(yl);
        mag_clear(yw);
    }
}
Пример #8
0
void
arb_div_arf(arb_t z, const arb_t x, const arf_t y, long prec)
{
    mag_t zr, ym;
    int inexact;

    if (arf_is_zero(y))
    {
        arb_zero_pm_inf(z);
    }
    else if (arb_is_exact(x))
    {
        inexact = arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);

        if (inexact)
            arf_mag_set_ulp(arb_radref(z), arb_midref(z), prec);
        else
            mag_zero(arb_radref(z));
    }
    else if (mag_is_inf(arb_radref(x)))
    {
        arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);
        mag_inf(arb_radref(z));
    }
    else
    {
        mag_init(ym);
        mag_init(zr);

        arf_get_mag_lower(ym, y);
        mag_div(zr, arb_radref(x), ym);

        inexact = arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);

        if (inexact)
            arf_mag_add_ulp(arb_radref(z), zr, arb_midref(z), prec);
        else
            mag_swap(arb_radref(z), zr);

        mag_clear(ym);
        mag_clear(zr);
    }
}
Пример #9
0
void
arb_atan(arb_t z, const arb_t x, slong prec)
{
    if (arb_is_exact(x))
    {
        arb_atan_arf(z, arb_midref(x), prec);
    }
    else
    {
        mag_t t, u;

        mag_init(t);
        mag_init(u);

        arb_get_mag_lower(t, x);

        if (mag_is_zero(t))
        {
            mag_set(t, arb_radref(x));
        }
        else
        {
            mag_mul_lower(t, t, t);
            mag_one(u);
            mag_add_lower(t, t, u);
            mag_div(t, arb_radref(x), t);
        }

        if (mag_cmp_2exp_si(t, 0) > 0)
        {
            mag_const_pi(u);
            mag_min(t, t, u);
        }

        arb_atan_arf(z, arb_midref(x), prec);
        mag_add(arb_radref(z), arb_radref(z), t);

        mag_clear(t);
        mag_clear(u);
    }
}
Пример #10
0
Файл: log.c Проект: isuruf/arb
void
arb_log(arb_t y, const arb_t x, slong prec)
{
    if (arb_is_exact(x))
    {
        arb_log_arf(y, arb_midref(x), prec);
    }
    else
    {
        /*
        Let the input be [a-b, a+b]. We require a > b >= 0 (otherwise the
        interval contains zero or a negative number and the logarithm is not
        defined). The error is largest at a-b, and we have

        log(a) - log(a-b) = log(1 + b/(a-b)).
        */
        mag_t err;
        mag_init(err);

        arb_get_mag_lower_nonnegative(err, x);

        if (mag_is_zero(err))
        {
            mag_inf(err);
        }
        else
        {
            mag_div(err, arb_radref(x), err);
            mag_log1p(err, err);
        }

        arb_log_arf(y, arb_midref(x), prec);

        mag_add(arb_radref(y), arb_radref(y), err);
        mag_clear(err);
    }
}
Пример #11
0
void
mag_polylog_tail(mag_t u, const mag_t z, long sigma, ulong d, ulong N)
{
    mag_t TN, UN, t;

    if (N < 2)
    {
        mag_inf(u);
        return;
    }

    mag_init(TN);
    mag_init(UN);
    mag_init(t);

    if (mag_cmp_2exp_si(z, 0) >= 0)
    {
        mag_inf(u);
    }
    else
    {
        /* Bound T(N) */
        mag_pow_ui(TN, z, N);

        /* multiply by log(N)^d */
        if (d > 0)
        {
            mag_log_ui(t, N);
            mag_pow_ui(t, t, d);
            mag_mul(TN, TN, t);
        }

        /* multiply by 1/k^s */
        if (sigma > 0)
        {
            mag_set_ui_lower(t, N);
            mag_pow_ui_lower(t, t, sigma);
            mag_div(TN, TN, t);
        }
        else if (sigma < 0)
        {
            mag_set_ui(t, N);
            mag_pow_ui(t, t, -sigma);
            mag_mul(TN, TN, t);
        }

        /* Bound U(N) */
        mag_set(UN, z);

        /* multiply by (1 + 1/N)**S */
        if (sigma < 0)
        {
            mag_binpow_uiui(t, N, -sigma);
            mag_mul(UN, UN, t);
        }

        /* multiply by (1 + 1/(N log(N)))^d */
        if (d > 0)
        {
            ulong nl;

            /* rounds down */
            nl = mag_d_log_lower_bound(N) * N * (1 - 1e-13);

            mag_binpow_uiui(t, nl, d);
            mag_mul(UN, UN, t);
        }

        /* T(N) / (1 - U(N)) */
        if (mag_cmp_2exp_si(UN, 0) >= 0)
        {
            mag_inf(u);
        }
        else
        {
            mag_one(t);
            mag_sub_lower(t, t, UN);
            mag_div(u, TN, t);
        }
    }

    mag_clear(TN);
    mag_clear(UN);
    mag_clear(t);
}
Пример #12
0
Файл: bound.c Проект: isuruf/arb
slong
hypgeom_bound(mag_t error, int r,
    slong A, slong B, slong K, const mag_t TK, const mag_t z, slong tol_2exp)
{
    mag_t Tn, t, u, one, tol, num, den;
    slong n, m;

    mag_init(Tn);
    mag_init(t);
    mag_init(u);
    mag_init(one);
    mag_init(tol);
    mag_init(num);
    mag_init(den);

    mag_one(one);
    mag_set_ui_2exp_si(tol, UWORD(1), -tol_2exp);

    /* approximate number of needed terms */
    n = hypgeom_estimate_terms(z, r, tol_2exp);

    /* required for 1 + O(1/k) part to be decreasing */
    n = FLINT_MAX(n, K + 1);

    /* required for z^k / (k!)^r to be decreasing */
    m = hypgeom_root_bound(z, r);
    n = FLINT_MAX(n, m);

    /*  We now have |R(k)| <= G(k) where G(k) is monotonically decreasing,
        and can bound the tail using a geometric series as soon
        as soon as G(k) < 1. */

    /* bound T(n-1) */
    hypgeom_term_bound(Tn, TK, K, A, B, r, z, n-1);

    while (1)
    {
        /* bound R(n) */
        mag_mul_ui(num, z, n);
        mag_mul_ui(num, num, n - B);

        mag_set_ui_lower(den, n - A);
        mag_mul_ui_lower(den, den, n - 2*B);

        if (r != 0)
        {
            mag_set_ui_lower(u, n);
            mag_pow_ui_lower(u, u, r);
            mag_mul_lower(den, den, u);
        }

        mag_div(t, num, den);

        /* multiply bound for T(n-1) by bound for R(n) to bound T(n) */
        mag_mul(Tn, Tn, t);

        /* geometric series termination check */
        /* u = max(1-t, 0), rounding down [lower bound] */
        mag_sub_lower(u, one, t);

        if (!mag_is_zero(u))
        {
            mag_div(u, Tn, u);

            if (mag_cmp(u, tol) < 0)
            {
                mag_set(error, u);
                break;
            }
        }

        /* move on to next term */
        n++;
    }

    mag_clear(Tn);
    mag_clear(t);
    mag_clear(u);
    mag_clear(one);
    mag_clear(tol);
    mag_clear(num);
    mag_clear(den);

    return n;
}
Пример #13
0
void
acb_hypgeom_pfq_sum_rs(acb_t res, acb_t term, acb_srcptr a, slong p,
                                              acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
{
    acb_ptr zpow;
    acb_t s, t, u;
    slong i, j, k, m;
    mag_t B, C;

    if (n == 0)
    {
        acb_zero(res);
        acb_one(term);
        return;
    }

    if (n < 0)
        abort();

    m = n_sqrt(n);
    m = FLINT_MIN(m, 150);

    mag_init(B);
    mag_init(C);
    acb_init(s);
    acb_init(t);
    acb_init(u);
    zpow = _acb_vec_init(m + 1);

    _acb_vec_set_powers(zpow, z, m + 1, prec);

    mag_one(B);

    for (k = n; k >= 0; k--)
    {
        j = k % m;

        if (k < n)
            acb_add(s, s, zpow + j, prec);

        if (k > 0)
        {
            if (p > 0)
            {
                acb_add_ui(u, a, k - 1, prec);

                for (i = 1; i < p; i++)
                {
                    acb_add_ui(t, a + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_mul(s, s, u, prec);

                acb_get_mag(C, u);
                mag_mul(B, B, C);
            }

            if (q > 0)
            {
                acb_add_ui(u, b, k - 1, prec);

                for (i = 1; i < q; i++)
                {
                    acb_add_ui(t, b + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_div(s, s, u, prec);

                acb_get_mag_lower(C, u);
                mag_div(B, B, C);
            }

            if (j == 0 && k < n)
            {
                acb_mul(s, s, zpow + m, prec);
            }
        }
    }

    acb_get_mag(C, z);
    mag_pow_ui(C, C, n);
    mag_mul(B, B, C);

    acb_zero(term);
    if (_acb_vec_is_real(a, p) && _acb_vec_is_real(b, q) && acb_is_real(z))
        arb_add_error_mag(acb_realref(term), B);
    else
        acb_add_error_mag(term, B);

    acb_set(res, s);

    mag_clear(B);
    mag_clear(C);
    acb_clear(s);
    acb_clear(t);
    acb_clear(u);
    _acb_vec_clear(zpow, m + 1);
}
Пример #14
0
void
acb_inv(acb_t res, const acb_t z, slong prec)
{
    mag_t am, bm;
    slong hprec;

#define a arb_midref(acb_realref(z))
#define b arb_midref(acb_imagref(z))
#define x arb_radref(acb_realref(z))
#define y arb_radref(acb_imagref(z))

    /* choose precision for the floating-point approximation of a^2+b^2 so
       that the double rounding result in less than
       2 ulp error; also use at least MAG_BITS bits since the
       value will be recycled for error bounds */
    hprec = FLINT_MAX(prec + 3, MAG_BITS);

    if (arb_is_zero(acb_imagref(z)))
    {
        arb_inv(acb_realref(res), acb_realref(z), prec);
        arb_zero(acb_imagref(res));
        return;
    }

    if (arb_is_zero(acb_realref(z)))
    {
        arb_inv(acb_imagref(res), acb_imagref(z), prec);
        arb_neg(acb_imagref(res), acb_imagref(res));
        arb_zero(acb_realref(res));
        return;
    }

    if (!acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    if (mag_is_zero(x) && mag_is_zero(y))
    {
        int inexact;

        arf_t a2b2;
        arf_init(a2b2);

        inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN);

        if (arf_is_special(a2b2))
        {
            acb_indeterminate(res);
        }
        else
        {
            _arb_arf_div_rounded_den(acb_realref(res), a, a2b2, inexact, prec);
            _arb_arf_div_rounded_den(acb_imagref(res), b, a2b2, inexact, prec);
            arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res)));
        }

        arf_clear(a2b2);
        return;
    }

    mag_init(am);
    mag_init(bm);

    /* first bound |a|-x, |b|-y */
    arb_get_mag_lower(am, acb_realref(z));
    arb_get_mag_lower(bm, acb_imagref(z));

    if ((mag_is_zero(am) && mag_is_zero(bm)))
    {
        acb_indeterminate(res);
    }
    else
    {
        /*
        The propagated error in the real part is given exactly by

             (a+x')/((a+x')^2+(b+y'))^2 - a/(a^2+b^2) = P / Q,

             P = [(b^2-a^2) x' - a (x'^2+y'^2 + 2y'b)]
             Q = [(a^2+b^2)((a+x')^2+(b+y')^2)]

        where |x'| <= x and |y'| <= y, and analogously for the imaginary part.
        */
        mag_t t, u, v, w;
        arf_t a2b2;
        int inexact;

        mag_init(t);
        mag_init(u);
        mag_init(v);
        mag_init(w);

        arf_init(a2b2);

        inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN);

        /* compute denominator */
        /* t = (|a|-x)^2 + (|b|-x)^2 (lower bound) */
        mag_mul_lower(t, am, am);
        mag_mul_lower(u, bm, bm);
        mag_add_lower(t, t, u);
        /* u = a^2 + b^2 (lower bound) */
        arf_get_mag_lower(u, a2b2);
        /* t = ((|a|-x)^2 + (|b|-x)^2)(a^2 + b^2) (lower bound) */
        mag_mul_lower(t, t, u);

        /* compute numerator */
        /* real: |a^2-b^2| x  + |a| ((x^2 + y^2) + 2 |b| y)) */
        /* imag: |a^2-b^2| y  + |b| ((x^2 + y^2) + 2 |a| x)) */
        /* am, bm = upper bounds for a, b */
        arf_get_mag(am, a);
        arf_get_mag(bm, b);

        /* v = x^2 + y^2 */
        mag_mul(v, x, x);
        mag_addmul(v, y, y);

        /* u = |a| ((x^2 + y^2) + 2 |b| y) */
        mag_mul_2exp_si(u, bm, 1);
        mag_mul(u, u, y);
        mag_add(u, u, v);
        mag_mul(u, u, am);

        /* v = |b| ((x^2 + y^2) + 2 |a| x) */
        mag_mul_2exp_si(w, am, 1);
        mag_addmul(v, w, x);
        mag_mul(v, v, bm);

        /* w = |b^2 - a^2| (upper bound) */
        if (arf_cmpabs(a, b) >= 0)
            mag_mul(w, am, am);
        else
            mag_mul(w, bm, bm);

        mag_addmul(u, w, x);
        mag_addmul(v, w, y);

        mag_div(arb_radref(acb_realref(res)), u, t);
        mag_div(arb_radref(acb_imagref(res)), v, t);

        _arb_arf_div_rounded_den_add_err(acb_realref(res), a, a2b2, inexact, prec);
        _arb_arf_div_rounded_den_add_err(acb_imagref(res), b, a2b2, inexact, prec);
        arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res)));

        mag_clear(t);
        mag_clear(u);
        mag_clear(v);
        mag_clear(w);

        arf_clear(a2b2);
    }

    mag_clear(am);
    mag_clear(bm);
#undef a
#undef b
#undef x
#undef y
}
Пример #15
0
/* computes the factors that are independent of n (all are upper bounds) */
void
acb_hypgeom_u_asymp_bound_factors(int * R, mag_t alpha,
    mag_t nu, mag_t sigma, mag_t rho, mag_t zinv,
    const acb_t a, const acb_t b, const acb_t z)
{
    mag_t r, u, zre, zim, zlo, sigma_prime;
    acb_t t;

    mag_init(r);
    mag_init(u);
    mag_init(zre);
    mag_init(zim);
    mag_init(zlo);
    mag_init(sigma_prime);
    acb_init(t);

    /* lower bounds for |re(z)|, |im(z)|, |z| */
    arb_get_mag_lower(zre, acb_realref(z));
    arb_get_mag_lower(zim, acb_imagref(z));
    acb_get_mag_lower(zlo, z); /* todo: hypot */

    /* upper bound for 1/|z| */
    mag_one(u);
    mag_div(zinv, u, zlo);

    /* upper bound for r = |b - 2a| */
    acb_mul_2exp_si(t, a, 1);
    acb_sub(t, b, t, MAG_BITS);
    acb_get_mag(r, t);

    /* determine region */
    *R = 0;

    if (mag_cmp(zlo, r) >= 0)
    {
        int znonneg = arb_is_nonnegative(acb_realref(z));

        if (znonneg && mag_cmp(zre, r) >= 0)
        {
            *R = 1;
        }
        else if (mag_cmp(zim, r) >= 0 || znonneg)
        {
            *R = 2;
        }
        else
        {
            mag_mul_2exp_si(u, r, 1);
            if (mag_cmp(zlo, u) >= 0)
                *R = 3;
        }
    }

    if (R == 0)
    {
        mag_inf(alpha);
        mag_inf(nu);
        mag_inf(sigma);
        mag_inf(rho);
    }
    else
    {
        /* sigma = |(b-2a)/z| */
        mag_mul(sigma, r, zinv);

        /* nu = (1/2 + 1/2 sqrt(1-4 sigma^2))^(-1/2) <= 1 + 2 sigma^2 */
        if (mag_cmp_2exp_si(sigma, -1) <= 0)
        {
            mag_mul(nu, sigma, sigma);
            mag_mul_2exp_si(nu, nu, 1);
            mag_one(u);
            mag_add(nu, nu, u);
        }
        else
        {
            mag_inf(nu);
        }

        /* modified sigma for alpha, beta, rho when in R3 */
        if (*R == 3)
            mag_mul(sigma_prime, sigma, nu);
        else
            mag_set(sigma_prime, sigma);

        /* alpha = 1/(1-sigma') */
        mag_one(alpha);
        mag_sub_lower(alpha, alpha, sigma_prime);
        mag_one(u);
        mag_div(alpha, u, alpha);

        /* rho = |2a^2-2ab+b|/2 + sigma'*(1+sigma'/4)/(1-sigma')^2 */
        mag_mul_2exp_si(rho, sigma_prime, -2);
        mag_one(u);
        mag_add(rho, rho, u);
        mag_mul(rho, rho, sigma_prime);
        mag_mul(rho, rho, alpha);
        mag_mul(rho, rho, alpha);
        acb_sub(t, a, b, MAG_BITS);
        acb_mul(t, t, a, MAG_BITS);
        acb_mul_2exp_si(t, t, 1);
        acb_add(t, t, b, MAG_BITS);
        acb_get_mag(u, t);
        mag_mul_2exp_si(u, u, -1);
        mag_add(rho, rho, u);
    }

    mag_clear(r);
    mag_clear(u);
    mag_clear(zre);
    mag_clear(zim);
    mag_clear(zlo);
    mag_clear(sigma_prime);
    acb_clear(t);
}