Пример #1
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing sormqr_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float error, work[1];
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max, dt_size;
    float *C, *R, *A, *W, *tau;
    float *dC, *dA, *dT;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    // test all combinations of input parameters
    const char* side[]   = { MagmaLeftStr,      MagmaRightStr   };
    const char* trans[]  = { MagmaTransStr, MagmaNoTransStr };

    printf("    M     N     K  side   trans      CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        for( int iside = 0; iside < 2; ++iside ) {
        for( int itran = 0; itran < 2; ++itran ) {
            m = opts.msize[i];
            n = opts.nsize[i];
            k = opts.ksize[i];
            nb  = magma_get_sgeqrf_nb( m );
            ldc = ((m + 31)/32)*32;
            lda = ((max(m,n) + 31)/32)*32;
            gflops = FLOPS_SORMQR( m, n, k, *side[iside] ) / 1e9;
            
            if ( *side[iside] == 'L' && m < k ) {
                printf( "%5d %5d %5d  %-5s  %-9s   skipping because side=left and m < k\n",
                        (int) m, (int) n, (int) k, side[iside], trans[itran] );
                continue;
            }
            if ( *side[iside] == 'R' && n < k ) {
                printf( "%5d %5d %5d  %-5s  %-9s   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k, side[iside], trans[itran] );
                continue;
            }
            
            if ( *side[iside] == 'L' ) {
                // side = left
                lwork_max = (m - k + nb)*(n + nb) + n*nb;
                dt_size = ( 2*min(m,k) + ((k + 31)/32)*32 )*nb;
            }
            else {
                // side = right
                lwork_max = (n - k + nb)*(m + nb) + m*nb;
                dt_size = ( 2*min(n,k) + ((k + 31)/32)*32 )*nb;
            }
            
            TESTING_MALLOC_CPU( C,   float, ldc*n );
            TESTING_MALLOC_CPU( R,   float, ldc*n );
            TESTING_MALLOC_CPU( A,   float, lda*k );
            TESTING_MALLOC_CPU( W,   float, lwork_max );
            TESTING_MALLOC_CPU( tau, float, k );
            
            TESTING_MALLOC_DEV( dC, float, ldc*n );
            TESTING_MALLOC_DEV( dA, float, lda*k );
            TESTING_MALLOC_DEV( dT, float, dt_size );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            magma_ssetmatrix( m, n, C, ldc, dC, ldc );
            
            // A is m x k (left) or n x k (right)
            lda = (*side[iside] == 'L' ? m : n);
            size = lda*k;
            lapackf77_slarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in dA, tau, dT
            magma_ssetmatrix( lda, k, A,  lda, dA, lda );
            magma_sgeqrf_gpu( lda, k, dA, lda, tau, dT, &info );
            magma_sgetmatrix( lda, k, dA, lda, A,  lda );
            if (info != 0)
                printf("magma_sgeqrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_sormqr( side[iside], trans[itran],
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_sormqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_sormqr_gpu( *side[iside], *trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, W, lwork, dT, nb, &info );
            if (info != 0)
                printf("magma_sormqr_gpu (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_S_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max )
                printf("invalid lwork %d, lwork_max %d\n", (int) lwork, (int) lwork_max );
            
            gpu_time = magma_sync_wtime( 0 );  // sync needed for L,N and R,T cases
            magma_sormqr_gpu( *side[iside], *trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, W, lwork, dT, nb, &info );
            gpu_time = magma_sync_wtime( 0 ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_sormqr_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            magma_sgetmatrix( m, n, dC, ldc, R, ldc );
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_slange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_slange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d  %-5s  %-9s  %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e\n",
                    (int) m, (int) n, (int) k, side[iside], trans[itran],
                    cpu_perf, cpu_time, gpu_perf, gpu_time, error );
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dT );
        }}  // end iside, itran
        printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return 0;
}
Пример #2
0
/**
    Purpose
    -------
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF_GPU.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    @param[in]
    dA      REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF_GPU in the first n columns of its array argument A.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A, LDDA >= M.

    @param[in]
    tau     REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    @param[in,out]
    dB      REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    @param[in]
    dT      REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            inverses for the R matrix, followed by work space of size
            ((N+31)/32*32 )* MAX(NB, NRHS).

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB. LDDB >= M.

    @param[out]
    hwork   (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK,
            LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB,
            where NB is the blocksize given by magma_get_sgeqrf_nb( M ).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_sgels_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sgeqrs_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                 float *dA,    magma_int_t ldda,
                 float *tau,   float *dT,
                 float *dB,    magma_int_t lddb,
                 float *hwork, magma_int_t lwork,
                 magma_int_t *info)
{
    #define dA(a_1,a_2) (dA + (a_2)*(ldda) + (a_1))
    #define dT(a_1)     (dT + (lddwork+(a_1))*nb)

    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    float *dwork;
    magma_int_t i, k, lddwork, rows, ib;
    magma_int_t ione = 1;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -9;
    else if (lwork < lwkopt && ! lquery)
        *info = -11;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      dA(0,0), ldda, tau,
                      dB, lddb, hwork, lwork, dT, nb, info );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:) */
    lddwork= k;
    if (nb < k)
        dwork = dT+2*lddwork*nb;
    else
        dwork = dT;
    // To do: Why did we have this line originally; seems to be a bug (Stan)?
    // dwork = dT;

    i    = (k-1)/nb * nb;
    ib   = n-i;
    rows = m-i;

    // TODO: this assumes that, on exit from magma_sormqr_gpu, hwork contains
    // the last block of A and B (i.e., C in sormqr). This should be fixed.
    // Seems this data should already be on the GPU, so could switch to
    // magma_strsm and drop the ssetmatrix.
    if ( nrhs == 1 ) {
        blasf77_strsv( MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, hwork,         &rows,
                            hwork+rows*ib, &ione);
    } else {
        blasf77_strsm( MagmaLeftStr, MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, &nrhs,
                       &c_one, hwork,         &rows,
                               hwork+rows*ib, &rows);
    }
    
    // update the solution vector
    magma_ssetmatrix( ib, nrhs, hwork+rows*ib, rows, dwork+i, lddwork );

    // update c
    if (nrhs == 1)
        magma_sgemv( MagmaNoTrans, i, ib,
                     c_neg_one, dA(0, i), ldda,
                                dwork + i,   1,
                     c_one,     dB,           1);
    else
        magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                     i, nrhs, ib,
                     c_neg_one, dA(0, i), ldda,
                                dwork + i,   lddwork,
                     c_one,     dB,           lddb);

    int start = i-nb;
    if (nb < k) {
        for (i = start; i >= 0; i -= nb) {
            ib = min(k-i, nb);
            rows = m -i;

            if (i + ib < n) {
                if (nrhs == 1) {
                    magma_sgemv( MagmaNoTrans, ib, ib,
                                 c_one,  dT(i), ib,
                                         dB+i,      1,
                                 c_zero, dwork+i,  1);
                    magma_sgemv( MagmaNoTrans, i, ib,
                                 c_neg_one, dA(0, i), ldda,
                                            dwork + i,   1,
                                 c_one,     dB,           1);
                }
                else {
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 ib, nrhs, ib,
                                 c_one,  dT(i), ib,
                                         dB+i,      lddb,
                                 c_zero, dwork+i,  lddwork);
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 i, nrhs, ib,
                                 c_neg_one, dA(0, i), ldda,
                                            dwork + i,   lddwork,
                                 c_one,     dB,          lddb);
                }
            }
        }
    }

    magma_scopymatrix( (n), nrhs,
                       dwork, lddwork,
                       dB,    lddb );
    
    return *info;
}
Пример #3
0
extern "C" magma_int_t
magma_sgeqrs3_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                  float *dA,    magma_int_t ldda, 
                  float *tau,   float *dT, 
                  float *dB,    magma_int_t lddb, 
                  float *hwork, magma_int_t lwork, 
                  magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose
    =======
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF3_GPU.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    NRHS    (input) INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    A       (input) REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF3_GPU in the first n columns of its array argument A.

    LDDA    (input) INTEGER
            The leading dimension of the array A, LDDA >= M.

    TAU     (input) REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    DB      (input/output) REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    DT      (input) REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS). 
            The array starts with a block of size MIN(M,N)*NB that stores 
            the triangular T matrices used in the QR factorization, 
            followed by MIN(M,N)*NB block storing the diagonal block 
            matrices for the R matrix, followed by work space of size 
            ((N+31)/32*32 )* MAX(NB, NRHS).

    LDDB    (input) INTEGER
            The leading dimension of the array DB. LDDB >= M.

    HWORK   (workspace/output) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK, LWORK >= max(1,NRHS).
            For optimum performance LWORK >= (M-N+NB)*(NRHS + 2*NB), where 
            NB is the blocksize given by magma_get_sgeqrf_nb( M ).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
    =====================================================================    */

   #define a_ref(a_1,a_2) (dA+(a_2)*(ldda) + (a_1))
   #define d_ref(a_1)     (dT+(lddwork+(a_1))*nb)

    float c_one     = MAGMA_S_ONE;
    magma_int_t k, lddwork;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m-n+nb)*(nrhs+2*nb);
    int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -8;
    else if (lwork < lwkopt && ! lquery)
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }
    lddwork= k;

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans, 
                      m, nrhs, n,
                      a_ref(0,0), ldda, tau, 
                      dB, lddb, hwork, lwork, dT, nb, info );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:) 
       1. Move the block diagonal submatrices from d_ref to R
       2. Solve 
       3. Restore the data format moving data from R back to d_ref 
    */
    magmablas_sswapdblk(k, nb, a_ref(0,0), ldda, 1, d_ref(0), nb, 0);
    if ( nrhs == 1 ) {
        magma_strsv(MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                    n, a_ref(0,0), ldda, dB, 1);
    } else {
        magma_strsm(MagmaLeft, MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                    n, nrhs, c_one, a_ref(0,0), ldda, dB, lddb);
    }
    magmablas_sswapdblk(k, nb, d_ref(0), nb, 0, a_ref(0,0), ldda, 1);

    return *info;
}
Пример #4
0
/**
    Purpose
    -------
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF3_GPU.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    @param[in]
    dA      REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF3_GPU in the first n columns of its array argument A.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A, LDDA >= M.

    @param[in]
    tau     REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    @param[in,out]
    dB      REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    @param[in]
    dT      REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            matrices for the R matrix, followed by work space of size
            ((N+31)/32*32 )* MAX(NB, NRHS).

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB. LDDB >= M.

    @param[out]
    hwork   (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK,
            LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB,
            where NB is the blocksize given by magma_get_sgeqrf_nb( M ).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_sgels_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sgeqrs3_gpu(
    magma_int_t m, magma_int_t n, magma_int_t nrhs,
    magmaFloat_ptr dA,    magma_int_t ldda,
    float *tau,
    magmaFloat_ptr dT,
    magmaFloat_ptr dB,    magma_int_t lddb,
    float *hwork, magma_int_t lwork,
    magma_int_t *info)
{
    #define dA(a_1,a_2) (dA + (a_2)*(ldda) + (a_1))
    #define dT(a_1)     (dT + (lddwork+(a_1))*nb)

    float c_one     = MAGMA_S_ONE;
    magma_int_t k, lddwork;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -8;
    else if (lwork < lwkopt && ! lquery)
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }
    lddwork = k;

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      dA(0,0), ldda, tau,
                      dB, lddb, hwork, lwork, dT, nb, info );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:)
       1. Move the (k-1)/nb block diagonal submatrices from dT to R
       2. Solve
       3. Restore the data format moving data from R back to dT
    */
    magmablas_sswapdblk(k-1, nb, dA(0,0), ldda, 1, dT(0), nb, 0);
    if ( nrhs == 1 ) {
        magma_strsv(MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                    n, dA(0,0), ldda, dB, 1);
    } else {
        magma_strsm(MagmaLeft, MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                    n, nrhs, c_one, dA(0,0), ldda, dB, lddb);
    }
    magmablas_sswapdblk(k-1, nb, dT(0), nb, 0, dA(0,0), ldda, 1);

    return *info;
}
Пример #5
0
extern "C" magma_err_t
magma_sgeqrs_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                 magmaFloat_ptr dA, size_t dA_offset, magma_int_t ldda,
                 float *tau,   magmaFloat_ptr dT, size_t dT_offset,
                 magmaFloat_ptr dB, size_t dB_offset, magma_int_t lddb,
                 float *hwork, magma_int_t lwork,
                 magma_int_t *info, magma_queue_t queue)
{
/*  -- clMagma (version 0.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date January 2014

    Purpose
    =======
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF_GPU.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    NRHS    (input) INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    A       (input) REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF_GPU in the first n columns of its array argument A.

    LDDA    (input) INTEGER
            The leading dimension of the array A, LDDA >= M.

    TAU     (input) REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    DB      (input/output) REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    DT      (input) REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            inverses for the R matrix, followed by work space of size
            ((N+31)/32*32 )* MAX(NB, NRHS).

    LDDB    (input) INTEGER
            The leading dimension of the array DB. LDDB >= M.

    HWORK   (workspace/output) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK, LWORK >= max(1,NRHS).
            For optimum performance LWORK >= (M-N+NB)*(NRHS + 2*NB), where
            NB is the blocksize given by magma_get_sgeqrf_nb( M ).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
    =====================================================================    */

   #define a_ref(a_1,a_2)  dA, (dA_offset + (a_1) + (a_2)*(ldda))
   #define d_ref(a_1)      dT, (dT_offset + (lddwork+(a_1))*nb)

    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    magmaFloat_ptr dwork;
    magma_int_t i, k, lddwork, rows, ib;
    magma_int_t ione = 1;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m-n+nb)*(nrhs+2*nb);
    long int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -8;
    else if (lwork < lwkopt && ! lquery)
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      a_ref(0,0), ldda, tau,
                      dB, dB_offset, lddb, hwork, lwork, dT, dT_offset, nb, info, queue );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:) */
    lddwork= k;

    int ldtwork;
    size_t dwork_offset = 0;
    if (nb < k)
      {
        dwork = dT;
        dwork_offset = dT_offset+2*lddwork*nb;
      }
    else
      {
        ldtwork = ( 2*k + ((n+31)/32)*32 )*nb;
        magma_smalloc( &dwork, ldtwork );
      }
    // To do: Why did we have this line originally; seems to be a bug (Stan)?
    //dwork = dT;

    i    = (k-1)/nb * nb;
    ib   = n-i;
    rows = m-i;

    if ( nrhs == 1 ) {
        blasf77_strsv( MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, hwork,         &rows,
                            hwork+rows*ib, &ione);
    } else {
        blasf77_strsm( MagmaLeftStr, MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, &nrhs,
                       &c_one, hwork,         &rows,
                               hwork+rows*ib, &rows);
    }
      
    // update the solution vector
    magma_ssetmatrix( ib, nrhs, hwork+rows*ib, 0, rows, dwork, dwork_offset+i, lddwork, queue );

    // update c
    if (nrhs == 1)
        magma_sgemv( MagmaNoTrans, i, ib,
                     c_neg_one, a_ref(0, i), ldda,
                                         dwork, dwork_offset+i, 1,
                     c_one,     dB, dB_offset, 1, queue );
    else
        magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                     i, nrhs, ib,
                     c_neg_one, a_ref(0, i), ldda,
                                dwork, dwork_offset + i,   lddwork,
                     c_one,     dB, dB_offset, lddb, queue );

    int start = i-nb;
    if (nb < k) {
        for (i = start; i >=0; i -= nb) {
            ib = min(k-i, nb);
            rows = m -i;

            if (i + ib < n) {
                if (nrhs == 1) {
                    magma_sgemv( MagmaNoTrans, ib, ib,
                                 c_one,  d_ref(i), ib,
                                 dB, dB_offset+i,      1,
                                 c_zero, dwork, dwork_offset+i,  1, queue );
                    magma_sgemv( MagmaNoTrans, i, ib,
                                 c_neg_one, a_ref(0, i), ldda,
                                 dwork, dwork_offset+i,   1,
                                 c_one,     dB, dB_offset, 1, queue );
                } else {
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 ib, nrhs, ib,
                                 c_one,  d_ref(i), ib,
                                 dB, dB_offset+i, lddb,
                                 c_zero, dwork, dwork_offset+i,  lddwork, queue );
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 i, nrhs, ib,
                                 c_neg_one, a_ref(0, i), ldda,
                                 dwork, dwork_offset+i, lddwork,
                                 c_one,     dB, dB_offset, lddb, queue );
                }
            }
        }
    }

    magma_scopymatrix( (n), nrhs,
                       dwork, dwork_offset, lddwork,
                       dB, dB_offset,   lddb, queue );

    if (nb >= k)
      magma_free(dwork);

    magma_queue_sync( queue );

    return *info;
}
Пример #6
0
/**
    Purpose
    -------
    SGEQRS solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF3_GPU.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    @param[in]
    dA      REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF3_GPU in the first n columns of its array argument A.
            dA is modified by the routine but restored on exit.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A, LDDA >= M.

    @param[in]
    tau     REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    @param[in,out]
    dB      REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    @param[in,out]
    dT      REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            matrices for the R matrix, followed by work space of size
            (ceil(N/32)*32)* MAX(NB, NRHS).

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB. LDDB >= M.

    @param[out]
    hwork   (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK,
            LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB,
            where NB is the blocksize given by magma_get_sgeqrf_nb( M, N ).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_sgels_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sgeqrs3_gpu(
    magma_int_t m, magma_int_t n, magma_int_t nrhs,
    magmaFloat_ptr dA,    magma_int_t ldda,
    float const *tau,
    magmaFloat_ptr dT,
    magmaFloat_ptr dB,    magma_int_t lddb,
    float *hwork, magma_int_t lwork,
    magma_int_t *info)
{
    #define dA(i_,j_) (dA + (i_) + (j_)*ldda)
    #define dT(i_)    (dT + (lddwork + (i_))*nb)

    float c_one     = MAGMA_S_ONE;
    magma_int_t min_mn, lddwork;

    magma_int_t nb     = magma_get_sgeqrf_nb( m, n );
    magma_int_t lwkopt = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    bool lquery = (lwork == -1);

    hwork[0] = magma_smake_lwork( lwkopt );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -8;
    else if (lwork < lwkopt && ! lquery)
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    min_mn = min(m,n);
    if (min_mn == 0) {
        hwork[0] = c_one;
        return *info;
    }
    lddwork = min_mn;

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );
    
    /* B := Q^H * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      dA(0,0), ldda, tau,
                      dB, lddb, hwork, lwork, dT, nb, info );
    if ( *info != 0 ) {
        magma_queue_destroy( queue );
        return *info;
    }

    /* Solve R*X = B(1:n,:)
       1. Move the (min_mn - 1)/nb block diagonal submatrices from dT to R
       2. Solve
       3. Restore the data format moving data from R back to dT
    */
    magmablas_sswapdblk( min_mn-1, nb, dA(0,0), ldda, 1, dT(0), nb, 0, queue );
    if ( nrhs == 1 ) {
        magma_strsv( MagmaUpper, MagmaNoTrans, MagmaNonUnit, n,
                     dA(0,0), ldda,
                     dB,      1, queue );
    } else {
        magma_strsm( MagmaLeft, MagmaUpper, MagmaNoTrans, MagmaNonUnit, n, nrhs,
                     c_one, dA(0,0), ldda,
                            dB,      lddb, queue );
    }
    magmablas_sswapdblk( min_mn-1, nb, dT(0), nb, 0, dA(0,0), ldda, 1, queue );

    magma_queue_destroy( queue );
    return *info;
}