Пример #1
0
  // rdar://problem/8439196
  A *b(bool cond) {

    // CHECK:    define [[A:%.*]]* @_ZN5test31bEb(i1 zeroext
    // CHECK:      [[SAVED0:%.*]] = alloca i8*
    // CHECK-NEXT: [[SAVED1:%.*]] = alloca i8*
    // CHECK-NEXT: [[CLEANUPACTIVE:%.*]] = alloca i1
    // CHECK-NEXT: [[TMP:%.*]] = alloca [[A]], align 8
    // CHECK:      [[TMPACTIVE:%.*]] = alloca i1
    // CHECK-NEXT: store i1 false, i1* [[CLEANUPACTIVE]]

    // CHECK:      [[COND:%.*]] = trunc i8 {{.*}} to i1
    // CHECK-NEXT: store i1 false, i1* [[TMPACTIVE]]
    // CHECK-NEXT: br i1 [[COND]]
    return (cond ?

    // CHECK:      [[FOO:%.*]] = call i8* @_ZN5test33fooEv()
    // CHECK-NEXT: [[NEW:%.*]] = call i8* @_ZN5test31AnwEmPvd(i64 8, i8* [[FOO]], double [[CONST:.*]])
    // CHECK-NEXT: store i8* [[NEW]], i8** [[SAVED0]]
    // CHECK-NEXT: store i8* [[FOO]], i8** [[SAVED1]]
    // CHECK-NEXT: store i1 true, i1* [[CLEANUPACTIVE]]
    // CHECK-NEXT: [[CAST:%.*]] = bitcast i8* [[NEW]] to [[A]]*
    // CHECK-NEXT: invoke void @_ZN5test35makeAEv([[A]]* sret [[TMP]])
    // CHECK:      store i1 true, i1* [[TMPACTIVE]]
    // CHECK-NEXT: invoke void @_ZN5test31AC1ERKS0_([[A]]* [[CAST]], [[A]]* [[TMP]])
    // CHECK:      store i1 false, i1* [[CLEANUPACTIVE]]
    // CHECK-NEXT: br label
    //   -> cond.end
            new(foo(),10.0) A(makeA()) :

    // CHECK:      [[MAKE:%.*]] = invoke [[A]]* @_ZN5test38makeAPtrEv()
    // CHECK:      br label
    //   -> cond.end
            makeAPtr());

    // cond.end:
    // CHECK:      [[RESULT:%.*]] = phi [[A]]* {{.*}}[[CAST]]{{.*}}[[MAKE]]
    // CHECK-NEXT: [[ISACTIVE:%.*]] = load i1* [[TMPACTIVE]]
    // CHECK-NEXT: br i1 [[ISACTIVE]]
    // CHECK:      invoke void @_ZN5test31AD1Ev
    // CHECK:      ret [[A]]* [[RESULT]]

    // in the EH path:
    // CHECK:      [[ISACTIVE:%.*]] = load i1* [[CLEANUPACTIVE]]
    // CHECK-NEXT: br i1 [[ISACTIVE]]
    // CHECK:      [[V0:%.*]] = load i8** [[SAVED0]]
    // CHECK-NEXT: [[V1:%.*]] = load i8** [[SAVED1]]
    // CHECK-NEXT: invoke void @_ZN5test31AdlEPvS1_d(i8* [[V0]], i8* [[V1]], double [[CONST]])
  }
Пример #2
0
void classRF(double *x, int *dimx, int *cl, int *ncl, int *cat, int *maxcat,
        int *sampsize, int *strata, int *Options, int *ntree, int *nvar,
        int *ipi, double *classwt, double *cut, int *nodesize,
        int *outcl, int *counttr, double *prox,
        double *imprt, double *impsd, double *impmat, int *nrnodes,
        int *ndbigtree, int *nodestatus, int *bestvar, int *treemap,
        int *nodeclass, double *xbestsplit, double *errtr,
        int *testdat, double *xts, int *clts, int *nts, double *countts,
        int *outclts, int labelts, double *proxts, double *errts,
        int *inbag) {
    /******************************************************************
     *  C wrapper for random forests:  get input from R and drive
     *  the Fortran routines.
     *
     *  Input:
     *
     *  x:        matrix of predictors (transposed!)
     *  dimx:     two integers: number of variables and number of cases
     *  cl:       class labels of the data
     *  ncl:      number of classes in the responsema
     *  cat:      integer vector of number of classes in the predictor;
     *            1=continuous
     * maxcat:    maximum of cat
     * Options:   7 integers: (0=no, 1=yes)
     *     add a second class (for unsupervised RF)?
     *         1: sampling from product of marginals
     *         2: sampling from product of uniforms
     *     assess variable importance?
     *     calculate proximity?
     *     calculate proximity based on OOB predictions?
     *     calculate outlying measure?
     *     how often to print output?
     *     keep the forest for future prediction?
     *  ntree:    number of trees
     *  nvar:     number of predictors to use for each split
     *  ipi:      0=use class proportion as prob.; 1=use supplied priors
     *  pi:       double vector of class priors
     *  nodesize: minimum node size: no node with fewer than ndsize
     *            cases will be split
     *
     *  Output:
     *
     *  outcl:    class predicted by RF
     *  counttr:  matrix of votes (transposed!)
     *  imprt:    matrix of variable importance measures
     *  impmat:   matrix of local variable importance measures
     *  prox:     matrix of proximity (if iprox=1)
     ******************************************************************/
    
    int nsample0, mdim, nclass, addClass, mtry, ntest, nsample, ndsize,
            mimp, nimp, near, nuse, noutall, nrightall, nrightimpall,
            keepInbag, nstrata;
    int jb, j, n, m, k, idxByNnode, idxByNsample, imp, localImp, iprox,
            oobprox, keepf, replace, stratify, trace, *nright,
            *nrightimp, *nout, *nclts, Ntree;
    
    int *out, *bestsplitnext, *bestsplit, *nodepop, *jin, *nodex,
            *nodexts, *nodestart, *ta, *ncase, *jerr, *varUsed,
            *jtr, *classFreq, *idmove, *jvr,
            *at, *a, *b, *mind, *nind, *jts, *oobpair;
    int **strata_idx, *strata_size, last, ktmp, anyEmpty, ntry;
    
    double av=0.0;
    
    double *tgini, *tx, *wl, *classpop, *tclasscat, *tclasspop, *win,
            *tp, *wr;
    
    //Do initialization for COKUS's Random generator
    seedMT(2*rand()+1);  //works well with odd number so why don't use that
    
    addClass = Options[0];
    imp      = Options[1];
    localImp = Options[2];
    iprox    = Options[3];
    oobprox  = Options[4];
    trace    = Options[5];
    keepf    = Options[6];
    replace  = Options[7];
    stratify = Options[8];
    keepInbag = Options[9];
    mdim     = dimx[0];
    nsample0 = dimx[1];
    nclass   = (*ncl==1) ? 2 : *ncl;
    ndsize   = *nodesize;
    Ntree    = *ntree;
    mtry     = *nvar;
    ntest    = *nts;
    nsample = addClass ? (nsample0 + nsample0) : nsample0;
    mimp = imp ? mdim : 1;
    nimp = imp ? nsample : 1;
    near = iprox ? nsample0 : 1;
    if (trace == 0) trace = Ntree + 1;
    
    /*printf("\nmdim %d, nclass %d, nrnodes %d, nsample %d, ntest %d\n", mdim, nclass, *nrnodes, nsample, ntest);
    printf("\noobprox %d, mdim %d, nsample0 %d, Ntree %d, mtry %d, mimp %d", oobprox, mdim, nsample0, Ntree, mtry, mimp);
    printf("\nstratify %d, replace %d",stratify,replace);
    printf("\n");*/
    tgini =      (double *) S_alloc_alt(mdim, sizeof(double));
    wl =         (double *) S_alloc_alt(nclass, sizeof(double));
    wr =         (double *) S_alloc_alt(nclass, sizeof(double));
    classpop =   (double *) S_alloc_alt(nclass* *nrnodes, sizeof(double));
    tclasscat =  (double *) S_alloc_alt(nclass*32, sizeof(double));
    tclasspop =  (double *) S_alloc_alt(nclass, sizeof(double));
    tx =         (double *) S_alloc_alt(nsample, sizeof(double));
    win =        (double *) S_alloc_alt(nsample, sizeof(double));
    tp =         (double *) S_alloc_alt(nsample, sizeof(double));
    
    out =           (int *) S_alloc_alt(nsample, sizeof(int));
    bestsplitnext = (int *) S_alloc_alt(*nrnodes, sizeof(int));
    bestsplit =     (int *) S_alloc_alt(*nrnodes, sizeof(int));
    nodepop =       (int *) S_alloc_alt(*nrnodes, sizeof(int));
    nodestart =     (int *) S_alloc_alt(*nrnodes, sizeof(int));
    jin =           (int *) S_alloc_alt(nsample, sizeof(int));
    nodex =         (int *) S_alloc_alt(nsample, sizeof(int));
    nodexts =       (int *) S_alloc_alt(ntest, sizeof(int));
    ta =            (int *) S_alloc_alt(nsample, sizeof(int));
    ncase =         (int *) S_alloc_alt(nsample, sizeof(int));
    jerr =          (int *) S_alloc_alt(nsample, sizeof(int));
    varUsed =       (int *) S_alloc_alt(mdim, sizeof(int));
    jtr =           (int *) S_alloc_alt(nsample, sizeof(int));
    jvr =           (int *) S_alloc_alt(nsample, sizeof(int));
    classFreq =     (int *) S_alloc_alt(nclass, sizeof(int));
    jts =           (int *) S_alloc_alt(ntest, sizeof(int));
    idmove =        (int *) S_alloc_alt(nsample, sizeof(int));
    at =            (int *) S_alloc_alt(mdim*nsample, sizeof(int));
    a =             (int *) S_alloc_alt(mdim*nsample, sizeof(int));
    b =             (int *) S_alloc_alt(mdim*nsample, sizeof(int));
    mind =          (int *) S_alloc_alt(mdim, sizeof(int));
    nright =        (int *) S_alloc_alt(nclass, sizeof(int));
    nrightimp =     (int *) S_alloc_alt(nclass, sizeof(int));
    nout =          (int *) S_alloc_alt(nclass, sizeof(int));
    if (oobprox) {
        oobpair = (int *) S_alloc_alt(near*near, sizeof(int));
    }
    //printf("nsample=%d\n", nsample);
    /* Count number of cases in each class. */
    zeroInt(classFreq, nclass);
    for (n = 0; n < nsample; ++n) classFreq[cl[n] - 1] ++;
    /* Normalize class weights. */
    //Rprintf("ipi %d ",*ipi);
    //for(n=0;n<nclass;n++) Rprintf("%d: %d, %f,",n,classFreq[n],classwt[n]);
    normClassWt(cl, nsample, nclass, *ipi, classwt, classFreq);
    //for(n=0;n<nclass;n++) Rprintf("%d: %d, %f,",n,classFreq[n],classwt[n]);
   
    if (stratify) {
        /* Count number of strata and frequency of each stratum. */
        nstrata = 0;
        for (n = 0; n < nsample0; ++n)
            if (strata[n] > nstrata) nstrata = strata[n];
        /* Create the array of pointers, each pointing to a vector
         * of indices of where data of each stratum is. */
        strata_size = (int  *) S_alloc_alt(nstrata, sizeof(int));
        for (n = 0; n < nsample0; ++n) {
            strata_size[strata[n] - 1] ++;
        }
        strata_idx =  (int **) S_alloc_alt(nstrata, sizeof(int *));
        for (n = 0; n < nstrata; ++n) {
            strata_idx[n] = (int *) S_alloc_alt(strata_size[n], sizeof(int));
        }
        zeroInt(strata_size, nstrata);
        for (n = 0; n < nsample0; ++n) {
            strata_size[strata[n] - 1] ++;
            strata_idx[strata[n] - 1][strata_size[strata[n] - 1] - 1] = n;
        }
    } else {
        nind = replace ? NULL : (int *) S_alloc_alt(nsample, sizeof(int));
    }
    
    /*    INITIALIZE FOR RUN */
    if (*testdat) zeroDouble(countts, ntest * nclass);
    zeroInt(counttr, nclass * nsample);
    zeroInt(out, nsample);
    zeroDouble(tgini, mdim);
    zeroDouble(errtr, (nclass + 1) * Ntree);
    
    if (labelts) {
        nclts  = (int *) S_alloc_alt(nclass, sizeof(int));
        for (n = 0; n < ntest; ++n) nclts[clts[n]-1]++;
        zeroDouble(errts, (nclass + 1) * Ntree);
    }
    //printf("labelts %d\n",labelts);fflush(stdout);
    if (imp) {
        zeroDouble(imprt, (nclass+2) * mdim);
        zeroDouble(impsd, (nclass+1) * mdim);
        if (localImp) zeroDouble(impmat, nsample * mdim);
    }
    if (iprox) {
        zeroDouble(prox, nsample0 * nsample0);
        if (*testdat) zeroDouble(proxts, ntest * (ntest + nsample0));
    }
    makeA(x, mdim, nsample, cat, at, b);
    
    //R_CheckUserInterrupt();
    
    
    /* Starting the main loop over number of trees. */
    GetRNGstate();
    if (trace <= Ntree) {
        /* Print header for running output. */
        Rprintf("ntree      OOB");
        for (n = 1; n <= nclass; ++n) Rprintf("%7i", n);
        if (labelts) {
            Rprintf("|    Test");
            for (n = 1; n <= nclass; ++n) Rprintf("%7i", n);
        }
        Rprintf("\n");
    }
    idxByNnode = 0;
    idxByNsample = 0;
    
    //Rprintf("addclass %d, ntree %d, cl[300]=%d", addClass,Ntree,cl[299]);
    for(jb = 0; jb < Ntree; jb++) {
		//Rprintf("addclass %d, ntree %d, cl[300]=%d", addClass,Ntree,cl[299]);
        //printf("jb=%d,\n",jb);
        /* Do we need to simulate data for the second class? */
        if (addClass) createClass(x, nsample0, nsample, mdim);
        do {
            zeroInt(nodestatus + idxByNnode, *nrnodes);
            zeroInt(treemap + 2*idxByNnode, 2 * *nrnodes);
            zeroDouble(xbestsplit + idxByNnode, *nrnodes);
            zeroInt(nodeclass + idxByNnode, *nrnodes);
            zeroInt(varUsed, mdim);
            /* TODO: Put all sampling code into a function. */
            /* drawSample(sampsize, nsample, ); */
            if (stratify) {  /* stratified sampling */
                zeroInt(jin, nsample);
                zeroDouble(tclasspop, nclass);
                zeroDouble(win, nsample);
                if (replace) {  /* with replacement */
                    for (n = 0; n < nstrata; ++n) {
                        for (j = 0; j < sampsize[n]; ++j) {
                            ktmp = (int) (unif_rand() * strata_size[n]);
                            k = strata_idx[n][ktmp];
                            tclasspop[cl[k] - 1] += classwt[cl[k] - 1];
                            win[k] += classwt[cl[k] - 1];
                            jin[k] = 1;
                        }
                    }
                } else { /* stratified sampling w/o replacement */
                    /* re-initialize the index array */
                    zeroInt(strata_size, nstrata);
                    for (j = 0; j < nsample; ++j) {
                        strata_size[strata[j] - 1] ++;
                        strata_idx[strata[j] - 1][strata_size[strata[j] - 1] - 1] = j;
                    }
                    /* sampling without replacement */
                    for (n = 0; n < nstrata; ++n) {
                        last = strata_size[n] - 1;
                        for (j = 0; j < sampsize[n]; ++j) {
                            ktmp = (int) (unif_rand() * (last+1));
                            k = strata_idx[n][ktmp];
                            swapInt(strata_idx[n][last], strata_idx[n][ktmp]);
                            last--;
                            tclasspop[cl[k] - 1] += classwt[cl[k]-1];
                            win[k] += classwt[cl[k]-1];
                            jin[k] = 1;
                        }
                    }
                }
            } else {  /* unstratified sampling */
                anyEmpty = 0;
                ntry = 0;
                do {
                    zeroInt(jin, nsample);
                    zeroDouble(tclasspop, nclass);
                    zeroDouble(win, nsample);
                    if (replace) {
                        for (n = 0; n < *sampsize; ++n) {
                            k = unif_rand() * nsample;
                            tclasspop[cl[k] - 1] += classwt[cl[k]-1];
                            win[k] += classwt[cl[k]-1];
                            jin[k] = 1;
                        }
                    } else {
                        for (n = 0; n < nsample; ++n) nind[n] = n;
                        last = nsample - 1;
                        for (n = 0; n < *sampsize; ++n) {
                            ktmp = (int) (unif_rand() * (last+1));
                            k = nind[ktmp];
                            swapInt(nind[ktmp], nind[last]);
                            last--;
                            tclasspop[cl[k] - 1] += classwt[cl[k]-1];
                            win[k] += classwt[cl[k]-1];
                            jin[k] = 1;
                        }
                    }
                    /* check if any class is missing in the sample */
                    for (n = 0; n < nclass; ++n) {
                        if (tclasspop[n] == 0) anyEmpty = 1;
                    }
                    ntry++;
                } while (anyEmpty && ntry <= 10);
            }
            
            /* If need to keep indices of inbag data, do that here. */
            if (keepInbag) {
                for (n = 0; n < nsample0; ++n) {
                    inbag[n + idxByNsample] = jin[n];
                }
            }
            
            /* Copy the original a matrix back. */
            memcpy(a, at, sizeof(int) * mdim * nsample);
            modA(a, &nuse, nsample, mdim, cat, *maxcat, ncase, jin);
            
            #ifdef WIN64
            F77_CALL(_buildtree)
            #endif
                    
            #ifndef WIN64
            F77_CALL(buildtree)
            #endif        
            (a, b, cl, cat, maxcat, &mdim, &nsample,
                    &nclass,
                    treemap + 2*idxByNnode, bestvar + idxByNnode,
                    bestsplit, bestsplitnext, tgini,
                    nodestatus + idxByNnode, nodepop,
                    nodestart, classpop, tclasspop, tclasscat,
                    ta, nrnodes, idmove, &ndsize, ncase,
                    &mtry, varUsed, nodeclass + idxByNnode,
                    ndbigtree + jb, win, wr, wl, &mdim,
                    &nuse, mind);
            /* if the "tree" has only the root node, start over */
        } while (ndbigtree[jb] == 1);
        
        Xtranslate(x, mdim, *nrnodes, nsample, bestvar + idxByNnode,
                bestsplit, bestsplitnext, xbestsplit + idxByNnode,
                nodestatus + idxByNnode, cat, ndbigtree[jb]);
        
        /*  Get test set error */
        if (*testdat) {
            predictClassTree(xts, ntest, mdim, treemap + 2*idxByNnode,
                    nodestatus + idxByNnode, xbestsplit + idxByNnode,
                    bestvar + idxByNnode,
                    nodeclass + idxByNnode, ndbigtree[jb],
                    cat, nclass, jts, nodexts, *maxcat);
            TestSetError(countts, jts, clts, outclts, ntest, nclass, jb+1,
                    errts + jb*(nclass+1), labelts, nclts, cut);
        }
        
        /*  Get out-of-bag predictions and errors. */
        predictClassTree(x, nsample, mdim, treemap + 2*idxByNnode,
                nodestatus + idxByNnode, xbestsplit + idxByNnode,
                bestvar + idxByNnode,
                nodeclass + idxByNnode, ndbigtree[jb],
                cat, nclass, jtr, nodex, *maxcat);
        
        zeroInt(nout, nclass);
        noutall = 0;
        for (n = 0; n < nsample; ++n) {
            if (jin[n] == 0) {
                /* increment the OOB votes */
                counttr[n*nclass + jtr[n] - 1] ++;
                /* count number of times a case is OOB */
                out[n]++;
                /* count number of OOB cases in the current iteration.
                 * nout[n] is the number of OOB cases for the n-th class.
                 * noutall is the number of OOB cases overall. */
                nout[cl[n] - 1]++;
                noutall++;
            }
        }
        
        /* Compute out-of-bag error rate. */
        oob(nsample, nclass, jin, cl, jtr, jerr, counttr, out,
                errtr + jb*(nclass+1), outcl, cut);
        
        if ((jb+1) % trace == 0) {
            Rprintf("%5i: %6.2f%%", jb+1, 100.0*errtr[jb * (nclass+1)]);
            for (n = 1; n <= nclass; ++n) {
                Rprintf("%6.2f%%", 100.0 * errtr[n + jb * (nclass+1)]);
            }
            if (labelts) {
                Rprintf("| ");
                for (n = 0; n <= nclass; ++n) {
                    Rprintf("%6.2f%%", 100.0 * errts[n + jb * (nclass+1)]);
                }
            }
            Rprintf("\n");
            
            //R_CheckUserInterrupt();
        }
        
        /*  DO VARIABLE IMPORTANCE  */
        if (imp) {
            nrightall = 0;
            /* Count the number of correct prediction by the current tree
             * among the OOB samples, by class. */
            zeroInt(nright, nclass);
            for (n = 0; n < nsample; ++n) {
                /* out-of-bag and predicted correctly: */
                if (jin[n] == 0 && jtr[n] == cl[n]) {
                    nright[cl[n] - 1]++;
                    nrightall++;
                }
            }
            for (m = 0; m < mdim; ++m) {
                if (varUsed[m]) {
                    nrightimpall = 0;
                    zeroInt(nrightimp, nclass);
                    for (n = 0; n < nsample; ++n) tx[n] = x[m + n*mdim];
                    /* Permute the m-th variable. */
                    permuteOOB(m, x, jin, nsample, mdim);
                    /* Predict the modified data using the current tree. */
                    predictClassTree(x, nsample, mdim, treemap + 2*idxByNnode,
                            nodestatus + idxByNnode,
                            xbestsplit + idxByNnode,
                            bestvar + idxByNnode,
                            nodeclass + idxByNnode, ndbigtree[jb],
                            cat, nclass, jvr, nodex, *maxcat);
                    /* Count how often correct predictions are made with
                     * the modified data. */
                    for (n = 0; n < nsample; n++) {
                        if (jin[n] == 0) {
                            if (jvr[n] == cl[n]) {
                                nrightimp[cl[n] - 1]++;
                                nrightimpall++;
                            }
                            if (localImp && jvr[n] != jtr[n]) {
                                if (cl[n] == jvr[n]) {
                                    impmat[m + n*mdim] -= 1.0;
                                } else {
                                    impmat[m + n*mdim] += 1.0;
                                }
                            }
                        }
                        /* Restore the original data for that variable. */
                        x[m + n*mdim] = tx[n];
                    }
                    /* Accumulate decrease in proportions of correct
                     * predictions. */
                    for (n = 0; n < nclass; ++n) {
                        if (nout[n] > 0) {
                            imprt[m + n*mdim] +=
                                    ((double) (nright[n] - nrightimp[n])) /
                                    nout[n];
                            impsd[m + n*mdim] +=
                                    ((double) (nright[n] - nrightimp[n]) *
                                    (nright[n] - nrightimp[n])) / nout[n];
                        }
                    }
                    if (noutall > 0) {
                        imprt[m + nclass*mdim] +=
                                ((double)(nrightall - nrightimpall)) / noutall;
                        impsd[m + nclass*mdim] +=
                                ((double) (nrightall - nrightimpall) *
                                (nrightall - nrightimpall)) / noutall;
                    }
                }
            }
        }
        
        /*  DO PROXIMITIES */
        if (iprox) {
            computeProximity(prox, oobprox, nodex, jin, oobpair, near);
            /* proximity for test data */
            if (*testdat) {
                computeProximity(proxts, 0, nodexts, jin, oobpair, ntest);
                /* Compute proximity between testset and training set. */
                for (n = 0; n < ntest; ++n) {
                    for (k = 0; k < near; ++k) {
                        if (nodexts[n] == nodex[k])
                            proxts[n + ntest * (k+ntest)] += 1.0;
                    }
                }
            }
        }
        
        if (keepf) idxByNnode += *nrnodes;
        if (keepInbag) idxByNsample += nsample0;
    }
    PutRNGstate();
   
    
    /*  Final processing of variable importance. */
    for (m = 0; m < mdim; m++) tgini[m] /= Ntree;
      
    if (imp) {
        for (m = 0; m < mdim; ++m) {
            if (localImp) { /* casewise measures */
                for (n = 0; n < nsample; ++n) impmat[m + n*mdim] /= out[n];
            }
            /* class-specific measures */
            for (k = 0; k < nclass; ++k) {
                av = imprt[m + k*mdim] / Ntree;
                impsd[m + k*mdim] =
                        sqrt(((impsd[m + k*mdim] / Ntree) - av*av) / Ntree);
                imprt[m + k*mdim] = av;
                /* imprt[m + k*mdim] = (se <= 0.0) ? -1000.0 - av : av / se; */
            }
            /* overall measures */
            av = imprt[m + nclass*mdim] / Ntree;
            impsd[m + nclass*mdim] =
                    sqrt(((impsd[m + nclass*mdim] / Ntree) - av*av) / Ntree);
            imprt[m + nclass*mdim] = av;
            imprt[m + (nclass+1)*mdim] = tgini[m];
        }
    } else {
        for (m = 0; m < mdim; ++m) imprt[m] = tgini[m];
    }
   
    /*  PROXIMITY DATA ++++++++++++++++++++++++++++++++*/
    if (iprox) {
        for (n = 0; n < near; ++n) {
            for (k = n + 1; k < near; ++k) {
                prox[near*k + n] /= oobprox ?
                    (oobpair[near*k + n] > 0 ? oobpair[near*k + n] : 1) :
                        Ntree;
                        prox[near*n + k] = prox[near*k + n];
            }
            prox[near*n + n] = 1.0;
        }
        if (*testdat) {
            for (n = 0; n < ntest; ++n)
                for (k = 0; k < ntest + nsample; ++k)
                    proxts[ntest*k + n] /= Ntree;
        }
    }
    if (trace <= Ntree){
        printf("\nmdim %d, nclass %d, nrnodes %d, nsample %d, ntest %d\n", mdim, nclass, *nrnodes, nsample, ntest);
        printf("\noobprox %d, mdim %d, nsample0 %d, Ntree %d, mtry %d, mimp %d", oobprox, mdim, nsample0, Ntree, mtry, mimp);
        printf("\nstratify %d, replace %d",stratify,replace);
        printf("\n");
    }
    
    //frees up the memory
    free(tgini);free(wl);free(wr);free(classpop);free(tclasscat);
    free(tclasspop);free(tx);free(win);free(tp);free(out);
    free(bestsplitnext);free(bestsplit);free(nodepop);free(nodestart);free(jin);
    free(nodex);free(nodexts);free(ta);free(ncase);free(jerr);
    free(varUsed);free(jtr);free(jvr);free(classFreq);free(jts);
    free(idmove);free(at);free(a);free(b);free(mind);
    free(nright);free(nrightimp);free(nout);
    
    if (oobprox) {
        free(oobpair);
    }
    
    if (stratify) {
        free(strata_size);
        for (n = 0; n < nstrata; ++n) {
            free(strata_idx[n]);
        }
        free(strata_idx);        
    } else {
        if (replace)
            free(nind);
    }
    //printf("labelts %d\n",labelts);fflush(stdout);
    
    if (labelts) {
        free(nclts);        
    }
    //printf("stratify %d",stratify);fflush(stdout);
}
Пример #3
0
 void test() {
   throw makeA();
 }