Пример #1
0
TAC* generateCode(TREE* node)
{
  int i;
  TAC *code[MAX_CHILDREN], *generatedCode;

  if (!node)
    return NULL;

  for (i=0; i<MAX_CHILDREN; i++) {
    if (node->children[i])
      code[i] = generateCode(node->children[i]);
    else
      code[i] = 0;
  }

  switch (node->type) {
    case TREE_SYMBOL:
      return tacCreate(TAC_SYMBOL, node->symbol, 0, 0);
    case TREE_VAL_TRUE:
      return tacCreate(TAC_SYMBOL, gbl_value_true, 0, 0);
    case TREE_VAL_FALSE:
      return tacCreate(TAC_SYMBOL, gbl_value_false, 0, 0);
    case TREE_DECL_FUNC:
      return tacJoin3(
        tacCreate(TAC_BEGINFUN, 0, node->children[1]?node->children[1]->symbol:0, 0),
        code[3],
        tacCreate(TAC_ENDFUN, 0, node->children[1]?node->children[1]->symbol:0, 0)
      );
    case TREE_COMM_NOP:
      return tacCreate(TAC_NOP, 0, 0, 0);
    case TREE_COMM_IN:
      generatedCode = makeParameters(node, TAC_READ); // The code of the expressions in the parameters
      return generatedCode;
    case TREE_COMM_OUT:
      generatedCode = makeParameters(node, TAC_PRINT);
      return generatedCode; // The code of the expressions in the parameters
    case TREE_COMM_ASSIG:
      return tacJoin(code[1],
            tacCreate(TAC_MOVE, code[0]?code[0]->res:0, code[1]?code[1]->res:0, 0)
      );
    case TREE_COMM_ASSIG_VEC:
      return tacJoin3(code[1],
            code[2],
            tacCreate(TAC_STRIDX, code[0]?code[0]->res:0, code[1]?code[1]->res:0, code[2]?code[2]->res:0)
      );
    case TREE_COMM_IF_ELSE:
      return makeIfThenElse(code[0], code[1], code[2]);
    case TREE_COMM_WHILE:
      return makeWhile(code[0], code[1]);
    case TREE_COMM_RETURN:
      return tacJoin(code[0],
            tacCreate(TAC_RET, 0, code[0]?code[0]->res:0, 0));
    case TREE_EXPR_ARIT_FUNCALL:
      return tacJoin(makeParameters(node, TAC_ARG), // The code of the expressions in the parameters
            tacCreate(TAC_CALL, hash_make_temp(), code[0]?code[0]->res:0, 0));
    case TREE_EXPR_ARIT_VEC_READ:
      return tacJoin(code[1],
            tacCreate(TAC_LOADIDX, hash_make_temp(), code[0]?code[0]->res:0, code[1]?code[1]->res:0)
      );
      break;
    case TREE_EXPR_ARIT_ADD:
      return makeBinOp(TAC_ADD, code[0], code[1]);
    case TREE_EXPR_ARIT_SUB:
      return makeBinOp(TAC_SUB, code[0], code[1]);
    case TREE_EXPR_ARIT_MUL:
      return makeBinOp(TAC_MUL, code[0], code[1]);
    case TREE_EXPR_ARIT_DIV:
      return makeBinOp(TAC_DIV, code[0], code[1]);
    case TREE_EXPR_BOOL_LT:
    	return makeLogicOp(TAC_LTZ, code[0], code[1]);
    case TREE_EXPR_BOOL_GT:
    	return makeLogicOp(TAC_GTZ, code[0], code[1]);
    case TREE_EXPR_BOOL_LE:
    	return makeLogicOp(TAC_LEZ, code[0], code[1]);
    case TREE_EXPR_BOOL_GE:
    	return makeLogicOp(TAC_GEZ, code[0], code[1]);
    case TREE_EXPR_BOOL_EQ:
    	return makeLogicOp(TAC_EQZ, code[0], code[1]);
    case TREE_EXPR_BOOL_NE:
    	return makeLogicOp(TAC_ANEG, code[0],code[1]);
    case TREE_EXPR_BOOL_AND:
    	return makeLogicOp(TAC_AND, code[0], code[1]);
    case TREE_EXPR_BOOL_OR:
    	return makeLogicOp(TAC_OR, code[0], code[1]);
    default:
    break;
  }

  return tacJoin4(code[0], code[1], code[2], code[3]);
}
Пример #2
0
/** Parse with one token worth of look-ahead, return the expression object representing
    the syntax parsed.
    @param tok next token from the input.
    @param fp file subsequent tokens are being read from.
    @return the expression object constructed from the input.
*/
Expr *parse( char *tok, FILE *fp )
{
  // Create a literal token for anything that looks like a number.
  {
    long dummy;
    int pos;
    // See if the whole token parses as a long int.
    if ( sscanf( tok, "%ld%n", &dummy, &pos ) == 1 &&
         pos == strlen( tok ) ) {
      // Copy the literal to a dynamically allocated string, since makeLiteral wants
      // a string it can keep.
      char *str = (char *) malloc( strlen( tok ) + 1 );
      return makeLiteral( strcpy( str, tok ) );
    }
  }

  // Create a literal token for a quoted string, without the quotes.
  if ( tok[ 0 ] == '"' ) {
    // Same as above, make a dynamically allocated copy of the token that the literal
    // expression can keep as long as at wants to.
    int len = strlen( tok );
    char *str = (char *) malloc( len - 1 );
    strncpy( str, tok + 1, len - 2 );
    str[ len - 2 ] = '\0';
    return makeLiteral( str );
  }

  // Handle compound statements
  if ( strcmp( tok, "{" ) == 0 ) {
    int len = 0;
    int cap = INITIAL_CAPACITY;
    Expr **eList = (Expr **) malloc( cap * sizeof( Expr * ) );

    // Keep parsing subexpressions until we hit the closing curly bracket.
    while ( strcmp( expectToken( tok, fp ), "}" ) != 0 ) {
      if ( len >= cap )
        eList = (Expr **) realloc( eList, ( cap *= 2 ) * sizeof( Expr * ) );
      eList[ len++ ] = parse( tok, fp );
    }

    return makeCompound( eList, len );
  }

  // Handle language operators (reserved words)

  if ( strcmp( tok, "print" ) == 0 ) {
    // Parse the one argument to print, and create a print expression.
    Expr *arg = parse( expectToken( tok, fp ), fp );
    return makePrint( arg );
  }
  
  
  if ( strcmp( tok, "set" ) == 0 ) {
    // Parse the two operands, then make a set expression with them.
    char *str = expectToken( tok, fp );
    int len = strlen( str );
    char *name = (char *) malloc( len + 1 );
    strcpy( name, str );
    name[ len ] = '\0';
    if ( !isalpha(name[0]) || strlen( name ) > MAX_VAR || strchr( name, LEFT_BRACKET ) || strchr( name, RIGHT_BRACKET ) || strchr( name, POUND ) ) {
      // Complain if we can't make sense of the variable.
      fprintf( stderr, "line %d: invalid variable name \"%s\"\n", linesRead(), name );
      exit( EXIT_FAILURE );
    }
    Expr *expr = parse( expectToken( tok, fp ), fp );
    Expr *set = makeSet
    ( name, expr );
    free(name);
    return set;
  }
  
  if ( strcmp( tok, "add" ) == 0 ) {
    // Parse the two operands, then make an add expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeAdd( op1, op2 );
  }
  
  if ( strcmp( tok, "sub" ) == 0 ) {
    // Parse the two operands, then make a sub expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeSub( op1, op2 );
  }
  
  if ( strcmp( tok, "mul" ) == 0 ) {
    // Parse the two operands, then make a mul expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeMul( op1, op2 );
  }
  
  if ( strcmp( tok, "div" ) == 0 ) {
    // Parse the two operands, then make a div expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeDiv
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "equal" ) == 0 ) {
    // Parse the two operands, then make an equal expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeEqual
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "less" ) == 0 ) {
    // Parse the two operands, then make a less expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeLess
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "not" ) == 0 ) {
    // Parse the operand, then make a not expression with it.
    Expr *op = parse( expectToken( tok, fp ), fp );
    return makeNot
    ( op );
  }
  
  if ( strcmp( tok, "and" ) == 0 ) {
    // Parse the two operands, then make an and expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeAnd
    ( op1, op2 );
  }
      
  if ( strcmp( tok, "or" ) == 0 ) {
    // Parse the two operands, then make an or expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeOr
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "if" ) == 0 ) {
    // Parse the two operands, then make an if expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeIf
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "while" ) == 0 ) {
    // Parse the two operands, then make a while expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeWhile
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "concat" ) == 0 ) {
    // Parse the two operands, then make a concatenation expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    return makeConcat
    ( op1, op2 );
  }
  
  if ( strcmp( tok, "substr" ) == 0 ) {
    // Parse the three operands, then make a substring expression with them.
    Expr *op1 = parse( expectToken( tok, fp ), fp );
    Expr *op2 = parse( expectToken( tok, fp ), fp );
    Expr *op3 = parse( expectToken( tok, fp ), fp );
    return makeSubstr
    ( op1, op2, op3 );
  }

  
  // Handle variables
  if ( isalpha(tok[0]) && strlen( tok ) <= MAX_VAR && !strchr( tok, LEFT_BRACKET ) && !strchr( tok, RIGHT_BRACKET ) && !strchr( tok, POUND ) ) {
    // Parse the variable name and make a variable expression.
    char *str = tok;
    int len = strlen( str );
    char *name = (char *) malloc( len + 1 );
    strcpy( name, str );
    name[ len ] = '\0';
    Expr *var = makeVariable( name );
    free(name);
    return var;
  }
  
  // Complain if we can't make sense of the token.
  fprintf( stderr, "line %d: invalid token \"%s\"\n", linesRead(), tok );
  exit( EXIT_FAILURE );
  
  // Never reached.
  return NULL;
}