Пример #1
0
void matrixDMConstraintWeights(pulsar *psr){
		int i,j,k;
		int nobs=0;
		int nfit=psr->dmoffsDMnum+psr->dmoffsCMnum;
		int nDM=psr->dmoffsDMnum;

		double x;


		if (psr->param[param_dmmodel].fitFlag[0]==1)
		  {
		    logdbg("Getting DM constraints for %s",psr->name);
		    // find out how many obs we have.
		    for(i=0; i < psr->nobs; i++){
		      if (psr->obsn[i].deleted==0)
			{
			  char okay=1;
			  /* Check for START and FINISH flags */
			  if (psr->param[param_start].paramSet[0]==1 && psr->param[param_start].fitFlag[0]==1 &&
			      (psr->param[param_start].val[0] > psr->obsn[i].sat))
			    okay=0;
			  if (psr->param[param_finish].paramSet[0]==1 && psr->param[param_finish].fitFlag[0]==1 &&
			      psr->param[param_finish].val[0] < psr->obsn[i].sat)
			    okay=0;
			  if (okay==1)
			    {
			      nobs++;
			    }
			}
		    }
		// originally was sizeof(double*)*nobs.
		double ** designMatrix=(double**)malloc_uinv(nobs);
		double *e=(double*)malloc(sizeof(double)*nobs);

		nobs=0;
		//		printf("c0: %d %s\n",psr->nobs,psr->name);
		for(i=0; i < psr->nobs; i++){
		  // Check for "ok" and start/finish coppied from dofit.
		  // Needs to be the same so that the weighting is the same as the fit,
		  // but in practice probably doesn't matter.
		  //		  printf("c1 checking: %d %d %s\n",psr->obsn[i].deleted,psr->nobs,psr->name);
		  if (psr->obsn[i].deleted==0)
		    {
		      char okay=1;
		      
		      /* Check for START and FINISH flags */
		      if (psr->param[param_start].paramSet[0]==1 && psr->param[param_start].fitFlag[0]==1 &&
			  (psr->param[param_start].val[0] > psr->obsn[i].sat))
			okay=0;
		      if (psr->param[param_finish].paramSet[0]==1 && psr->param[param_finish].fitFlag[0]==1 &&
			  psr->param[param_finish].val[0] < psr->obsn[i].sat)
			okay=0;

		      //		  printf("c2 checking: %d\n",okay);
		      if (okay==1)
			{
			  x   = (double)(psr->obsn[i].bbat-psr->param[param_pepoch].val[0]);
			  double sig=psr->obsn[i].toaErr*1e-6;
			  double dmf = 1.0/(DM_CONST*powl(psr->obsn[i].freqSSB/1.0e6,2));
			  for (k=0; k < nfit;k++){
			    
			    if(k<nDM)
			      designMatrix[nobs][k]=dmf*getParamDeriv(psr,i,x,param_dmmodel,k)/sig;
			    else
			      designMatrix[nobs][k]=getParamDeriv(psr,i,x,param_dmmodel,k)/sig;
			  }
			  nobs++;
			  
			}
		    }
		} 
		printf("Calling TKleastSquares %d %d\n",nobs,nfit); fflush(stdout);
		TKleastSquares(NULL,NULL,designMatrix,designMatrix,nobs,nfit,1e-20,0,NULL,e,NULL);
		printf("Returning from calling TKleastSquares\n"); fflush(stdout);
		double sum_wDM=0;
		double sum_wCM=0;
		for (i=0;i<nfit;i++)
		  {
		    double sum=0.0;
		    if(i < nDM){
		      psr->dmoffsDM_weight[i]=1.0/e[i]/e[i];
		      printf("constraints.C here: %d %g\n",i,e[i]);
		      sum_wDM+=psr->dmoffsDM_weight[i];
		    } else {
		      psr->dmoffsCM_weight[i-nDM]=1.0/e[i]/e[i];
		      sum_wCM+=psr->dmoffsCM_weight[i-nDM];
		    }
		    
		    
		    
		  }
		//normalise the weights
		for (i=0;i<psr->dmoffsDMnum;i++)
		  psr->dmoffsDM_weight[i]/=sum_wDM;
		for (i=0;i<psr->dmoffsCMnum;i++)
		  psr->dmoffsCM_weight[i]/=sum_wCM;
		
		// free everything .
		free_uinv(designMatrix);
		free(e);
		  }
}
Пример #2
0
void t2Fit(pulsar *psr,unsigned int npsr, const char *covarFuncFile){

    // if we have a model for the data covariance function, then use it.
    // Otherwise we we will just whiten using the error bars.
    bool haveCovar = (covarFuncFile!=NULL && strcmp(covarFuncFile,"NULL"));

    /**
     * Find out if there are any global parameters and what they are...
     */
    FitInfo global_fitinfo;
    t2Fit_fillGlobalFitInfo(psr,npsr,global_fitinfo);
    logdbg("Nglobal parameters = %d",global_fitinfo.nParams);

    // If we had any global parameters (or constraints) then we need to do a global fit
    // otherwise we can do a fit for each pulsar individually, which is quicker
    // and saves memory.
    bool doGlobalFit = (global_fitinfo.nParams > 0) || (global_fitinfo.nConstraints > 0);

    unsigned long long totalGlobalData=0; // the number of data points across all pulsars
    unsigned int gParams=global_fitinfo.nParams; // the number of global fit parameters
    unsigned int gConstraints=global_fitinfo.nConstraints; // the number of global constraints

    unsigned long long totalGlobalParams=gParams;
    unsigned long long totalGlobalConstraints=gConstraints;

    double** gUinvs[MAX_PSR]; // whitening matrix for each pulsar
    double* gX[MAX_PSR]; // "x" values for each pulsar
    double* gY[MAX_PSR]; // "y" values for each pulsar
    double* gW[MAX_PSR]; // whitened "y" values for each pulsar
    double** gDM[MAX_PSR]; // design matrix for each pulsar
    double** gWDM[MAX_PSR]; // whitened design matrix for each pulsar
    double** gCM[MAX_PSR]; // constraints matrix for each pulsar
    unsigned int gNdata[MAX_PSR]; // number of data points for each pulsar (size of x and y)

    logmsg("NEW fit routine. GlobalFit=%s",doGlobalFit ? "true" : "false");

    /**
     * However we are going to do the fit, we want to loop over all the pulsars
     * to get the input data and design matricies etc.
     */
    for (size_t ipsr=0; ipsr < npsr; ipsr++) {

        double *psr_x   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_white_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_e   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        int *psr_toaidx = (int*)malloc(sizeof(int)*psr[ipsr].nobs); // mapping from fit data to observation number
        double** uinv; // the whitening matrix.

        /**
         * Working out which data contributes to the fit is done in this routine.
         * Basically gets values for all observations within START and FINISH which are
         * not deleted.
         *
         * returns the number of data points.
         */
        const unsigned int psr_ndata = t2Fit_getFitData(psr+ipsr,psr_x,psr_y,psr_e,psr_toaidx);
        assert(psr_ndata > 0u);
        psr[ipsr].nFit = psr_ndata; // pulsar.nFit is the number of data points used in the fit.

        /**
         * Now we work out which parameters are being fit for, how many parameters,
         * and determine the gradient functions for the design matrix and the update functions
         * which update the pulsar struct.
         */
        t2Fit_fillFitInfo(psr+ipsr,psr[ipsr].fitinfo,global_fitinfo);


        /**
         * The whitening matrix behaves diferently if we have a covariance matrix.
         * If we have a covariance matrix, uinv is an ndata x ndata triangular matrix.
         * Otherwise, it only has diagonal elements, so we efficiently store it as 
         * a 1-d ndata array.
         */
        if (haveCovar) {
            // ToAs must be sorted for covariance function code
            sortToAs(psr+ipsr);

            // malloc_uinv does a blas-compatible allocation of a 2-d array.
            uinv = malloc_uinv(psr_ndata);
            psr[ipsr].fitMode=1; // Note: forcing this to 1 as the Cholesky fit is a weighted fit
            logmsg("Doing a FULL COVARIANCE MATRIX fit");
        } else {
            // Here the whitening matrix is just a diagonal
            // weighting matrix. Store diagonal matrix as 1xN
            // so that types match later.
            uinv=malloc_blas(1,psr_ndata); 
            if(psr[ipsr].fitMode == 0){
                // if we are doing an unweighted fit then we should set the errors to 1.0
                // to give uniform weighting.
                logdbg("Doing an UNWEIGHTED fit");
                for (unsigned int i=0; i < psr_ndata; i++){
                    psr_e[i]=1.0;
                }
            } else {
                logdbg("Doing a WEIGHTED fit");
            }
        }
        assert(uinv!=NULL);

        /**
         * Now we form the whitening matrix, uinv.
         * Note that getCholeskyMatrix() is clever enough to see that we 
         * have created a 1 x ndata matrix if we have only diagonal elements.
         */
        getCholeskyMatrix(uinv,covarFuncFile,psr+ipsr,
                psr_x,psr_y,psr_e,
                psr_ndata,0,psr_toaidx);

        logtchk("got Uinv");

        // define some convinience variables
        const unsigned nParams=psr[ipsr].fitinfo.nParams;
        const unsigned nConstraints=psr[ipsr].fitinfo.nConstraints;


        /**
         * The design matrix is the matrix of gradients for the least-squares.
         * If the design matrix is M, parameters p, and data d, we are solving
         * M.p = d
         * It is ndata x nparams in size. We also allocate the whitened DM here.
         */
        double** designMatrix = malloc_blas(psr_ndata,nParams);
        double** white_designMatrix = malloc_blas(psr_ndata,nParams);
        for (unsigned int idata =0; idata < psr_ndata; ++idata){
            // t2Fit_buildDesignMatrix is a replacement for the old FITfuncs routine.
            // it fills one row of the design matrix.
            t2Fit_buildDesignMatrix(psr,ipsr,psr_x[idata], psr_toaidx[idata], designMatrix[idata]);
        }


        logtchk("made design matrix");

        /**
         * The constraints matrix is similar to the design matrix, but here we are solving:
         * B.p = 0
         * Where B is the constraints matrix and p is the parameters. we solve both this
         * and the DM equation set simultaniously. TKleastSquares will do this for us.
         *
         * If there are no constraints we leave it as NULL, which is detected in TKfit as
         * no constraints anyway.
         */
        double** constraintsMatrix =NULL;
        if(psr[ipsr].fitinfo.nConstraints > 0){

            computeConstraintWeights(psr+ipsr);
            constraintsMatrix = malloc_blas(nConstraints,nParams);
            for (unsigned int iconstraint =0; iconstraint < nConstraints; ++iconstraint){
                // similar to t2Fit_buildDesignMatrix, t2Fit_buildConstraintsMatrix
                // creates one row of the constraints matrix.
                t2Fit_buildConstraintsMatrix(psr, ipsr, iconstraint, constraintsMatrix[iconstraint]);
            }
        }

        logtchk("made constraints matrix");

        /**
         * Now we multiply the design matrix and the data vector by the whitening matrix.
         * If we just have variances (uinv is diagonal) then we do it traditionally, otherwise
         * we use TKmultMatrix as this is usually backed by LAPACK and so is fast :)
         */
        if(haveCovar){
            TKmultMatrixVec(uinv,psr_y,psr_ndata,psr_ndata,psr_white_y);
            TKmultMatrix_sq(uinv,designMatrix,psr_ndata,nParams,white_designMatrix);
        } else {
            for(unsigned i=0;i<psr_ndata;++i){
                psr_white_y[i]=psr_y[i]*uinv[0][i];
                for(unsigned j=0;j<nParams;++j){
                    white_designMatrix[i][j] = designMatrix[i][j]*uinv[0][i];
                }
            }
        }

        free_blas(uinv);
        free(psr_e);
        free(psr_toaidx);

        logtchk("done whitening");
        /*
         * Now - if we are going to do a global fit, we store all the above for later
         *       otherwise
         */
        if (doGlobalFit){
            // we are going to do a global fit, so need to store the values for later
            gX[ipsr] = psr_x;
            gY[ipsr] = psr_y;
            gW[ipsr] = psr_white_y;
            gDM[ipsr] = designMatrix;
            gWDM[ipsr] = white_designMatrix;
            gCM[ipsr] = constraintsMatrix;
            gNdata[ipsr] = psr_ndata;
            totalGlobalData += psr_ndata;
            totalGlobalParams += nParams - gParams;
            totalGlobalConstraints += nConstraints - gConstraints;
        } else {
            // NOT GLOBAL
            // so do one fit at a time...

            double chisq; // the post-fit chi-squared

            // allocate memory for the output of TKleastSquares
            double* parameterEstimates = (double*)malloc(sizeof(double)*nParams);
            double* errorEstimates = (double*)malloc(sizeof(double)*nParams);

            /*
             * Call TKleastSquares, or in fact, TKrobustConstrainedLeastSquares,
             * since we might want robust fitting and/or constraints/
             *
             * The arguments here are explained in TKfit.C
             *
             */
            chisq = TKrobustConstrainedLeastSquares(psr_y,psr_white_y,
                    designMatrix,white_designMatrix,constraintsMatrix,
                    psr_ndata,nParams,nConstraints,
                    T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[ipsr].covar,
                    psr[ipsr].robust);

            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = psr_ndata + nConstraints - nParams;

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");
            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,parameterEstimates,errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");

            /*
             * If we are not doing a global fit, we can clean up the memory for this pulsar.
             * Might make a difference for very large datasets.
             */
            logdbg("Free fit memory");
            free(parameterEstimates);
            free(errorEstimates);
            free_blas(designMatrix);
            free_blas(white_designMatrix);
            if (constraintsMatrix) free_blas(constraintsMatrix);
            free(psr_x);
            free(psr_y);
            free(psr_white_y);
        }
    }
    if (doGlobalFit){

        const unsigned int nobs = totalGlobalData;
        double** designMatrix = malloc_blas(nobs,totalGlobalParams);
        double** white_designMatrix = malloc_blas(nobs,totalGlobalParams);

        double** constraintsMatrix = malloc_blas(totalGlobalConstraints,totalGlobalParams);

        double *y   = (double*)malloc(sizeof(double)*nobs);
        double *white_y   = (double*)malloc(sizeof(double)*nobs);

        unsigned int off_f = gParams; // leave space for globals
        unsigned int off_r = 0;
        unsigned int off_c = gConstraints;

        logdbg("Building matricies for global fit... npsr=%u",npsr);
        logdbg("nobs=%u, totalGlobalParams=%u, totalGlobalConstraints=%u",nobs,totalGlobalParams,totalGlobalConstraints);
        logwarn("This mode is not supported yet!!!");


        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            unsigned int nLocal = psr[ipsr].fitinfo.nParams-gParams;
            logdbg("ipsr=%u, off_r = %u, off_c=%u, off_f=%u, nlocal=%u",
                    ipsr,off_r,off_c,off_f,nLocal);

            // the fit parameters
            for(unsigned int i=0; i < gNdata[ipsr]; i++){

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    if(ipsr==0 && i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",g,"global",label_str[global_fitinfo.paramIndex[g]],global_fitinfo.paramCounters[g]);
                    }
                    designMatrix[i+off_r][g] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][g] = gWDM[ipsr][i][j];
                }

                for(unsigned int j=0; j < nLocal; j++){
                    if(i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",j+off_f,psr[ipsr].name,label_str[psr[ipsr].fitinfo.paramIndex[j]],psr[ipsr].fitinfo.paramCounters[j]);
                    }
                    designMatrix[i+off_r][j+off_f] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][j+off_f] = gWDM[ipsr][i][j];
                }
            }
            // the data
            for(unsigned int i=0; i < gNdata[ipsr]; ++i){
                y[i+off_r] = gY[ipsr][i];
                white_y[i+off_r] = gW[ipsr][i];
            }

            for(unsigned int i=0; i < psr[ipsr].fitinfo.nConstraints; i++){
                for(unsigned int j=0; j < nLocal; j++){
                    constraintsMatrix[i+off_c][j+off_f] = gCM[ipsr][i][j];
                }

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    constraintsMatrix[i+off_c][g] = gCM[ipsr][i][j];
                }

            }

            off_r += gNdata[ipsr];
            off_f += nLocal;
            off_c += psr[ipsr].fitinfo.nConstraints;

            free(gY[ipsr]);
            free(gW[ipsr]);
            free_blas(gDM[ipsr]);
            if (gCM[ipsr]) free_blas(gCM[ipsr]);
            free_blas(gWDM[ipsr]);
        }

        double chisq; // the post-fit chi-squared

        double* parameterEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        double* errorEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        chisq = TKrobustConstrainedLeastSquares(y,white_y,
                designMatrix,white_designMatrix,constraintsMatrix,
                nobs,totalGlobalParams,totalGlobalConstraints,
                T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[0].covar,
                psr[0].robust);
        // for now the CVM ends up in psr[0].covar.

        int off_p = gParams;
        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = nobs + totalGlobalConstraints - totalGlobalParams;

            

            double* psr_parameterEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            double* psr_errorEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            const unsigned np = psr[ipsr].fitinfo.nParams-gParams;

            /* extract the fit output for the individual pulsars. 
             * I.e. detangle the global fit
             * Notice: Globals go at the end of the individual pulsar arrays.
             */
            for (unsigned i = 0; i < np; ++i){
                psr_parameterEstimates[i] = parameterEstimates[off_p];
                psr_errorEstimates[i] = errorEstimates[off_p];
                ++off_p;
            }

            for (unsigned i = 0; i < gParams; ++i){
                psr_parameterEstimates[i+np] = parameterEstimates[i];
                psr_errorEstimates[i] = errorEstimates[off_p];
            }

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");

            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,psr_parameterEstimates,psr_errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");
            free(psr_parameterEstimates);
            free(psr_errorEstimates);
        }
        free(parameterEstimates);
        free(errorEstimates);
        free(white_y);
        free(y);
        free_blas(designMatrix);
        free_blas(white_designMatrix);
        free_blas(constraintsMatrix);


    }
}
Пример #3
0
/**
 * Do the least squares using QR decomposition
 */
double accel_lsq_qr(double** A, double* data, double* oparam, int ndata, int nparam, double** Ocvm){
    int nhrs=1;
    int nwork = -1;
    int info=0;
    int i,j;
    double iwork;

    // workspace query - works out optimal size for work array
    F77_dgels("T", &nparam, &ndata, &nhrs, A[0], &nparam, data, &ndata, &iwork, &nwork, &info);
    nwork=(int)iwork;
    logdbg("nwork = %d (%lf)",nwork,iwork);
    double* work = static_cast<double*>(malloc(sizeof(double)*nwork));
    logdbg("accel_lsq_qr ndata=%d nparam=%d",ndata,nparam);

    // as usual we prentend that the matrix is transposed to deal with C->fortran conversion
    // degls does a least-squares using QR decomposition. Fast and robust.
    F77_dgels("T", &nparam, &ndata, &nhrs, A[0], &nparam, data, &ndata, work, &nwork, &info);

    free(work);
    // if info is not zero then the fit failed.
    if(info!=0){
        logerr("Error in lapack DEGLS. INFO=%d See full logs for explanation.",info);
        logmsg("");
        logmsg("From: http://www.netlib.org/lapack/explore-html/d8/dde/dgels_8f.html");
        logmsg("INFO is INTEGER");
        logmsg("  = 0:  successful exit");
        logmsg("  < 0:  if INFO = -i, the i-th argument had an illegal value");
        logmsg("  > 0:  if INFO =  i, the i-th diagonal element of the");
        logmsg("        triangular factor of A is zero, so that A does not have");
        logmsg("        full rank; the least squares solution could not be");
        logmsg("        computed.");
        logmsg("");
        if(info > 0){
            logerr("It appears that you are fitting for a 'bad' parameter - E.g A jump on a non-existant flag.");
            logmsg(" TEMPO2 will NOT attempt to deal with this!");
            logmsg("Cannot continue. Abort fit.");
            return -1;
        } else {
            logmsg("Cannot continue. Abort fit.");
            return -1;
        }
    }
    assert(info==0);

    if(oparam!=NULL){
        // copy out the output parameters, which are written into the "data" array.
        memcpy(oparam,data,sizeof(double)*nparam);
    }
    double chisq=0;
    for( i = nparam; i < ndata; i++ ) chisq += data[i] * data[i];
    if (Ocvm != NULL){

        int n=nparam;


        // packed triangular matrix.
        double* _t=(double*)malloc(sizeof(double)*(n*(n+1))/2);

        // This code taken from the LAPACK documentation
        // to pack a triangular matrix.

        // we want the upper triangular matrix part of A.
        //
        // pack upper triangle like (r,c)
        // (1,1) (1,2) (2,2)
        //  i+(2n-j)(j-1)/2
        int jc=0;
        for (j=0;j<n;j++){ // cols
            for (i=0; i <=j; i++) { // rows
                _t[jc] = A[i][j]; // A came from fortran, so is in [col][row] ordering
                // BUT - we have transposed A, so we have to un-transpose it
                ++jc;
            }
        }

        logdbg("Inverting...");
        F77_dtptri("U","N",&n,_t,&i);
        if(i!=0){
            logerr("Error in lapack DTPTRI. INFO=%d",i);
            logmsg("From: http://www.netlib.org/lapack/explore-html/d8/d05/dtptri_8f.html");
            logmsg("INFO is INTEGER");
            logmsg("  = 0:  successful exit");
            logmsg("  < 0:  if INFO = -i, the i-th argument had an illegal value");
            logmsg("  > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular");
            logmsg("  matrix is singular and its inverse can not be computed.");
            logmsg("Cannot continue - abort fit");
            return -1;
        }

        double **Rinv = malloc_uinv(n);

        for (j=0;j<n;j++){ // cols
            for (i=0;i<n;i++){ //rows
                Ocvm[i][j]=0;
            }
        }
        // Unpack the triangular matrix using reverse of above
        // We will put it in fortran, so continue to use [col][row] order
        jc=0;
        for (j=0;j<n;j++){ // cols
            for (i=0; i <=j; i++) { // rows
                Rinv[j][i] = _t[jc];
                Ocvm[j][i] = _t[jc];
                ++jc;
            }
        }

        free(_t);

        double a=chisq/(double)(ndata-nparam);
        // (X^T X)^-1 = Rinv.Rinv^T gives parameter covariance matrix
        // Note that Ocvm is input and output
        // and that covar matrix will be transposed, but it is
        // symetric so it doesn't matter!
        F77_dtrmm(  "R",  "U",    "T",  "N", &n, &n,    &a, *Rinv,  &n, *Ocvm, &n);
        // DTRMM ( SIDE, UPLO, TRANSA, DIAG,  M,  N, ALPHA,  A   , LDA,     B, LDB )

        if(debugFlag){
            for(i=0;i<n;i++){
                for(j=0;j<n;j++){
                    logdbg("COVAR %d %d %lg",i,j,Ocvm[i][j]);
                }
            }
        }

        free_uinv(Rinv);
    }


    return chisq;
}