Пример #1
0
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md,
                 const uint8_t *pass, uint8_t *key, uint8_t *iv)
{
    size_t datal;
    datal = strlen((const char *)pass);
#if defined(USE_CRYPTO_OPENSSL)
    return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv);
#elif defined(USE_CRYPTO_POLARSSL)
    md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(md_context_t));
    if (md_init_ctx(&c, md)) {
        return 0;
    }
    addmd = 0;
    mds   = md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (md_update(&c, pass, datal)) {
                break;
            }
            if (md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            md_free_ctx(&c);
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    md_free_ctx(&c);
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#elif defined(USE_CRYPTO_MBEDTLS)
/*
 *
 * Generic message digest context.
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const mbedtls_md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 *
 *   HMAC part of the context
 *  void *hmac_ctx;
 * } mbedtls_md_context_t; // mbedtls 2.0.0
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 * } md_context_t; //polarssl 1.3
 *
 */
    // NOTE: different struct body, initialize new param hmac 0 to disable HMAC
    mbedtls_md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(mbedtls_md_context_t));
    // XXX: md_init_ctx superseded by mbedtls_md_setup() in 2.0.0
    // new param hmac      0 to save some memory if HMAC will not be used,
    //                     non-zero is HMAC is going to be used with this context.
    if (mbedtls_md_setup(&c, md, 1)) {
        return 0;
    }
    addmd = 0;
    mds   = mbedtls_md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (mbedtls_md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (mbedtls_md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (mbedtls_md_update(&c, pass, datal)) {
                break;
            }
            if (mbedtls_md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            mbedtls_md_free(&c); // md_free_ctx deprecated, Use mbedtls_md_free() instead
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    mbedtls_md_free(&c); // NOTE: md_free_ctx deprecated, Use mbedtls_md_free() instead
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#endif
}
Пример #2
0
int main( int argc, char *argv[] )
{
    int ret, i;
    const md_info_t *md_info;
    md_context_t md_ctx;

    memset( &md_ctx, 0, sizeof( md_context_t ));

    if( argc == 1 )
    {
        const int *list;

        printf( "print mode:  generic_sum <md> <file> <file> ...\n" );
        printf( "check mode:  generic_sum <md> -c <checksum file>\n" );

        printf( "\nAvailable message digests:\n" );
        list = md_list();
        while( *list )
        {
            md_info = md_info_from_type( *list );
            printf( "  %s\n", md_info->name );
            list++;
        }

#if defined(_WIN32)
        printf( "\n  Press Enter to exit this program.\n" );
        fflush( stdout ); getchar();
#endif

        return( 1 );
    }

    /*
     * Read the MD from the command line
     */
    md_info = md_info_from_string( argv[1] );
    if( md_info == NULL )
    {
        fprintf( stderr, "Message Digest '%s' not found\n", argv[1] );
        return( 1 );
    }
    if( md_init_ctx( &md_ctx, md_info) )
    {
        fprintf( stderr, "Failed to initialize context.\n" );
        return( 1 );
    }

    ret = 0;
    if( argc == 4 && strcmp( "-c", argv[2] ) == 0 )
    {
        ret |= generic_check( md_info, argv[3] );
        goto exit;
    }

    for( i = 2; i < argc; i++ )
        ret |= generic_print( md_info, argv[i] );

exit:
    md_free_ctx( &md_ctx );

    return( ret );
}
Пример #3
0
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
*/
int rsa_rsassa_pss_sign( rsa_context *ctx,
                         int (*f_rng)(void *, unsigned char *, size_t),
                         void *p_rng,
                         int mode,
                         int hash_id,
                         unsigned int hashlen,
                         const unsigned char *hash,
                         unsigned char *sig )
{
    size_t olen;
    unsigned char *p = sig;
    unsigned char salt[POLARSSL_MD_MAX_SIZE];
    unsigned int slen, hlen, offset = 0;
    int ret;
    size_t msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    olen = ctx->len;

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = hlen;

    if( olen < hlen + slen + 2 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    memset( sig, 0, olen );

    msb = mpi_msb( &ctx->N ) - 1;

    // Generate salt of length slen
    //
    if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );

    // Note: EMSA-PSS encoding is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;
    p += olen - hlen * 2 - 2;
    *p++ = 0x01;
    memcpy( p, salt, slen );
    p += slen;

    md_init_ctx( &md_ctx, md_info );

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, p, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, salt, slen );
    md_finish( &md_ctx, p );

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
        offset = 1;

    // maskedDB: Apply dbMask to DB
    //
    mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );

    md_free_ctx( &md_ctx );

    msb = mpi_msb( &ctx->N ) - 1;
    sig[0] &= 0xFF >> ( olen * 8 - msb );

    p += hlen;
    *p++ = 0xBC;

    return( ( mode == RSA_PUBLIC )
            ? rsa_public( ctx, sig, sig )
            : rsa_private( ctx, sig, sig ) );
}
Пример #4
0
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
*/
int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
                            int mode,
                            const unsigned char *label, size_t label_len,
                            size_t *olen,
                            const unsigned char *input,
                            unsigned char *output,
                            size_t output_max_len )
{
    int ret;
    size_t ilen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char lhash[POLARSSL_MD_MAX_SIZE];
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ilen = ctx->len;

    if( ilen < 16 || ilen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public( ctx, input, buf )
          : rsa_private( ctx, input, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( *p++ != 0 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );

    md_init_ctx( &md_ctx, md_info );

    // Generate lHash
    //
    md( md_info, label, label_len, lhash );

    // seed: Apply seedMask to maskedSeed
    //
    mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
               &md_ctx );

    // DB: Apply dbMask to maskedDB
    //
    mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
               &md_ctx );

    p += hlen;
    md_free_ctx( &md_ctx );

    // Check validity
    //
    if( memcmp( lhash, p, hlen ) != 0 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    p += hlen;

    while( *p == 0 && p < buf + ilen )
        p++;

    if( p == buf + ilen )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if( *p++ != 0x01 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if (ilen - (p - buf) > output_max_len)
        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );

    *olen = ilen - (p - buf);
    memcpy( output, p, *olen );

    return( 0 );
}
Пример #5
0
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
*/
int rsa_rsaes_oaep_encrypt( rsa_context *ctx,
                            int (*f_rng)(void *, unsigned char *, size_t),
                            void *p_rng,
                            int mode,
                            const unsigned char *label, size_t label_len,
                            size_t ilen,
                            const unsigned char *input,
                            unsigned char *output )
{
    size_t olen;
    int ret;
    unsigned char *p = output;
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_info = md_info_from_type( ctx->hash_id );

    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    olen = ctx->len;
    hlen = md_get_size( md_info );

    if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    memset( output, 0, olen );

    *p++ = 0;

    // Generate a random octet string seed
    //
    if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );

    p += hlen;

    // Construct DB
    //
    md( md_info, label, label_len, p );
    p += hlen;
    p += olen - 2 * hlen - 2 - ilen;
    *p++ = 1;
    memcpy( p, input, ilen );

    md_init_ctx( &md_ctx, md_info );

    // maskedDB: Apply dbMask to DB
    //
    mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
               &md_ctx );

    // maskedSeed: Apply seedMask to seed
    //
    mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
               &md_ctx );

    md_free_ctx( &md_ctx );

    return( ( mode == RSA_PUBLIC )
            ? rsa_public( ctx, output, output )
            : rsa_private( ctx, output, output ) );
}
Пример #6
0
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
int rsa_rsassa_pss_verify( rsa_context *ctx,
                           int mode,
                           int hash_id,
                           unsigned int hashlen,
                           const unsigned char *hash,
                           unsigned char *sig )
{
    int ret;
    size_t siglen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char result[POLARSSL_MD_MAX_SIZE];
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    siglen = ctx->len;

    if( siglen < 16 || siglen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public( ctx, sig, buf )
          : rsa_private( ctx, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( buf[siglen - 1] != 0xBC )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = siglen - hlen - 1;

    memset( zeros, 0, 8 );

    // Note: EMSA-PSS verification is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
    {
        p++;
        siglen -= 1;
    }
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_init_ctx( &md_ctx, md_info );

    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

    buf[0] &= 0xFF >> ( siglen * 8 - msb );

    while( *p == 0 && p < buf + siglen )
        p++;

    if( p == buf + siglen ||
        *p++ != 0x01 )
    {
        md_free_ctx( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    slen -= p - buf;

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, zeros, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, p, slen );
    md_finish( &md_ctx, result );

    md_free_ctx( &md_ctx );

    if( memcmp( p + slen, result, hlen ) == 0 )
        return( 0 );
    else
        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}