Пример #1
0
size_t ASPSOldGen::available_for_contraction() {
  size_t uncommitted_bytes = virtual_space()->uncommitted_size();
  if (uncommitted_bytes != 0) {
    return uncommitted_bytes;
  }

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t gen_alignment = heap->old_gen_alignment();
  PSAdaptiveSizePolicy* policy = heap->size_policy();
  const size_t working_size =
    used_in_bytes() + (size_t) policy->avg_promoted()->padded_average();
  const size_t working_aligned = align_size_up(working_size, gen_alignment);
  const size_t working_or_min = MAX2(working_aligned, min_gen_size());
  if (working_or_min > reserved().byte_size()) {
    // If the used or minimum gen size (aligned up) is greater
    // than the total reserved size, then the space available
    // for contraction should (after proper alignment) be 0
    return 0;
  }
  const size_t max_contraction =
    reserved().byte_size() - working_or_min;

  // Use the "increment" fraction instead of the "decrement" fraction
  // to allow the other gen to expand more aggressively.  The
  // "decrement" fraction is conservative because its intent is to
  // only reduce the footprint.

  size_t result = policy->promo_increment_aligned_down(max_contraction);
  // Also adjust for inter-generational alignment
  size_t result_aligned = align_size_down(result, gen_alignment);
  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("\nASPSOldGen::available_for_contraction:"
      " %d K / 0x%x", result_aligned/K, result_aligned);
    gclog_or_tty->print_cr(" reserved().byte_size() %d K / 0x%x ",
      reserved().byte_size()/K, reserved().byte_size());
    size_t working_promoted = (size_t) policy->avg_promoted()->padded_average();
    gclog_or_tty->print_cr(" padded promoted %d K / 0x%x",
      working_promoted/K, working_promoted);
    gclog_or_tty->print_cr(" used %d K / 0x%x",
      used_in_bytes()/K, used_in_bytes());
    gclog_or_tty->print_cr(" min_gen_size() %d K / 0x%x",
      min_gen_size()/K, min_gen_size());
    gclog_or_tty->print_cr(" max_contraction %d K / 0x%x",
      max_contraction/K, max_contraction);
    gclog_or_tty->print_cr("    without alignment %d K / 0x%x",
      policy->promo_increment(max_contraction)/K,
      policy->promo_increment(max_contraction));
    gclog_or_tty->print_cr(" alignment 0x%x", gen_alignment);
  }
  assert(result_aligned <= max_contraction, "arithmetic is wrong");
  return result_aligned;
}
Пример #2
0
// Return the number of bytes the young gen is willing give up.
//
// Future implementations could check the survivors and if to_space is in the
// right place (below from_space), take a chunk from to_space.
size_t ASPSYoungGen::available_for_contraction() {

  size_t uncommitted_bytes = virtual_space()->uncommitted_size();
  if (uncommitted_bytes != 0) {
    return uncommitted_bytes;
  }

  if (eden_space()->is_empty()) {
    // Respect the minimum size for eden and for the young gen as a whole.
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    const size_t eden_alignment = heap->intra_heap_alignment();
    const size_t gen_alignment = heap->young_gen_alignment();

    assert(eden_space()->capacity_in_bytes() >= eden_alignment,
      "Alignment is wrong");
    size_t eden_avail = eden_space()->capacity_in_bytes() - eden_alignment;
    eden_avail = align_size_down(eden_avail, gen_alignment);

    assert(virtual_space()->committed_size() >= min_gen_size(),
      "minimum gen size is wrong");
    size_t gen_avail = virtual_space()->committed_size() - min_gen_size();
    assert(virtual_space()->is_aligned(gen_avail), "not aligned");

    const size_t max_contraction = MIN2(eden_avail, gen_avail);
    // See comment for ASPSOldGen::available_for_contraction()
    // for reasons the "increment" fraction is used.
    PSAdaptiveSizePolicy* policy = heap->size_policy();
    size_t result = policy->eden_increment_aligned_down(max_contraction);
    size_t result_aligned = align_size_down(result, gen_alignment);
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("ASPSYoungGen::available_for_contraction: %d K",
        result_aligned/K);
      gclog_or_tty->print_cr("  max_contraction %d K", max_contraction/K);
      gclog_or_tty->print_cr("  eden_avail %d K", eden_avail/K);
      gclog_or_tty->print_cr("  gen_avail %d K", gen_avail/K);
    }
    return result_aligned;

  }

  return 0;
}
void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
  // Resize the generation if needed. If the generation resize
  // reports false, do not attempt to resize the spaces.
  if (resize_generation(eden_size, survivor_size)) {
    // Then we lay out the spaces inside the generation
    resize_spaces(eden_size, survivor_size);

    space_invariants();

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("Young generation size: "
        "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
        " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
        " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
        eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
        _max_gen_size, min_gen_size());
    }
  }
}
size_t PSYoungGen::available_to_min_gen() {
  assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
  return virtual_space()->committed_size() - min_gen_size();
}
void PSYoungGen::resize_spaces(size_t requested_eden_size,
                               size_t requested_survivor_size) {
  assert(UseAdaptiveSizePolicy, "sanity check");
  assert(requested_eden_size > 0  && requested_survivor_size > 0,
         "just checking");

  // We require eden and to space to be empty
  if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
    return;
  }

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
                  SIZE_FORMAT
                  ", requested_survivor_size: " SIZE_FORMAT ")",
                  requested_eden_size, requested_survivor_size);
    gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  eden_space()->bottom(),
                  eden_space()->end(),
                  pointer_delta(eden_space()->end(),
                                eden_space()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  from_space()->bottom(),
                  from_space()->end(),
                  pointer_delta(from_space()->end(),
                                from_space()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  to_space()->bottom(),
                  to_space()->end(),
                  pointer_delta(  to_space()->end(),
                                  to_space()->bottom(),
                                  sizeof(char)));
  }

  // There's nothing to do if the new sizes are the same as the current
  if (requested_survivor_size == to_space()->capacity_in_bytes() &&
      requested_survivor_size == from_space()->capacity_in_bytes() &&
      requested_eden_size == eden_space()->capacity_in_bytes()) {
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    capacities are the right sizes, returning");
    }
    return;
  }

  char* eden_start = (char*)eden_space()->bottom();
  char* eden_end   = (char*)eden_space()->end();
  char* from_start = (char*)from_space()->bottom();
  char* from_end   = (char*)from_space()->end();
  char* to_start   = (char*)to_space()->bottom();
  char* to_end     = (char*)to_space()->end();

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t alignment = heap->intra_heap_alignment();
  const bool maintain_minimum =
    (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();

  bool eden_from_to_order = from_start < to_start;
  // Check whether from space is below to space
  if (eden_from_to_order) {
    // Eden, from, to
    eden_from_to_order = true;
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, from, to:");
    }

    // Set eden
    // "requested_eden_size" is a goal for the size of eden
    // and may not be attainable.  "eden_size" below is
    // calculated based on the location of from-space and
    // the goal for the size of eden.  from-space is
    // fixed in place because it contains live data.
    // The calculation is done this way to avoid 32bit
    // overflow (i.e., eden_start + requested_eden_size
    // may too large for representation in 32bits).
    size_t eden_size;
    if (maintain_minimum) {
      // Only make eden larger than the requested size if
      // the minimum size of the generation has to be maintained.
      // This could be done in general but policy at a higher
      // level is determining a requested size for eden and that
      // should be honored unless there is a fundamental reason.
      eden_size = pointer_delta(from_start,
                                eden_start,
                                sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(from_start, eden_start, sizeof(char)));
    }

    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed");

    // To may resize into from space as long as it is clear of live data.
    // From space must remain page aligned, though, so we need to do some
    // extra calculations.

    // First calculate an optimal to-space
    to_end   = (char*)virtual_space()->high();
    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
                                    sizeof(char));

    // Does the optimal to-space overlap from-space?
    if (to_start < (char*)from_space()->end()) {
      assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

      // Calculate the minimum offset possible for from_end
      size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));

      // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
      if (from_size == 0) {
        from_size = alignment;
      } else {
        from_size = align_size_up(from_size, alignment);
      }

      from_end = from_start + from_size;
      assert(from_end > from_start, "addition overflow or from_size problem");

      guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");

      // Now update to_start with the new from_end
      to_start = MAX2(from_end, to_start);
    }

    guarantee(to_start != to_end, "to space is zero sized");

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
    }
  } else {
    // Eden, to, from
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, to, from:");
    }

    // To space gets priority over eden resizing. Note that we position
    // to space as if we were able to resize from space, even though from
    // space is not modified.
    // Giving eden priority was tried and gave poorer performance.
    to_end   = (char*)pointer_delta(virtual_space()->high(),
                                    (char*)requested_survivor_size,
                                    sizeof(char));
    to_end   = MIN2(to_end, from_start);
    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
                                    sizeof(char));
    // if the space sizes are to be increased by several times then
    // 'to_start' will point beyond the young generation. In this case
    // 'to_start' should be adjusted.
    to_start = MAX2(to_start, eden_start + alignment);

    // Compute how big eden can be, then adjust end.
    // See  comments above on calculating eden_end.
    size_t eden_size;
    if (maintain_minimum) {
      eden_size = pointer_delta(to_start, eden_start, sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(to_start, eden_start, sizeof(char)));
    }
    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed");

    // Could choose to not let eden shrink
    // to_start = MAX2(to_start, eden_end);

    // Don't let eden shrink down to 0 or less.
    eden_end = MAX2(eden_end, eden_start + alignment);
    to_start = MAX2(to_start, eden_end);

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
    }
  }


  guarantee((HeapWord*)from_start <= from_space()->bottom(),
            "from start moved to the right");
  guarantee((HeapWord*)from_end >= from_space()->top(),
            "from end moved into live data");
  assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
  assert(is_object_aligned((intptr_t)from_start), "checking alignment");
  assert(is_object_aligned((intptr_t)to_start), "checking alignment");

  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
  MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);

  // Let's make sure the call to initialize doesn't reset "top"!
  HeapWord* old_from_top = from_space()->top();

  // For PrintAdaptiveSizePolicy block  below
  size_t old_from = from_space()->capacity_in_bytes();
  size_t old_to   = to_space()->capacity_in_bytes();

  if (ZapUnusedHeapArea) {
    // NUMA is a special case because a numa space is not mangled
    // in order to not prematurely bind its address to memory to
    // the wrong memory (i.e., don't want the GC thread to first
    // touch the memory).  The survivor spaces are not numa
    // spaces and are mangled.
    if (UseNUMA) {
      if (eden_from_to_order) {
        mangle_survivors(from_space(), fromMR, to_space(), toMR);
      } else {
        mangle_survivors(to_space(), toMR, from_space(), fromMR);
      }
    }

    // If not mangling the spaces, do some checking to verify that
    // the spaces are already mangled.
    // The spaces should be correctly mangled at this point so
    // do some checking here. Note that they are not being mangled
    // in the calls to initialize().
    // Must check mangling before the spaces are reshaped.  Otherwise,
    // the bottom or end of one space may have moved into an area
    // covered by another space and a failure of the check may
    // not correctly indicate which space is not properly mangled.
    HeapWord* limit = (HeapWord*) virtual_space()->high();
    eden_space()->check_mangled_unused_area(limit);
    from_space()->check_mangled_unused_area(limit);
      to_space()->check_mangled_unused_area(limit);
  }
  // When an existing space is being initialized, it is not
  // mangled because the space has been previously mangled.
  eden_space()->initialize(edenMR,
                           SpaceDecorator::Clear,
                           SpaceDecorator::DontMangle);
    to_space()->initialize(toMR,
                           SpaceDecorator::Clear,
                           SpaceDecorator::DontMangle);
  from_space()->initialize(fromMR,
                           SpaceDecorator::DontClear,
                           SpaceDecorator::DontMangle);

  assert(from_space()->top() == old_from_top, "from top changed!");

  if (PrintAdaptiveSizePolicy) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

    gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
                  "collection: %d "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
                  heap->total_collections(),
                  old_from, old_to,
                  from_space()->capacity_in_bytes(),
                  to_space()->capacity_in_bytes());
    gclog_or_tty->cr();
  }
}
bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
  const size_t alignment = virtual_space()->alignment();
  size_t orig_size = virtual_space()->committed_size();
  bool size_changed = false;

  // There used to be this guarantee there.
  // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
  // Code below forces this requirement.  In addition the desired eden
  // size and disired survivor sizes are desired goals and may
  // exceed the total generation size.

  assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");

  // Adjust new generation size
  const size_t eden_plus_survivors =
          align_size_up(eden_size + 2 * survivor_size, alignment);
  size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
                             min_gen_size());
  assert(desired_size <= max_size(), "just checking");

  if (desired_size > orig_size) {
    // Grow the generation
    size_t change = desired_size - orig_size;
    assert(change % alignment == 0, "just checking");
    HeapWord* prev_high = (HeapWord*) virtual_space()->high();
    if (!virtual_space()->expand_by(change)) {
      return false; // Error if we fail to resize!
    }
    if (ZapUnusedHeapArea) {
      // Mangle newly committed space immediately because it
      // can be done here more simply that after the new
      // spaces have been computed.
      HeapWord* new_high = (HeapWord*) virtual_space()->high();
      MemRegion mangle_region(prev_high, new_high);
      SpaceMangler::mangle_region(mangle_region);
    }
    size_changed = true;
  } else if (desired_size < orig_size) {
    size_t desired_change = orig_size - desired_size;
    assert(desired_change % alignment == 0, "just checking");

    desired_change = limit_gen_shrink(desired_change);

    if (desired_change > 0) {
      virtual_space()->shrink_by(desired_change);
      reset_survivors_after_shrink();

      size_changed = true;
    }
  } else {
    if (Verbose && PrintGC) {
      if (orig_size == gen_size_limit()) {
        gclog_or_tty->print_cr("PSYoung generation size at maximum: "
          SIZE_FORMAT "K", orig_size/K);
      } else if (orig_size == min_gen_size()) {
        gclog_or_tty->print_cr("PSYoung generation size at minium: "
          SIZE_FORMAT "K", orig_size/K);
      }
    }
  }

  if (size_changed) {
    post_resize();

    if (Verbose && PrintGC) {
      size_t current_size  = virtual_space()->committed_size();
      gclog_or_tty->print_cr("PSYoung generation size changed: "
                             SIZE_FORMAT "K->" SIZE_FORMAT "K",
                             orig_size/K, current_size/K);
    }
  }

  guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
            virtual_space()->committed_size() == max_size(), "Sanity");

  return true;
}
Пример #7
0
void ASPSYoungGen::resize_spaces(size_t requested_eden_size,
                                 size_t requested_survivor_size) {
  assert(UseAdaptiveSizePolicy, "sanity check");
  assert(requested_eden_size > 0 && requested_survivor_size > 0,
         "just checking");

  space_invariants();

  // We require eden and to space to be empty
  if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
    return;
  }

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
                  SIZE_FORMAT
                  ", requested_survivor_size: " SIZE_FORMAT ")",
                  requested_eden_size, requested_survivor_size);
    gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  eden_space()->bottom(),
                  eden_space()->end(),
                  pointer_delta(eden_space()->end(),
                                eden_space()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  from_space()->bottom(),
                  from_space()->end(),
                  pointer_delta(from_space()->end(),
                                from_space()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  to_space()->bottom(),
                  to_space()->end(),
                  pointer_delta(  to_space()->end(),
                                  to_space()->bottom(),
                                  sizeof(char)));
  }

  // There's nothing to do if the new sizes are the same as the current
  if (requested_survivor_size == to_space()->capacity_in_bytes() &&
      requested_survivor_size == from_space()->capacity_in_bytes() &&
      requested_eden_size == eden_space()->capacity_in_bytes()) {
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    capacities are the right sizes, returning");
    }
    return;
  }

  char* eden_start = (char*)virtual_space()->low();
  char* eden_end   = (char*)eden_space()->end();
  char* from_start = (char*)from_space()->bottom();
  char* from_end   = (char*)from_space()->end();
  char* to_start   = (char*)to_space()->bottom();
  char* to_end     = (char*)to_space()->end();

  assert(eden_start < from_start, "Cannot push into from_space");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t alignment = heap->intra_heap_alignment();
  const bool maintain_minimum =
    (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();

  bool eden_from_to_order = from_start < to_start;
  // Check whether from space is below to space
  if (eden_from_to_order) {
    // Eden, from, to

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, from, to:");
    }

    // Set eden
    // "requested_eden_size" is a goal for the size of eden
    // and may not be attainable.  "eden_size" below is
    // calculated based on the location of from-space and
    // the goal for the size of eden.  from-space is
    // fixed in place because it contains live data.
    // The calculation is done this way to avoid 32bit
    // overflow (i.e., eden_start + requested_eden_size
    // may too large for representation in 32bits).
    size_t eden_size;
    if (maintain_minimum) {
      // Only make eden larger than the requested size if
      // the minimum size of the generation has to be maintained.
      // This could be done in general but policy at a higher
      // level is determining a requested size for eden and that
      // should be honored unless there is a fundamental reason.
      eden_size = pointer_delta(from_start,
                                eden_start,
                                sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(from_start, eden_start, sizeof(char)));
    }

    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed")

    // To may resize into from space as long as it is clear of live data.
    // From space must remain page aligned, though, so we need to do some
    // extra calculations.

    // First calculate an optimal to-space
    to_end   = (char*)virtual_space()->high();
    to_start = (char*)pointer_delta(to_end,
                                    (char*)requested_survivor_size,
                                    sizeof(char));

    // Does the optimal to-space overlap from-space?
    if (to_start < (char*)from_space()->end()) {
      assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

      // Calculate the minimum offset possible for from_end
      size_t from_size =
        pointer_delta(from_space()->top(), from_start, sizeof(char));

      // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
      if (from_size == 0) {
        from_size = alignment;
      } else {
        from_size = align_size_up(from_size, alignment);
      }

      from_end = from_start + from_size;
      assert(from_end > from_start, "addition overflow or from_size problem");

      guarantee(from_end <= (char*)from_space()->end(),
        "from_end moved to the right");

      // Now update to_start with the new from_end
      to_start = MAX2(from_end, to_start);
    }

    guarantee(to_start != to_end, "to space is zero sized");

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
    }
  } else {
    // Eden, to, from
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, to, from:");
    }

    // To space gets priority over eden resizing. Note that we position
    // to space as if we were able to resize from space, even though from
    // space is not modified.
    // Giving eden priority was tried and gave poorer performance.
    to_end   = (char*)pointer_delta(virtual_space()->high(),
                                    (char*)requested_survivor_size,
                                    sizeof(char));
    to_end   = MIN2(to_end, from_start);
    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
                                    sizeof(char));
    // if the space sizes are to be increased by several times then
    // 'to_start' will point beyond the young generation. In this case
    // 'to_start' should be adjusted.
    to_start = MAX2(to_start, eden_start + alignment);

    // Compute how big eden can be, then adjust end.
    // See  comments above on calculating eden_end.
    size_t eden_size;
    if (maintain_minimum) {
      eden_size = pointer_delta(to_start, eden_start, sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(to_start, eden_start, sizeof(char)));
    }
    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed")

    // Don't let eden shrink down to 0 or less.
    eden_end = MAX2(eden_end, eden_start + alignment);
    to_start = MAX2(to_start, eden_end);

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
    }
  }


  guarantee((HeapWord*)from_start <= from_space()->bottom(),
            "from start moved to the right");
  guarantee((HeapWord*)from_end >= from_space()->top(),
            "from end moved into live data");
  assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
  assert(is_object_aligned((intptr_t)from_start), "checking alignment");
  assert(is_object_aligned((intptr_t)to_start), "checking alignment");

  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
  MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);

  // Let's make sure the call to initialize doesn't reset "top"!
  DEBUG_ONLY(HeapWord* old_from_top = from_space()->top();)
Пример #8
0
// Similar to PSYoungGen::resize_generation() but
//  allows sum of eden_size and 2 * survivor_size to exceed _max_gen_size
//  expands at the low end of the virtual space
//  moves the boundary between the generations in order to expand
//  some additional diagnostics
// If no additional changes are required, this can be deleted
// and the changes factored back into PSYoungGen::resize_generation().
bool ASPSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
  const size_t alignment = virtual_space()->alignment();
  size_t orig_size = virtual_space()->committed_size();
  bool size_changed = false;

  // There used to be a guarantee here that
  //   (eden_size + 2*survivor_size)  <= _max_gen_size
  // This requirement is enforced by the calculation of desired_size
  // below.  It may not be true on entry since the size of the
  // eden_size is no bounded by the generation size.

  assert(max_size() == reserved().byte_size(), "max gen size problem?");
  assert(min_gen_size() <= orig_size && orig_size <= max_size(),
         "just checking");

  // Adjust new generation size
  const size_t eden_plus_survivors =
    align_size_up(eden_size + 2 * survivor_size, alignment);
  size_t desired_size = MAX2(MIN2(eden_plus_survivors, gen_size_limit()),
                             min_gen_size());
  assert(desired_size <= gen_size_limit(), "just checking");

  if (desired_size > orig_size) {
    // Grow the generation
    size_t change = desired_size - orig_size;
    HeapWord* prev_low = (HeapWord*) virtual_space()->low();
    if (!virtual_space()->expand_by(change)) {
      return false;
    }
    if (ZapUnusedHeapArea) {
      // Mangle newly committed space immediately because it
      // can be done here more simply that after the new
      // spaces have been computed.
      HeapWord* new_low = (HeapWord*) virtual_space()->low();
      assert(new_low < prev_low, "Did not grow");

      MemRegion mangle_region(new_low, prev_low);
      SpaceMangler::mangle_region(mangle_region);
    }
    size_changed = true;
  } else if (desired_size < orig_size) {
    size_t desired_change = orig_size - desired_size;

    // How much is available for shrinking.
    size_t available_bytes = limit_gen_shrink(desired_change);
    size_t change = MIN2(desired_change, available_bytes);
    virtual_space()->shrink_by(change);
    size_changed = true;
  } else {
    if (Verbose && PrintGC) {
      if (orig_size == gen_size_limit()) {
        gclog_or_tty->print_cr("ASPSYoung generation size at maximum: "
          SIZE_FORMAT "K", orig_size/K);
      } else if (orig_size == min_gen_size()) {
        gclog_or_tty->print_cr("ASPSYoung generation size at minium: "
          SIZE_FORMAT "K", orig_size/K);
      }
    }
  }

  if (size_changed) {
    reset_after_change();
    if (Verbose && PrintGC) {
      size_t current_size  = virtual_space()->committed_size();
      gclog_or_tty->print_cr("ASPSYoung generation size changed: "
        SIZE_FORMAT "K->" SIZE_FORMAT "K",
        orig_size/K, current_size/K);
    }
  }

  guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
            virtual_space()->committed_size() == max_size(), "Sanity");

  return true;
}
Пример #9
0
size_t ASParNewGeneration::available_to_min_gen() {
  assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
  return virtual_space()->committed_size() - min_gen_size();
}
Пример #10
0
void ASParNewGeneration::resize_spaces(size_t requested_eden_size,
                                       size_t requested_survivor_size) {
  assert(UseAdaptiveSizePolicy, "sanity check");
  assert(requested_eden_size > 0  && requested_survivor_size > 0,
         "just checking");
  CollectedHeap* heap = Universe::heap();
  assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity");


  // We require eden and to space to be empty
  if ((!eden()->is_empty()) || (!to()->is_empty())) {
    return;
  }

  size_t cur_eden_size = eden()->capacity();

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: "
                  SIZE_FORMAT
                  ", requested_survivor_size: " SIZE_FORMAT ")",
                  requested_eden_size, requested_survivor_size);
    gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  eden()->bottom(),
                  eden()->end(),
                  pointer_delta(eden()->end(),
                                eden()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  from()->bottom(),
                  from()->end(),
                  pointer_delta(from()->end(),
                                from()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  to()->bottom(),
                  to()->end(),
                  pointer_delta(  to()->end(),
                                  to()->bottom(),
                                  sizeof(char)));
  }

  // There's nothing to do if the new sizes are the same as the current
  if (requested_survivor_size == to()->capacity() &&
      requested_survivor_size == from()->capacity() &&
      requested_eden_size == eden()->capacity()) {
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    capacities are the right sizes, returning");
    }
    return;
  }

  char* eden_start = (char*)eden()->bottom();
  char* eden_end   = (char*)eden()->end();
  char* from_start = (char*)from()->bottom();
  char* from_end   = (char*)from()->end();
  char* to_start   = (char*)to()->bottom();
  char* to_end     = (char*)to()->end();

  const size_t alignment = os::vm_page_size();
  const bool maintain_minimum =
    (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();

  // Check whether from space is below to space
  if (from_start < to_start) {
    // Eden, from, to
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, from, to:");
    }

    // Set eden
    // "requested_eden_size" is a goal for the size of eden
    // and may not be attainable.  "eden_size" below is
    // calculated based on the location of from-space and
    // the goal for the size of eden.  from-space is
    // fixed in place because it contains live data.
    // The calculation is done this way to avoid 32bit
    // overflow (i.e., eden_start + requested_eden_size
    // may too large for representation in 32bits).
    size_t eden_size;
    if (maintain_minimum) {
      // Only make eden larger than the requested size if
      // the minimum size of the generation has to be maintained.
      // This could be done in general but policy at a higher
      // level is determining a requested size for eden and that
      // should be honored unless there is a fundamental reason.
      eden_size = pointer_delta(from_start,
                                eden_start,
                                sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(from_start, eden_start, sizeof(char)));
    }

    eden_size = align_size_down(eden_size, alignment);
    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed")

    // To may resize into from space as long as it is clear of live data.
    // From space must remain page aligned, though, so we need to do some
    // extra calculations.

    // First calculate an optimal to-space
    to_end   = (char*)virtual_space()->high();
    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
                                    sizeof(char));

    // Does the optimal to-space overlap from-space?
    if (to_start < (char*)from()->end()) {
      // Calculate the minimum offset possible for from_end
      size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char));

      // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
      if (from_size == 0) {
        from_size = alignment;
      } else {
        from_size = align_size_up(from_size, alignment);
      }

      from_end = from_start + from_size;
      assert(from_end > from_start, "addition overflow or from_size problem");

      guarantee(from_end <= (char*)from()->end(), "from_end moved to the right");

      // Now update to_start with the new from_end
      to_start = MAX2(from_end, to_start);
    } else {
      // If shrinking, move to-space down to abut the end of from-space
      // so that shrinking will move to-space down.  If not shrinking
      // to-space is moving up to allow for growth on the next expansion.
      if (requested_eden_size <= cur_eden_size) {
        to_start = from_end;
        if (to_start + requested_survivor_size > to_start) {
          to_end = to_start + requested_survivor_size;
        }
      }
      // else leave to_end pointing to the high end of the virtual space.
    }

    guarantee(to_start != to_end, "to space is zero sized");

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
    }
  } else {
    // Eden, to, from
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, to, from:");
    }

    // Calculate the to-space boundaries based on
    // the start of from-space.
    to_end = from_start;
    to_start = (char*)pointer_delta(from_start,
                                    (char*)requested_survivor_size,
                                    sizeof(char));
    // Calculate the ideal eden boundaries.
    // eden_end is already at the bottom of the generation
    assert(eden_start == virtual_space()->low(),
      "Eden is not starting at the low end of the virtual space");
    if (eden_start + requested_eden_size >= eden_start) {
      eden_end = eden_start + requested_eden_size;
    } else {
      eden_end = to_start;
    }

    // Does eden intrude into to-space?  to-space
    // gets priority but eden is not allowed to shrink
    // to 0.
    if (eden_end > to_start) {
      eden_end = to_start;
    }

    // Don't let eden shrink down to 0 or less.
    eden_end = MAX2(eden_end, eden_start + alignment);
    assert(eden_start + alignment >= eden_start, "Overflow");

    size_t eden_size;
    if (maintain_minimum) {
      // Use all the space available.
      eden_end = MAX2(eden_end, to_start);
      eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
      eden_size = MIN2(eden_size, cur_eden_size);
    } else {
      eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
    }
    eden_size = align_size_down(eden_size, alignment);
    assert(maintain_minimum || eden_size <= requested_eden_size,
      "Eden size is too large");
    assert(eden_size >= alignment, "Eden size is too small");
    eden_end = eden_start + eden_size;

    // Move to-space down to eden.
    if (requested_eden_size < cur_eden_size) {
      to_start = eden_end;
      if (to_start + requested_survivor_size > to_start) {
        to_end = MIN2(from_start, to_start + requested_survivor_size);
      } else {
        to_end = from_start;
      }
    }

    // eden_end may have moved so again make sure
    // the to-space and eden don't overlap.
    to_start = MAX2(eden_end, to_start);

    // from-space
    size_t from_used = from()->used();
    if (requested_survivor_size > from_used) {
      if (from_start + requested_survivor_size >= from_start) {
        from_end = from_start + requested_survivor_size;
      }
      if (from_end > virtual_space()->high()) {
        from_end = virtual_space()->high();
      }
    }

    assert(to_start >= eden_end, "to-space should be above eden");
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
    }
  }


  guarantee((HeapWord*)from_start <= from()->bottom(),
            "from start moved to the right");
  guarantee((HeapWord*)from_end >= from()->top(),
            "from end moved into live data");
  assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
  assert(is_object_aligned((intptr_t)from_start), "checking alignment");
  assert(is_object_aligned((intptr_t)to_start), "checking alignment");

  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
  MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);

  // Let's make sure the call to initialize doesn't reset "top"!
  HeapWord* old_from_top = from()->top();

  // For PrintAdaptiveSizePolicy block  below
  size_t old_from = from()->capacity();
  size_t old_to   = to()->capacity();

  // If not clearing the spaces, do some checking to verify that
  // the spaces are already mangled.

  // Must check mangling before the spaces are reshaped.  Otherwise,
  // the bottom or end of one space may have moved into another
  // a failure of the check may not correctly indicate which space
  // is not properly mangled.
  if (ZapUnusedHeapArea) {
    HeapWord* limit = (HeapWord*) virtual_space()->high();
    eden()->check_mangled_unused_area(limit);
    from()->check_mangled_unused_area(limit);
      to()->check_mangled_unused_area(limit);
  }

  // The call to initialize NULL's the next compaction space
  eden()->initialize(edenMR,
                     SpaceDecorator::Clear,
                     SpaceDecorator::DontMangle);
  eden()->set_next_compaction_space(from());
    to()->initialize(toMR  ,
                     SpaceDecorator::Clear,
                     SpaceDecorator::DontMangle);
  from()->initialize(fromMR,
                     SpaceDecorator::DontClear,
                     SpaceDecorator::DontMangle);

  assert(from()->top() == old_from_top, "from top changed!");

  if (PrintAdaptiveSizePolicy) {
    GenCollectedHeap* gch = GenCollectedHeap::heap();
    assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity");

    gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
                  "collection: %d "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
                  gch->total_collections(),
                  old_from, old_to,
                  from()->capacity(),
                  to()->capacity());
    gclog_or_tty->cr();
  }
}
Пример #11
0
// Note that the the alignment used is the OS page size as
// opposed to an alignment associated with the virtual space
// (as is done in the ASPSYoungGen/ASPSOldGen)
bool ASParNewGeneration::resize_generation(size_t eden_size,
                                           size_t survivor_size) {
  const size_t alignment = os::vm_page_size();
  size_t orig_size = virtual_space()->committed_size();
  bool size_changed = false;

  // There used to be this guarantee there.
  // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
  // Code below forces this requirement.  In addition the desired eden
  // size and disired survivor sizes are desired goals and may
  // exceed the total generation size.

  assert(min_gen_size() <= orig_size && orig_size <= max_gen_size(),
    "just checking");

  // Adjust new generation size
  const size_t eden_plus_survivors =
          align_size_up(eden_size + 2 * survivor_size, alignment);
  size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_gen_size()),
                             min_gen_size());
  assert(desired_size <= max_gen_size(), "just checking");

  if (desired_size > orig_size) {
    // Grow the generation
    size_t change = desired_size - orig_size;
    assert(change % alignment == 0, "just checking");
    if (expand(change)) {
      return false; // Error if we fail to resize!
    }
    size_changed = true;
  } else if (desired_size < orig_size) {
    size_t desired_change = orig_size - desired_size;
    assert(desired_change % alignment == 0, "just checking");

    desired_change = limit_gen_shrink(desired_change);

    if (desired_change > 0) {
      virtual_space()->shrink_by(desired_change);
      reset_survivors_after_shrink();

      size_changed = true;
    }
  } else {
    if (Verbose && PrintGC) {
      if (orig_size == max_gen_size()) {
        gclog_or_tty->print_cr("ASParNew generation size at maximum: "
          SIZE_FORMAT "K", orig_size/K);
      } else if (orig_size == min_gen_size()) {
        gclog_or_tty->print_cr("ASParNew generation size at minium: "
          SIZE_FORMAT "K", orig_size/K);
      }
    }
  }

  if (size_changed) {
    MemRegion cmr((HeapWord*)virtual_space()->low(),
                  (HeapWord*)virtual_space()->high());
    GenCollectedHeap::heap()->barrier_set()->resize_covered_region(cmr);

    if (Verbose && PrintGC) {
      size_t current_size  = virtual_space()->committed_size();
      gclog_or_tty->print_cr("ASParNew generation size changed: "
                             SIZE_FORMAT "K->" SIZE_FORMAT "K",
                             orig_size/K, current_size/K);
    }
  }

  guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
            virtual_space()->committed_size() == max_gen_size(), "Sanity");

  return true;
}