Пример #1
0
void minkowskiSum( const LineString& gA, const Polygon_2& gB, Polygon_set_2& polygonSet )
{
    if ( gA.isEmpty() ) {
        return ;
    }

    int npt = gA.numPoints() ;

    for ( int i = 0; i < npt - 1 ; i++ ) {
        Polygon_2 P;
        P.push_back( gA.pointN( i ).toPoint_2() );
        P.push_back( gA.pointN( i+1 ).toPoint_2() );

        //
        // We want to compute the "minkowski sum" on each segment of the line string
        // This is not very well defined. But it appears CGAL supports it.
        // However we must use the explicit "full convolution" method for that particular case in CGAL >= 4.7
#if CGAL_VERSION_NR < 1040701000 // version 4.7
        Polygon_with_holes_2 part = minkowski_sum_2( P, gB );
#else
        Polygon_with_holes_2 part = minkowski_sum_by_full_convolution_2( P, gB );
#endif

        // merge into a polygon set
        if ( polygonSet.is_empty() ) {
            polygonSet.insert( part );
        }
        else {
            polygonSet.join( part );
        }
    }
}
Пример #2
0
int main ()
{
  // Construct the first polygon (a triangle).
  Polygon_2   P;

  P.push_back (Point_2 (0, 0));
  P.push_back (Point_2 (6, 0));
  P.push_back (Point_2 (3, 5));

  // Construct the second polygon (a triangle).
  Polygon_2   Q;

  Q.push_back (Point_2 (0, 0));
  Q.push_back (Point_2 (2, -2));
  Q.push_back (Point_2 (2, 2));

  // Compute the Minkowski sum.
  Polygon_with_holes_2  sum = minkowski_sum_2 (P, Q);

  CGAL_assertion (sum.number_of_holes() == 0);

  std::cout << "P = "; print_polygon (P);
  std::cout << "Q = "; print_polygon (Q);
  std::cout << "P (+) Q = "; print_polygon (sum.outer_boundary());

  return (0);
}
Пример #3
0
void minkowskiSum( const Polygon& gA, const Polygon_2& gB, Polygon_set_2& polygonSet )
{
    if ( gA.isEmpty() ) {
        return ;
    }

    /*
     * Invoke minkowski_sum_2 for exterior ring
     */
    {
        Polygon_with_holes_2 sum = minkowski_sum_2( gA.exteriorRing().toPolygon_2(), gB ) ;

        if ( polygonSet.is_empty() ) {
            polygonSet.insert( sum );
        }
        else {
            polygonSet.join( sum );
        }
    }

    /*
     * Compute the Minkowski sum for each segment of the interior rings
     * and perform the union of the result. The result is a polygon, and its holes
     * correspond to the inset.
     *
     */
    if ( gA.hasInteriorRings() ) {
        Polygon_set_2 sumInteriorRings ;

        for ( size_t i = 0; i < gA.numInteriorRings(); i++ ) {
            minkowskiSum( gA.interiorRingN( i ), gB, sumInteriorRings ) ;
        }

        /*
         * compute the difference for each hole of the resulting polygons
         */
        std::list<Polygon_with_holes_2> interiorPolygons ;
        sumInteriorRings.polygons_with_holes( std::back_inserter( interiorPolygons ) ) ;

        for ( std::list<Polygon_with_holes_2>::iterator it_p = interiorPolygons.begin();
                it_p != interiorPolygons.end(); ++it_p ) {

            for ( Polygon_with_holes_2::Hole_iterator it_hole = it_p->holes_begin();
                    it_hole != it_p->holes_end(); ++it_hole ) {

                it_hole->reverse_orientation() ;
                polygonSet.difference( *it_hole ) ;
            } // foreach hole
        }// foreach polygon
    }
}
Пример #4
0
void
MainWindow::on_actionSelfMinkowskiSum_triggered()
{
  if(poly.size()>0){
    if(! poly.is_simple()){
      return;
    }

    selfmink = minkowski_sum_2 (poly, poly);
    
    minkgi = new CGAL::Qt::PolygonWithHolesGraphicsItem<Polygon_with_holes_2>(&selfmink);
    
    minkgi->setVerticesPen(QPen(Qt::red, 3, Qt::SolidLine, Qt::RoundCap, Qt::RoundJoin));
    scene.addItem(minkgi);
    minkgi->setEdgesPen(QPen(Qt::darkRed, 0, Qt::SolidLine, Qt::RoundCap, Qt::RoundJoin));
  }
}
Пример #5
0
void minkowskiSum( const LineString& gA, const Polygon_2 & gB, Polygon_set_2 & polygonSet ){
	if ( gA.isEmpty() ){
		return ;
	}

	int npt = gA.numPoints() ;
	for ( int i = 0; i < npt - 1 ; i++ ){
		Polygon_2 P;
		P.push_back( gA.pointN(i).toPoint_2() );
		P.push_back( gA.pointN(i+1).toPoint_2() );

		Polygon_with_holes_2 part = minkowski_sum_2( P, gB );

		// merge into a polygon set
		if ( polygonSet.is_empty() ){
			polygonSet.insert( part );
		}else{
			polygonSet.join( part );
		}
	}
}
Пример #6
0
int main ()
{
  // Open the input file.
  std::ifstream    in_file ("rooms_star.dat");

  if (! in_file.is_open())
  {
    std::cerr << "Failed to open the input file." << std::endl;
    return (1);
  }

  // Read the two polygons from the file and compute their Minkowski sum.
  Polygon_2   P, Q;

  in_file >> P >> Q;
  in_file.close();

  // Compute and print the Minkowski sum.
  Polygon_with_holes_2  sum = minkowski_sum_2 (P, Q);

  std::cout << "P (+) Q = "; print_polygon_with_holes (sum);

  return (0);
}
CollisionDetector::CollisionDetector(Polygon_2 robot1, Polygon_2 robot2, Obstacles* obs,double eps)
: approx_robot1(robot1)
, approx_robot2(robot2)
, m_obs(obs)
, m_translate_helper()
, m_minus_r1(flip(robot1))
, m_minus_r2(flip(robot2))
, m_epsilon(eps)
{
	Polygon_2 enlarger;
	int nOfEdges = 8;
	double radius = eps/2;
	double dAlpha = (360.0/nOfEdges)*CGAL_PI/180;
	for (int i = nOfEdges; i>0; i--) {
		double alpha = (i + 0.5)*dAlpha;
		double x = (radius/cos(dAlpha/2)) * cos(alpha) * 1.05;
		double y = (radius/cos(dAlpha/2)) * sin(alpha) * 1.05;
		enlarger.push_back(Point_2(x, y));
	}
	
	// Compute the Minkowski sum using the decomposition approach.
	CGAL::Small_side_angle_bisector_decomposition_2<Kernel>  ssab_decomp;

	Polygon_with_holes_2  pwh1 = minkowski_sum_2 (robot1, enlarger, ssab_decomp);
	Polygon_with_holes_2  pwh2 = minkowski_sum_2 (robot2, enlarger, ssab_decomp);
		
	approx_robot1 = pwh1.outer_boundary();
	approx_robot2 = pwh2.outer_boundary();

	Polygon_with_holes_2  pwhF1 = minkowski_sum_2 (m_minus_r1, enlarger, ssab_decomp);
	Polygon_with_holes_2  pwhF2 = minkowski_sum_2 (m_minus_r2, enlarger, ssab_decomp);

	m_minus_r1_en = pwhF1.outer_boundary();
	m_minus_r2_en = pwhF2.outer_boundary();


	Polygon_set_2 ps;
	if (!m_obs->empty())
	{
		for (Obstacles::iterator Oiter = m_obs->begin(); Oiter != m_obs->end(); Oiter++)
		{		
			  // For every obstacle calculate its Minkowski sum with a "robot"
			Polygon_with_holes_2  poly_wh1 = minkowski_sum_2 (*Oiter, m_minus_r1_en, ssab_decomp);		
			Polygon_with_holes_2  poly_wh2 = minkowski_sum_2 (*Oiter, m_minus_r2_en, ssab_decomp);		
			// Add the result to the polygon set
			m_r1_poly_set.join(poly_wh1);
			m_r2_poly_set.join(poly_wh2);
		}
	}
	
	Polygon_with_holes_2  r1_r2 = minkowski_sum_2 (approx_robot1, m_minus_r2_en, ssab_decomp);
	Polygon_2 for_print = r1_r2.outer_boundary();
	for(Polygon_2::Vertex_const_iterator it = for_print.vertices_begin(); it != for_print.vertices_end(); ++it)
	{
		std::cout << "(" << it->x() << "," << it->y() << "),";
	}
	std::cout << std::endl;

	m_r1_min_r2.join(r1_r2);
	
	Polygon_with_holes_2  r2_r1 = minkowski_sum_2 (approx_robot2, m_minus_r1_en, ssab_decomp);
	m_r2_min_r1.join(r2_r1);
}
Пример #8
0
void SubSelectIpelet::protected_run(int fn)
{
  if (fn==2) {
    show_help();
    return;
  }
  
  std::list<Circle_2> cir_list;
  std::list<Polygon_2> pol_list;
  
  Iso_rectangle_2 bbox=
    read_active_objects(
      CGAL::dispatch_or_drop_output<Polygon_2,Circle_2>(
        std::back_inserter(pol_list),
        std::back_inserter(cir_list)
      )
    );  
  
  
  if (fn==0 && pol_list.size()!=2){
    print_error_message("You must select exactly two polygons");
    return;
  }  
  
  
  std::list<double> r_offsets;
  for (std::list<Circle_2>::iterator it=cir_list.begin();it!=cir_list.end();++it)
    r_offsets.push_back(sqrt(CGAL::to_double(it->squared_radius())));
  
  IpeMatrix tfm (1,0,0,1,-CGAL::to_double(bbox.min().x()),-CGAL::to_double(bbox.min().y()));
  
  for (std::list<Polygon_2>::iterator it=pol_list.begin();it!=pol_list.end();++it)
    if(!it->is_simple()){
      print_error_message("Polygon(s) must be simple");
    }
  
  
  if (fn==0){
    Polygon_2 polygon1=*pol_list.begin();
    Polygon_2 polygon2=*++pol_list.begin();
    Polygon_with_holes_2  sum = minkowski_sum_2 (polygon1, polygon2);
    std::list<Point_2> LP;
    for (Polygon_2::iterator it=sum.outer_boundary().vertices_begin();it!= sum.outer_boundary().vertices_end();++it)
      LP.push_back(*it);
    draw_polyline_in_ipe(LP.begin(),LP.end(),true,false,false);
    
    for (Polygon_with_holes_2::Hole_const_iterator poly_it = sum.holes_begin(); poly_it != sum.holes_end();
          ++poly_it){
      LP.clear();
      for (Polygon_2::iterator it=poly_it->vertices_begin();it!= poly_it->vertices_end();++it)
        LP.push_back(*it);
      draw_polyline_in_ipe(LP.begin(),LP.end(),true,false,false);
    }
    
    create_polygon_with_holes(true);
    transform_selected_objects_(tfm);
  }
  else{
    if (r_offsets.size()==0)
      r_offsets.push_back(10);
    for (std::list<Polygon_2>::iterator it_pol=pol_list.begin();it_pol!=pol_list.end();++it_pol){
      for(std::list<double>::iterator it=r_offsets.begin();it!=r_offsets.end();++it){
        Offset_polygon_with_holes_2  offset=approximated_offset_2 (*it_pol, *it, 0.0001);
        std::list<Segment_2> LS;
        for( Offset_polygon_2::Curve_iterator itt=offset.outer_boundary().curves_begin();
          itt!=offset.outer_boundary().curves_end();++itt){
          Point_2 S=Point_2(CGAL::to_double(itt->source().x()),CGAL::to_double(itt->source().y()));
          Point_2 T=Point_2(CGAL::to_double(itt->target().x()),CGAL::to_double(itt->target().y()));
          if (itt->is_linear ())
            LS.push_back(Segment_2(S,T));
          if (itt->is_circular())
            draw_in_ipe(Circular_arc_2(itt->supporting_circle(),S,T,itt->supporting_circle().orientation()));
        }
        draw_in_ipe(LS.begin(),LS.end());
      }
    }
  }
}