Пример #1
0
mp_err   make_prime(mp_int *p, int nr)
{
  mp_err  res;

  if(mp_iseven(p)) {
    mp_add_d(p, 1, p);
  }

  do {
    mp_digit   which = prime_tab_size;

    /*  First test for divisibility by a few small primes */
    if((res = mpp_divis_primes(p, &which)) == MP_YES)
      continue;
    else if(res != MP_NO)
      goto CLEANUP;

    /* If that passes, try one iteration of Fermat's test */
    if((res = mpp_fermat(p, 2)) == MP_NO)
      continue;
    else if(res != MP_YES)
      goto CLEANUP;

    /* If that passes, run Rabin-Miller as often as requested */
    if((res = mpp_pprime(p, nr)) == MP_YES)
      break;
    else if(res != MP_NO)
      goto CLEANUP;
      
  } while((res = mp_add_d(p, 2, p)) == MP_OKAY);

 CLEANUP:
  return res;

} /* end make_prime() */
Пример #2
0
int mp_find_prime(mp_int *a)
{
  int res;

  if (mp_iseven(a))
    mp_add_d(a, 1, a);

  do {

    if ((res = mp_isprime(a)) == MP_NO) {
      mp_add_d(a, 2, a);
      continue;
    }

  } while (res != MP_YES);

  return res;
}
/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
Пример #4
0
/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res, x, y;
   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* ensure t is valid */
   if (t <= 0 || t > PRIME_SIZE) {
      return MP_VAL;
   }

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIME_SIZE - 2; x >= 0; x--) {
          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
             if (bbs_style == 1) {
                /* ok we found a prime smaller or
                 * equal [so the next is larger]
                 *
                 * however, the prime must be
                 * congruent to 3 mod 4
                 */
                if ((ltm_prime_tab[x + 1] & 3) != 3) {
                   /* scan upwards for a prime congruent to 3 mod 4 */
                   for (y = x + 1; y < PRIME_SIZE; y++) {
                       if ((ltm_prime_tab[y] & 3) == 3) {
                          mp_set(a, ltm_prime_tab[y]);
                          return MP_OKAY;
                       }
                   }
                }
             } else {
                mp_set(a, ltm_prime_tab[x + 1]);
                return MP_OKAY;
             }
          }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1) == MP_EQ) {
         mp_set(a, 2);
         return MP_OKAY;
      }
      /* fall through to the sieve */
   }

   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
   if (bbs_style == 1) {
      kstep   = 4;
   } else {
      kstep   = 2;
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
      }
   } else {
      if (mp_iseven(a) == 1) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIME_SIZE; x++) {
      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
             /* add the step to each residue */
             res_tab[x] += kstep;

             /* subtract the modulus [instead of using division] */
             if (res_tab[x] >= ltm_prime_tab[x]) {
                res_tab[x]  -= ltm_prime_tab[x];
             }

             /* set flag if zero */
             if (res_tab[x] == 0) {
                y = 1;
             }
         }
      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
          mp_set(&b, ltm_prime_tab[t]);
          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
             goto LBL_ERR;
          }
          if (res == MP_NO) {
             break;
          }
      }

      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}
Пример #5
0
/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == 1) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x == modulus, y == value to invert */
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* we need y = |a| */
  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == 1) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }
  mp_exch (&D, c);
  c->sign = neg;
  res = MP_OKAY;

LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
Пример #6
0
/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
 */
int
mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
    mp_int  u, v, t;
    int     k, res, neg;

    /* either zero than gcd is the largest */
    if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
        return mp_copy (b, c);
    }
    if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
        return mp_copy (a, c);
    }
    if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
        mp_set (c, 1);
        return MP_OKAY;
    }

    /* if both are negative they share (-1) as a common divisor */
    neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;

    if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
        return res;
    }

    if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
        goto __U;
    }

    /* must be positive for the remainder of the algorithm */
    u.sign = v.sign = MP_ZPOS;

    if ((res = mp_init (&t)) != MP_OKAY) {
        goto __V;
    }

    /* B1.  Find power of two */
    k = 0;
    while (mp_iseven(&u) == 1 && mp_iseven(&v) == 1) {
        ++k;
        if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
            goto __T;
        }
        if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
            goto __T;
        }
    }

    /* B2.  Initialize */
    if (mp_isodd(&u) == 1) {
        /* t = -v */
        if ((res = mp_copy (&v, &t)) != MP_OKAY) {
            goto __T;
        }
        t.sign = MP_NEG;
    } else {
        /* t = u */
        if ((res = mp_copy (&u, &t)) != MP_OKAY) {
            goto __T;
        }
    }

    do {
        /* B3 (and B4).  Halve t, if even */
        while (t.used != 0 && mp_iseven(&t) == 1) {
            if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
                goto __T;
            }
        }

        /* B5.  if t>0 then u=t otherwise v=-t */
        if (t.used != 0 && t.sign != MP_NEG) {
            if ((res = mp_copy (&t, &u)) != MP_OKAY) {
                goto __T;
            }
        } else {
            if ((res = mp_copy (&t, &v)) != MP_OKAY) {
                goto __T;
            }
            v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
        }

        /* B6.  t = u - v, if t != 0 loop otherwise terminate */
        if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
            goto __T;
        }
    } while (mp_iszero(&t) == 0);

    /* multiply by 2^k which we divided out at the beginning */
    if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
        goto __T;
    }

    mp_exch (&u, c);
    c->sign = neg;
    res = MP_OKAY;
__T:
    mp_clear (&t);
__V:
    mp_clear (&u);
__U:
    mp_clear (&v);
    return res;
}
Пример #7
0
static int next_prime(mp_int *N, mp_digit step)
{
    long x, s, j, total_dist;
    int res;
    mp_int n1, a, y, r;
    mp_digit dist, residues[UPPER_LIMIT];

    _ARGCHK(N != NULL);

    /* first find the residues */
    for (x = 0; x < (long)UPPER_LIMIT; x++) {
        if (mp_mod_d(N, __prime_tab[x], &residues[x]) != MP_OKAY) {
           return CRYPT_MEM;
        }
    }

    /* init variables */
    if (mp_init_multi(&r, &n1, &a, &y, NULL) != MP_OKAY) {
       return CRYPT_MEM;
    }
    
    total_dist = 0;
loop:
    /* while one of the residues is zero keep looping */
    dist = step;
    for (x = 0; (dist < (MP_DIGIT_MAX-step-1)) && (x < (long)UPPER_LIMIT); x++) {
        j = (long)residues[x] + (long)dist + total_dist;
        if (j % (long)__prime_tab[x] == 0) {
           dist += step; x = -1;
        }
    }
    
    /* recalc the total distance from where we started */
    total_dist += dist;
    
    /* add to N */
    if (mp_add_d(N, dist, N) != MP_OKAY) { goto error; }
    
    /* n1 = N - 1 */
    if (mp_sub_d(N, 1, &n1) != MP_OKAY)  { goto error; }

    /* r = N - 1 */
    if (mp_copy(&n1, &r) != MP_OKAY)     { goto error; }

    /* find s such that N-1 = (2^s)r */
    s = 0;
    while (mp_iseven(&r)) {
        ++s;
        if (mp_div_2(&r, &r) != MP_OKAY) {
           goto error;
        }
    }
    for (x = 0; x < 8; x++) {
        /* choose a */
        mp_set(&a, __prime_tab[x]);

        /* compute y = a^r mod n */
        if (mp_exptmod(&a, &r, N, &y) != MP_OKAY)             { goto error; }

        /* (y != 1) AND (y != N-1) */
        if ((mp_cmp_d(&y, 1) != 0) && (mp_cmp(&y, &n1) != 0)) {
            /* while j <= s-1 and y != n-1 */
            for (j = 1; (j <= (s-1)) && (mp_cmp(&y, &n1) != 0); j++) {
                /* y = y^2 mod N */
                if (mp_sqrmod(&y, N, &y) != MP_OKAY)          { goto error; }

                /* if y == 1 return false */
                if (mp_cmp_d(&y, 1) == 0)                     { goto loop; }
            }

            /* if y != n-1 return false */
            if (mp_cmp(&y, &n1) != 0)                         { goto loop; }
        }
    }

    res = CRYPT_OK;
    goto done;
error:
    res = CRYPT_MEM;
done:
    mp_clear_multi(&a, &y, &n1, &r, NULL);

#ifdef CLEAN_STACK
    zeromem(residues, sizeof(residues));
#endif    
    return res;
}