Пример #1
0
int ltc_ecc_is_point(const ltc_ecc_set_type *dp, void *x, void *y)
{
  void *prime, *a, *b, *t1, *t2;
  int err;

  if ((err = mp_init_multi(&prime, &a, &b, &t1, &t2, NULL)) != CRYPT_OK) {
     return err;
  }

  /* load prime, a and b */
  if ((err = mp_read_radix(prime, dp->prime, 16)) != CRYPT_OK)         goto cleanup;
  if ((err = mp_read_radix(b, dp->B, 16)) != CRYPT_OK)                 goto cleanup;
  if ((err = mp_read_radix(a, dp->A, 16)) != CRYPT_OK)                 goto cleanup;

  /* compute y^2 */
  if ((err = mp_sqr(y, t1)) != CRYPT_OK)                               goto cleanup;

  /* compute x^3 */
  if ((err = mp_sqr(x, t2)) != CRYPT_OK)                               goto cleanup;
  if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK)                       goto cleanup;
  if ((err = mp_mul(x, t2, t2)) != CRYPT_OK)                           goto cleanup;

  /* compute y^2 - x^3 */
  if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK)                          goto cleanup;

  /* compute y^2 - x^3 - a*x */
  if ((err = mp_submod(prime, a, prime, t2)) != CRYPT_OK)              goto cleanup;
  if ((err = mp_mulmod(t2, x, prime, t2)) != CRYPT_OK)                 goto cleanup;
  if ((err = mp_addmod(t1, t2, prime, t1)) != CRYPT_OK)                goto cleanup;

  /* adjust range (0, prime) */
  while (mp_cmp_d(t1, 0) == LTC_MP_LT) {
     if ((err = mp_add(t1, prime, t1)) != CRYPT_OK)                    goto cleanup;
  }
  while (mp_cmp(t1, prime) != LTC_MP_LT) {
     if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK)                    goto cleanup;
  }

  /* compare to b */
  if (mp_cmp(t1, b) != LTC_MP_EQ) {
     err = CRYPT_INVALID_PACKET;
  } else {
     err = CRYPT_OK;
  }

cleanup:
  mp_clear_multi(prime, b, t1, t2, NULL);
  return err;
}
Пример #2
0
/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d MPA(mp_int * a, mp_digit b, mp_int * c)
{
  int     res;
  mp_int  g;

  if ((res = mp_init_copy (MPST, &g, a)) != MP_OKAY) {
    return res;
  }

  /* set initial result */
  mp_set (c, 1);

  while(b > 0) {
    /* if the bit is set multiply */
    if(b & 1) {
      if ((res = mp_mul (MPST, c, &g, c)) != MP_OKAY) {
        mp_clear(&g);
        return res;
      }
    }

    /* square */
    if (b > 1 && (res = mp_sqr (MPST, &g, &g)) != MP_OKAY) {
      mp_clear(&g);
      return res;
    }

    /* shift to next bit */
    b >>= 1;
  }

  mp_clear (&g);
  return MP_OKAY;
}
Пример #3
0
/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, x;
  mp_int  g;

  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
    return res;
  }

  /* set initial result */
  mp_set (c, 1);

  for (x = 0; x < (int) DIGIT_BIT; x++) {
    /* square */
    if ((res = mp_sqr (c, c)) != MP_OKAY) {
      mp_clear (&g);
      return res;
    }

    /* if the bit is set multiply */
    if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
      if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
         mp_clear (&g);
         return res;
      }
    }

    /* shift to next bit */
    b <<= 1;
  }

  mp_clear (&g);
  return MP_OKAY;
}
Пример #4
0
static int is_point(ecc_key *key)
{
   void *prime, *b, *t1, *t2;
   int err;
   
   if ((err = mp_init_multi(&prime, &b, &t1, &t2, NULL)) != CRYPT_OK) {
      return err;
   }
   
   /* load prime and b */
   if ((err = mp_read_radix(prime, key->dp->prime, 16)) != CRYPT_OK)                          { goto error; }
   if ((err = mp_read_radix(b, key->dp->B, 16)) != CRYPT_OK)                                  { goto error; }
   
   /* compute y^2 */
   if ((err = mp_sqr(key->pubkey.y, t1)) != CRYPT_OK)                                         { goto error; }
   
   /* compute x^3 */
   if ((err = mp_sqr(key->pubkey.x, t2)) != CRYPT_OK)                                         { goto error; }
   if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK)                                             { goto error; }
   if ((err = mp_mul(key->pubkey.x, t2, t2)) != CRYPT_OK)                                     { goto error; }
   
   /* compute y^2 - x^3 */
   if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK)                                                { goto error; }
   
   /* compute y^2 - x^3 + 3x */
   if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK)                                     { goto error; }
   if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK)                                     { goto error; }
   if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK)                                     { goto error; }
   if ((err = mp_mod(t1, prime, t1)) != CRYPT_OK)                                             { goto error; }
   while (mp_cmp_d(t1, 0) == LTC_MP_LT) {
      if ((err = mp_add(t1, prime, t1)) != CRYPT_OK)                                          { goto error; }
   }
   while (mp_cmp(t1, prime) != LTC_MP_LT) {
      if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK)                                          { goto error; }
   }
   
   /* compare to b */
   if (mp_cmp(t1, b) != LTC_MP_EQ) {
      err = CRYPT_INVALID_PACKET;
   } else {
      err = CRYPT_OK;
   }
   
error:
   mp_clear_multi(prime, b, t1, t2, NULL);
   return err;
}
Пример #5
0
int  mpf_sqr(mp_float *a, mp_float *b)
{
   int err;
    if ((err = mp_sqr(&(a->mantissa), &(b->mantissa))) != MP_OKAY) {
      return err;
   }
   b->exp = 2 * a->exp;
   return mpf_normalize(b);
}
Пример #6
0
void
mpi_sqr(const mpi *a, mpi *b)
{
    if (a->size == 0) {
        mpi_zero(b);
        return;
    }

    mp_size bsize = a->size * 2;
    if (a == b) {
        mp_digit *prod = MP_TMP_ALLOC(bsize);
        mp_sqr(a->digits, a->size, prod);
        bsize -= (prod[bsize - 1] == 0);
        MPI_SIZE(b, bsize);
        mp_copy(prod, bsize, b->digits);
        MP_TMP_FREE(prod);
    } else {
        MPI_MIN_ALLOC(b, bsize);
        mp_sqr(a->digits, a->size, b->digits);
        b->size = bsize - (b->digits[bsize - 1] == 0);
    }
    b->sign = 0;
}
Пример #7
0
/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_sqr(a, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, b, c);
   mp_clear(&t);
   return res;
}
Пример #8
0
/**
  Map a projective jacbobian point back to affine space
  @param P        [in/out] The point to map
  @param modulus  The modulus of the field the ECC curve is in
  @param mp       The "b" value from montgomery_setup()
  @return CRYPT_OK on success
*/
int ltc_ecc_map(ecc_point *P, void *modulus, void *mp)
{
   void *t1, *t2;
   int   err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
      return CRYPT_MEM;
   }

   /* first map z back to normal */
   if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK)           { goto done; }

   /* get 1/z */
   if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK)                      { goto done; }
 
   /* get 1/z^2 and 1/z^3 */
   if ((err = mp_sqr(t1, t2)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK)                           { goto done; }
   if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK)                                { goto done; }
   if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK)                           { goto done; }

   /* multiply against x/y */
   if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK)                            { goto done; }
   if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK)           { goto done; }
   if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK)                            { goto done; }
   if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK)           { goto done; }
   if ((err = mp_set(P->z, 1)) != CRYPT_OK)                                   { goto done; }

   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, NULL);
   return err;
}
Пример #9
0
/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   int     res;
   unsigned int x;

   mp_int  g;

   if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
      return res;
   }

   /* set initial result */
   mp_set(c, 1uL);

   if (fast != 0) {
      while (b > 0u) {
         /* if the bit is set multiply */
         if ((b & 1u) != 0u) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* square */
         if (b > 1u) {
            if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b >>= 1;
      }
   } else {
      for (x = 0; x < (unsigned)DIGIT_BIT; x++) {
Пример #10
0
/*
 * Try to find the two primes based on 2 exponents plus either a prime
 *   or a modulus.
 *
 * In: e, d and either p or n (depending on the setting of hasModulus).
 * Out: p,q.
 * 
 * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or
 *	d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is
 *	usually less than d, then k must be an integer between e-1 and 1 
 *	(probably on the order of e).
 * Step 1a, If we were passed just a prime, we can divide k*phi by that
 *      prime-1 and get k*(q-1). This will reduce the size of our division
 *      through the rest of the loop.
 * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on
 *	the order or e, and e is typically small. This may take a while for
 *	a large random e. We are looking for a k that divides kphi
 *	evenly. Once we find a k that divides kphi evenly, we assume it 
 *	is the true k. It's possible this k is not the 'true' k but has 
 *	swapped factors of p-1 and/or q-1. Because of this, we 
 *	tentatively continue Steps 3-6 inside this loop, and may return looking
 *	for another k on failure.
 * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1).
 * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative
 *      q-1. q = phi+1. If k is correct, q should be the right length and 
 *      prime.
 * Step 4b, It's possible q-1 and k could have swapped factors. We now have a
 * 	possible solution that meets our criteria. It may not be the only 
 *      solution, however, so we keep looking. If we find more than one, 
 *      we will fail since we cannot determine which is the correct
 *      solution, and returning the wrong modulus will compromise both
 *      moduli. If no other solution is found, we return the unique solution.
 * Step 5a, If we have the modulus (n=pq), then use the following formula to 
 * 	calculate  s=(p+q): , phi = (p-1)(q-1) = pq  -p-q +1 = n-s+1. so
 *	s=n-phi+1.
 * Step 5b, Use n=pq and s=p+q to solve for p and q as follows:
 *	since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0.
 *	from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and
 *	q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE.
 *	If it is not, continue in our look looking for another k. NOTE: the
 *	code actually distributes the 1/2 and results in the equations:
 *	sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us
 *	and extra divide by 2 and a multiply by 4.
 * 
 * This will return p & q. q may be larger than p in the case that p was given
 * and it was the smaller prime.
 */
static mp_err
rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q,
			      mp_int *n, PRBool hasModulus, 
			      unsigned int keySizeInBits)
{
    mp_int kphi; /* k*phi */
    mp_int k;    /* current guess at 'k' */
    mp_int phi;  /* (p-1)(q-1) */
    mp_int s;    /* p+q/2 (s/2 in the algebra) */
    mp_int r;    /* remainder */
    mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */
    mp_int sqrt; /* sqrt(s/2*s/2-n) */
    mp_err err = MP_OKAY;
    unsigned int order_k;

    MP_DIGITS(&kphi) = 0;
    MP_DIGITS(&phi) = 0;
    MP_DIGITS(&s) = 0;
    MP_DIGITS(&k) = 0;
    MP_DIGITS(&r) = 0;
    MP_DIGITS(&tmp) = 0;
    MP_DIGITS(&sqrt) = 0;
    CHECK_MPI_OK( mp_init(&kphi) );
    CHECK_MPI_OK( mp_init(&phi) );
    CHECK_MPI_OK( mp_init(&s) );
    CHECK_MPI_OK( mp_init(&k) );
    CHECK_MPI_OK( mp_init(&r) );
    CHECK_MPI_OK( mp_init(&tmp) );
    CHECK_MPI_OK( mp_init(&sqrt) );

    /* our algorithm looks for a factor k whose maximum size is dependent
     * on the size of our smallest exponent, which had better be the public
     * exponent (if it's the private, the key is vulnerable to a brute force
     * attack).
     * 
     * since our factor search is linear, we need to limit the maximum
     * size of the public key. this should not be a problem normally, since 
     * public keys are usually small. 
     *
     * if we want to handle larger public key sizes, we should have
     * a version which tries to 'completely' factor k*phi (where completely
     * means 'factor into primes, or composites with which are products of
     * large primes). Once we have all the factors, we can sort them out and
     * try different combinations to form our phi. The risk is if (p-1)/2,
     * (q-1)/2, and k are all large primes. In any case if the public key
     * is small (order of 20 some bits), then a linear search for k is 
     * manageable.
     */
    if (mpl_significant_bits(e) > 23) {
	err=MP_RANGE;
	goto cleanup;
    }

    /* calculate k*phi = e*d - 1 */
    CHECK_MPI_OK( mp_mul(e, d, &kphi) );
    CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) );


    /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1)
     * d < (p-1)(q-1), therefor k must be less than e-1
     * We can narrow down k even more, though. Since p and q are odd and both 
     * have their high bit set, then we know that phi must be on order of 
     * keySizeBits.
     */
    order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits;

    /* for (k=kinit; order(k) >= order_k; k--) { */
    /* k=kinit: k can't be bigger than  kphi/2^(keySizeInBits -1) */
    CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) );
    CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL));
    if (mp_cmp(&k,e) >= 0) {
	/* also can't be bigger then e-1 */
        CHECK_MPI_OK( mp_sub_d(e, 1, &k) );
    }

    /* calculate our temp value */
    /* This saves recalculating this value when the k guess is wrong, which
     * is reasonably frequent. */
    /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */
    /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */
    if (hasModulus) {
	CHECK_MPI_OK( mp_add_d(n, 1, &tmp) );
    } else {
	CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) );
	CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r));
	if (mp_cmp_z(&r) != 0) {
	    /* p-1 doesn't divide kphi, some parameter wasn't correct */
	    err=MP_RANGE;
	    goto cleanup;
	}
	mp_zero(q);
	/* kphi is now k*(q-1) */
    }

    /* rest of the for loop */
    for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); 
						err = mp_sub_d(&k, 1, &k)) {
	/* looking for k as a factor of kphi */
	CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r));
	if (mp_cmp_z(&r) != 0) {
	    /* not a factor, try the next one */
	    continue;
	}
	/* we have a possible phi, see if it works */
	if (!hasModulus) {
	    if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) {
		/* phi is not the right size */
		continue;
	    }
	    /* phi should be divisible by 2, since
	     * q is odd and phi=(q-1). */
	    if (mpp_divis_d(&phi,2) == MP_NO) {
		/* phi is not divisible by 4 */
		continue;
	    }
	    /* we now have a candidate for the second prime */
	    CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp));
	    
	    /* check to make sure it is prime */
	    err = rsa_is_prime(&tmp);
	    if (err != MP_OKAY) {
		if (err == MP_NO) {
		    /* No, then we still have the wrong phi */
		    err = MP_OKAY;
        	    continue;
		}
		goto cleanup;
	    }
	    /*
	     * It is possible that we have the wrong phi if 
	     * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors).
	     * since our q_quess is prime, however. We have found a valid
	     * rsa key because:
	     *   q is the correct order of magnitude.
	     *   phi = (p-1)(q-1) where p and q are both primes.
	     *   e*d mod phi = 1.
	     * There is no way to know from the info given if this is the 
	     * original key. We never want to return the wrong key because if
	     * two moduli with the same factor is known, then euclid's gcd
	     * algorithm can be used to find that factor. Even though the 
	     * caller didn't pass the original modulus, it doesn't mean the
	     * modulus wasn't known or isn't available somewhere. So to be safe
	     * if we can't be sure we have the right q, we don't return any.
	     * 
	     * So to make sure we continue looking for other valid q's. If none
	     * are found, then we can safely return this one, otherwise we just
	     * fail */
	    if (mp_cmp_z(q) != 0) {
		/* this is the second valid q, don't return either, 
		 * just fail */
		err = MP_RANGE;
		break;
	    }
	    /* we only have one q so far, save it and if no others are found,
	     * it's safe to return it */
	    CHECK_MPI_OK(mp_copy(&tmp, q));
	    continue;
	}
	/* test our tentative phi */
	/* phi should be the correct order */
	if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) {
	    /* phi is not the right size */
	    continue;
	}
	/* phi should be divisible by 4, since
	 * p and q are odd and phi=(p-1)(q-1). */
	if (mpp_divis_d(&phi,4) == MP_NO) {
	    /* phi is not divisible by 4 */
	    continue;
	}
	/* n was given, calculate s/2=(p+q)/2 */
	CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) );
	CHECK_MPI_OK( mp_div_2(&s, &s) );

	/* calculate sqrt(s/2*s/2-n) */
	CHECK_MPI_OK(mp_sqr(&s,&sqrt));
	CHECK_MPI_OK(mp_sub(&sqrt,n,&r));  /* r as a tmp */
	CHECK_MPI_OK(mp_sqrt(&r,&sqrt));
	/* make sure it's a perfect square */
	/* r is our original value we took the square root of */
	/* q is the square of our tentative square root. They should be equal*/
	CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */
	if (mp_cmp(&r,q) != 0) {
	    /* sigh according to the doc, mp_sqrt could return sqrt-1 */
	   CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt));
	   CHECK_MPI_OK(mp_sqr(&sqrt,q));
	   if (mp_cmp(&r,q) != 0) {
		/* s*s-n not a perfect square, this phi isn't valid, find 			 * another.*/
		continue;
	    }
	}

	/* NOTE: In this case we know we have the one and only answer.
	 * "Why?", you ask. Because:
	 *    1) n is a composite of two large primes (or it wasn't a
	 *       valid RSA modulus).
	 *    2) If we know any number such that x^2-n is a perfect square 
	 *       and x is not (n+1)/2, then we can calculate 2 non-trivial
	 *       factors of n.
	 *    3) Since we know that n has only 2 non-trivial prime factors, 
	 *       we know the two factors we have are the only possible factors.
	 */

	/* Now we are home free to calculate p and q */
	/* p = s/2 + sqrt, q= s/2 - sqrt */
	CHECK_MPI_OK(mp_add(&s,&sqrt,p));
	CHECK_MPI_OK(mp_sub(&s,&sqrt,q));
	break;
    }
    if ((unsigned)mpl_significant_bits(&k) < order_k) {
	if (hasModulus || (mp_cmp_z(q) == 0)) {
	    /* If we get here, something was wrong with the parameters we 
	     * were given */
	    err = MP_RANGE; 
	}
    }
cleanup:
    mp_clear(&kphi);
    mp_clear(&phi);
    mp_clear(&s);
    mp_clear(&k);
    mp_clear(&r);
    mp_clear(&tmp);
    mp_clear(&sqrt);
    return err;
}
Пример #11
0
int
is_mersenne (long s, int *pp)
{
  mp_int  n, u;
  int     res, k;
  
  *pp = 0;

  if ((res = mp_init (&n)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&u)) != MP_OKAY) {
    goto LBL_N;
  }

  /* n = 2^s - 1 */
  if ((res = mp_2expt(&n, s)) != MP_OKAY) {
     goto LBL_MU;
  }
  if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
    goto LBL_MU;
  }

  /* set u=4 */
  mp_set (&u, 4);

  /* for k=1 to s-2 do */
  for (k = 1; k <= s - 2; k++) {
    /* u = u^2 - 2 mod n */
    if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
      goto LBL_MU;
    }
    if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
      goto LBL_MU;
    }

    /* make sure u is positive */
    while (u.sign == MP_NEG) {
      if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
         goto LBL_MU;
      }
    }

    /* reduce */
    if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
      goto LBL_MU;
    }
  }

  /* if u == 0 then its prime */
  if (mp_iszero (&u) == 1) {
    mp_prime_is_prime(&n, 8, pp);
  if (*pp != 1) printf("FAILURE\n");
  }

  res = MP_OKAY;
LBL_MU:mp_clear (&u);
LBL_N:mp_clear (&n);
  return res;
}
Пример #12
0
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
  mp_int  M[TAB_SIZE], res;
  mp_digit buf, mp;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* use a pointer to the reduction algorithm.  This allows us to use
   * one of many reduction algorithms without modding the guts of
   * the code with if statements everywhere.
   */
  int     (*redux)(mp_int*,mp_int*,mp_digit);

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

#ifdef MP_LOW_MEM
  if (winsize > 5) {
     winsize = 5;
  }
#endif

  /* init M array */
  /* init first cell */
  if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
     return err;
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* determine and setup reduction code */
  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C     
     /* now setup montgomery  */
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
#else
        err = MP_VAL;
        goto LBL_M;
#endif
     }
  } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
     /* setup DR reduction for moduli of the form B**k - b */
     mp_dr_setup(P, &mp);
     redux = mp_dr_reduce;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
     /* setup DR reduction for moduli of the form 2**k - b */
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
     redux = mp_reduce_2k;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  }

  /* setup result */
  if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
    goto LBL_M;
  }

  /* create M table
   *

   *
   * The first half of the table is not computed though accept for M[0] and M[1]
   */

  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
     /* now we need R mod m */
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
       goto LBL_RES;
     }

     /* now set M[1] to G * R mod m */
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
       goto LBL_RES;
     }
#else
     err = MP_VAL;
     goto LBL_RES;
#endif
  } else {
     mp_set(&res, 1);
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
        goto LBL_RES;
     }
  }

  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto LBL_RES;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* create upper table */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits so break */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset bitcnt */
      buf    = X->dp[digidx--];
      bitcnt = (int)DIGIT_BIT;
    }

    /* grab the next msb from the exponent */
    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* get next bit of the window */
      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }
    }
  }

  if (redmode == 0) {
     /* fixup result if Montgomery reduction is used
      * recall that any value in a Montgomery system is
      * actually multiplied by R mod n.  So we have
      * to reduce one more time to cancel out the factor
      * of R.
      */
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
       goto LBL_RES;
     }
  }

  /* swap res with Y */
  mp_exch (&res, Y);
  err = MP_OKAY;
LBL_RES:mp_clear (&res);
LBL_M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
/*
    Strong Lucas-Selfridge test.
    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite

    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
    at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
    Released into the public domain by the author, who disclaims any legal
    liability arising from its use

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
    Additional comments marked "CZ" (without the quotes) are by the code-portist.

    (If that name sounds familiar, he is the guy who found the fdiv bug in the
     Pentium (P5x, I think) Intel processor)
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
{
   /* CZ TODO: choose better variable names! */
   mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
   /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
   int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
   int e;
   int isset;

   *result = MP_NO;

   /*
   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
   indicates that, if N is not a perfect square, D will "nearly
   always" be "small." Just in case, an overflow trap for D is
   included.
   */

   if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
                          NULL)) != MP_OKAY) {
      return e;
   }

   D = 5;
   sign = 1;

   for (;;) {
      Ds   = sign * D;
      sign = -sign;
      if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* if 1 < GCD < N then N is composite with factor "D", and
         Jacobi(D,N) is technically undefined (but often returned
         as zero). */
      if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
         goto LBL_LS_ERR;
      }
      if (Ds < 0) {
         Dz.sign = MP_NEG;
      }
      if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if (J == -1) {
         break;
      }
      D += 2;

      if (D > (INT_MAX - 2)) {
         e = MP_VAL;
         goto LBL_LS_ERR;
      }
   }

   P = 1;              /* Selfridge's choice */
   Q = (1 - Ds) / 4;   /* Required so D = P*P - 4*Q */

   /* NOTE: The conditions (a) N does not divide Q, and
      (b) D is square-free or not a perfect square, are included by
      some authors; e.g., "Prime numbers and computer methods for
      factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
      p. 130. For this particular application of Lucas sequences,
      these conditions were found to be immaterial. */

   /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
      odd positive integer d and positive integer s for which
      N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
      The strong Lucas-Selfridge test then returns N as a strong
      Lucas probable prime (slprp) if any of the following
      conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
      V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
      (all equalities mod N). Thus d is the highest index of U that
      must be computed (since V_2m is independent of U), compared
      to U_{N+1} for the standard Lucas-Selfridge test; and no
      index of V beyond (N+1)/2 is required, just as in the
      standard Lucas-Selfridge test. However, the quantity Q^d must
      be computed for use (if necessary) in the latter stages of
      the test. The result is that the strong Lucas-Selfridge test
      has a running time only slightly greater (order of 10 %) than
      that of the standard Lucas-Selfridge test, while producing
      only (roughly) 30 % as many pseudoprimes (and every strong
      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
      the evidence indicates that the strong Lucas-Selfridge test is
      more effective than the standard Lucas-Selfridge test, and a
      Baillie-PSW test based on the strong Lucas-Selfridge test
      should be more reliable. */

   if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   s = mp_cnt_lsb(&Np1);

   /* CZ
    * This should round towards zero because
    * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
    * and mp_div_2d() is equivalent. Additionally:
    * dividing an even number by two does not produce
    * any leftovers.
    */
   if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   /* We must now compute U_d and V_d. Since d is odd, the accumulated
      values U and V are initialized to U_1 and V_1 (if the target
      index were even, U and V would be initialized instead to U_0=0
      and V_0=2). The values of U_2m and V_2m are also initialized to
      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
      (1, 2, 3, ...) of t are on (the zero bit having been accounted
      for in the initialization of U and V), these values are then
      combined with the previous totals for U and V, using the
      composition formulas for addition of indices. */

   mp_set(&Uz, 1uL);    /* U=U_1 */
   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
   mp_set(&U2mz, 1uL);  /* U_1 */
   mp_set(&V2mz, (mp_digit)P);  /* V_1 */

   if (Q < 0) {
      Q = -Q;
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      Qmz.sign = MP_NEG;
      Q2mz.sign = MP_NEG;
      Qkdz.sign = MP_NEG;
      Q = -Q;
   } else {
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
   }

   Nbits = mp_count_bits(&Dz);
   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
      /* Formulas for doubling of indices (carried out mod N). Note that
       * the indices denoted as "2m" are actually powers of 2, specifically
       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
       *
       * U_2m = U_m*V_m
       * V_2m = V_m*V_m - 2*Q^m
       */

      if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
      if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* prevents overflow */ /* CZ  still necessary without a fixed prealloc'd mem.? */
      if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) {
         e = isset;
         goto LBL_LS_ERR;
      }
      if (isset == MP_YES) {
         /* Formulas for addition of indices (carried out mod N);
          *
          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
          *
          * Be careful with division by 2 (mod N)!
          */

         if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Uz) != MP_NO) {
            if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         /* CZ
          * This should round towards negative infinity because
          * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
          * But mp_div_2() does not do so, it is truncating instead.
          */
         if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Uz.sign == MP_NEG) && (mp_isodd(&Uz) != MP_NO)) {
            if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Vz) != MP_NO) {
            if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Vz.sign == MP_NEG) && (mp_isodd(&Vz) != MP_NO)) {
            if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         /* Calculating Q^d for later use */
         if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }

   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
      strong Lucas pseudoprime. */
   if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) {
      *result = MP_YES;
      goto LBL_LS_ERR;
   }

   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
      1995/6) omits the condition V0 on p.142, but includes it on
      p. 130. The condition is NECESSARY; otherwise the test will
      return false negatives---e.g., the primes 29 and 2000029 will be
      returned as composite. */

   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
      these are congruent to 0 mod N, then N is a prime or a strong
      Lucas pseudoprime. */

   /* Initialize 2*Q^(d*2^r) for V_2m */
   if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }

   for (r = 1; r < s; r++) {
      if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if (mp_iszero(&Vz) != MP_NO) {
         *result = MP_YES;
         goto LBL_LS_ERR;
      }
      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
      if (r < (s - 1)) {
         if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }
LBL_LS_ERR:
   mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
   return e;
}
Пример #14
0
/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
  mp_int  x0, x1, t1, t2, x0x0, x1x1;
  int     B, err;

  err = MP_MEM;

  /* min # of digits */
  B = USED(a);

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, USED(a) - B) != MP_OKAY)
    goto X0;

  /* init temps */
  if (mp_init_size (&t1, USED(a) * 2) != MP_OKAY)
    goto X1;
  if (mp_init_size (&t2, USED(a) * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (USED(a) - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    register int x;
    register mp_digit *dst, *src;

    src = DIGITS(a);

    /* now shift the digits */
    dst = DIGITS(&x0);
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
    }

    dst = DIGITS(&x1);
    for (x = B; x < USED(a); x++) {
      *dst++ = *src++;
    }
  }

  SET_USED(&x0,B);
  SET_USED(&x1,USED(a) - B);

  mp_clamp (&x0);

  /* now calc the products x0*x0 and x1*x1 */
  if (mp_sqr (&x0, &x0x0) != MP_OKAY)
    goto X1X1;           /* x0x0 = x0*x0 */
  if (mp_sqr (&x1, &x1x1) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1*x1 */

  /* now calc (x1+x0)**2 */
  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x1 - x0 */
  if (mp_sqr (&t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

  /* add x0y0 */
  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
    goto X1X1;           /* t2 = x0x0 + x1x1 */
  if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
  if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1x1 << 2*B */

  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 */
  if (mp_add (&t1, &x1x1, b) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

  err = MP_OKAY;

X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}
Пример #15
0
/*
  Sets ret to nonzero value if arg is square, 0 if not
  Sets t to the square root of arg if one is available, 0 if not
 */
static int mp_issquare(mp_int *arg, int *ret, mp_int *t)
{
   int res;
   mp_digit c;
   mp_int tmp;

   unsigned long r;

   /* Default to Non-square :) */
   *ret = MP_NO;

   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* digits used?  (TSD) */
   if (arg->used == 0) {
      return MP_OKAY;
   }

   /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
   if (rem_128[127 & DIGIT(arg, 0)] == 1) {
      mp_set_int(t, (mp_digit)(0));
      return MP_OKAY;
   }

   /* Next check mod 105 (3*5*7) */
   if ((res = mp_mod_d(arg, 105, &c)) != MP_OKAY) {
      mp_set_int(t, (mp_digit)(0));
      return res;
   }
   if (rem_105[c] == 1) {
      mp_set_int(t, (mp_digit)(0));
      return MP_OKAY;
   }
   if ((res =
           mp_init_set_int(t,
                           11L * 13L * 17L * 19L * 23L * 29L * 31L)) != MP_OKAY) {
      mp_set_int(t, (mp_digit)(0));
      return res;
   }
   if ((res = mp_mod(arg, t, t)) != MP_OKAY) {
      goto ERR;
   }
   r = mp_get_int(t);
   /* Check for other prime modules. We know that res
    * is already equal to MP_OKAY from the mp_mod call
    */
   if ((1L << (r % 11)) & 0x5C4L)
      goto ERR;
   if ((1L << (r % 13)) & 0x9E4L)
      goto ERR;
   if ((1L << (r % 17)) & 0x5CE8L)
      goto ERR;
   if ((1L << (r % 19)) & 0x4F50CL)
      goto ERR;
   if ((1L << (r % 23)) & 0x7ACCA0L)
      goto ERR;
   if ((1L << (r % 29)) & 0xC2EDD0CL)
      goto ERR;
   if ((1L << (r % 31)) & 0x6DE2B848L)
      goto ERR;

   /* Final check - is sqr(sqrt(arg)) == arg ? */
   if ((res = mp_sqrt(arg, t)) != MP_OKAY) {
      goto ERR;
   }
   mp_init(&tmp);
   if ((res = mp_sqr(t, &tmp)) != MP_OKAY) {
      goto ERR;
   }

   *ret = (mp_cmp_mag(&tmp, arg) == MP_EQ) ? MP_YES : MP_NO;
   mp_clear(&tmp);
   return res;
ERR:
   mp_set_int(t, (mp_digit)(0));
   mp_clear(&tmp);
   return res;
}
Пример #16
0
int main(void)
{
   mp_int a, b, c, d, e, f;
   unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n,
      gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t;
   unsigned rr;
   int i, n, err, cnt, ix, old_kara_m, old_kara_s;
   mp_digit mp;


   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);
   mp_init(&f);

   srand(time(NULL));

#if 0
   // test montgomery
   printf("Testing montgomery...\n");
   for (i = 1; i < 10; i++) {
      printf("Testing digit size: %d\n", i);
      for (n = 0; n < 1000; n++) {
         mp_rand(&a, i);
         a.dp[0] |= 1;

         // let's see if R is right
         mp_montgomery_calc_normalization(&b, &a);
         mp_montgomery_setup(&a, &mp);

         // now test a random reduction
         for (ix = 0; ix < 100; ix++) {
             mp_rand(&c, 1 + abs(rand()) % (2*i));
             mp_copy(&c, &d);
             mp_copy(&c, &e);

             mp_mod(&d, &a, &d);
             mp_montgomery_reduce(&c, &a, mp);
             mp_mulmod(&c, &b, &a, &c);

             if (mp_cmp(&c, &d) != MP_EQ) {
printf("d = e mod a, c = e MOD a\n");
mp_todecimal(&a, buf); printf("a = %s\n", buf);
mp_todecimal(&e, buf); printf("e = %s\n", buf);
mp_todecimal(&d, buf); printf("d = %s\n", buf);
mp_todecimal(&c, buf); printf("c = %s\n", buf);
printf("compare no compare!\n"); exit(EXIT_FAILURE); }
         }
      }
   }
   printf("done\n");

   // test mp_get_int
   printf("Testing: mp_get_int\n");
   for (i = 0; i < 1000; ++i) {
      t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF;
      mp_set_int(&a, t);
      if (t != mp_get_int(&a)) {
	 printf("mp_get_int() bad result!\n");
	 return 1;
      }
   }
   mp_set_int(&a, 0);
   if (mp_get_int(&a) != 0) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   mp_set_int(&a, 0xffffffff);
   if (mp_get_int(&a) != 0xffffffff) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   // test mp_sqrt
   printf("Testing: mp_sqrt\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);
      n = (rand() & 15) + 1;
      mp_rand(&a, n);
      if (mp_sqrt(&a, &b) != MP_OKAY) {
	 printf("mp_sqrt() error!\n");
	 return 1;
      }
      mp_n_root(&a, 2, &a);
      if (mp_cmp_mag(&b, &a) != MP_EQ) {
	 printf("mp_sqrt() bad result!\n");
	 return 1;
      }
   }

   printf("\nTesting: mp_is_square\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);

      /* test mp_is_square false negatives */
      n = (rand() & 7) + 1;
      mp_rand(&a, n);
      mp_sqr(&a, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fn:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 0) {
	 printf("fn:mp_is_square() bad result!\n");
	 return 1;
      }

      /* test for false positives */
      mp_add_d(&a, 1, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fp:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 1) {
	 printf("fp:mp_is_square() bad result!\n");
	 return 1;
      }

   }
   printf("\n\n");

   /* test for size */
   for (ix = 10; ix < 128; ix++) {
      printf("Testing (not safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    (rand() & 1) ? LTM_PRIME_2MSB_OFF :
			    LTM_PRIME_2MSB_ON, myrng, NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
   }

   for (ix = 16; ix < 128; ix++) {
      printf("Testing (   safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    ((rand() & 1) ? LTM_PRIME_2MSB_OFF :
			     LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng,
			    NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
      /* let's see if it's really a safe prime */
      mp_sub_d(&a, 1, &a);
      mp_div_2(&a, &a);
      mp_prime_is_prime(&a, 8, &cnt);
      if (cnt != MP_YES) {
	 printf("sub is not prime!\n");
	 return EXIT_FAILURE;
      }
   }

   printf("\n\n");

   mp_read_radix(&a, "123456", 10);
   mp_toradix_n(&a, buf, 10, 3);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 4);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 30);
   printf("a == %s\n", buf);


#if 0
   for (;;) {
      fgets(buf, sizeof(buf), stdin);
      mp_read_radix(&a, buf, 10);
      mp_prime_next_prime(&a, 5, 1);
      mp_toradix(&a, buf, 10);
      printf("%s, %lu\n", buf, a.dp[0] & 3);
   }
#endif

   /* test mp_cnt_lsb */
   printf("testing mp_cnt_lsb...\n");
   mp_set(&a, 1);
   for (ix = 0; ix < 1024; ix++) {
      if (mp_cnt_lsb(&a) != ix) {
	 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
	 return 0;
      }
      mp_mul_2(&a, &a);
   }

/* test mp_reduce_2k */
   printf("Testing mp_reduce_2k...\n");
   for (cnt = 3; cnt <= 128; ++cnt) {
      mp_digit tmp;

      mp_2expt(&a, cnt);
      mp_sub_d(&a, 2, &a);	/* a = 2**cnt - 2 */


      printf("\nTesting %4d bits", cnt);
      printf("(%d)", mp_reduce_is_2k(&a));
      mp_reduce_2k_setup(&a, &tmp);
      printf("(%d)", tmp);
      for (ix = 0; ix < 1000; ix++) {
	 if (!(ix & 127)) {
	    printf(".");
	    fflush(stdout);
	 }
	 mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2);
	 mp_copy(&c, &b);
	 mp_mod(&c, &a, &c);
	 mp_reduce_2k(&b, &a, 2);
	 if (mp_cmp(&c, &b)) {
	    printf("FAILED\n");
	    exit(0);
	 }
      }
   }

/* test mp_div_3  */
   printf("Testing mp_div_3...\n");
   mp_set(&d, 3);
   for (cnt = 0; cnt < 10000;) {
      mp_digit r1, r2;

      if (!(++cnt & 127))
	 printf("%9d\r", cnt);
      mp_rand(&a, abs(rand()) % 128 + 1);
      mp_div(&a, &d, &b, &e);
      mp_div_3(&a, &c, &r2);

      if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
	 printf("\n\nmp_div_3 => Failure\n");
      }
   }
   printf("\n\nPassed div_3 testing\n");

/* test the DR reduction */
   printf("testing mp_dr_reduce...\n");
   for (cnt = 2; cnt < 32; cnt++) {
      printf("%d digit modulus\n", cnt);
      mp_grow(&a, cnt);
      mp_zero(&a);
      for (ix = 1; ix < cnt; ix++) {
	 a.dp[ix] = MP_MASK;
      }
      a.used = cnt;
      a.dp[0] = 3;

      mp_rand(&b, cnt - 1);
      mp_copy(&b, &c);

      rr = 0;
      do {
	 if (!(rr & 127)) {
	    printf("%9lu\r", rr);
	    fflush(stdout);
	 }
	 mp_sqr(&b, &b);
	 mp_add_d(&b, 1, &b);
	 mp_copy(&b, &c);

	 mp_mod(&b, &a, &b);
	 mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]);

	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("Failed on trial %lu\n", rr);
	    exit(-1);

	 }
      } while (++rr < 500);
      printf("Passed DR test for %d digits\n", cnt);
   }

#endif

/* test the mp_reduce_2k_l code */
#if 0
#if 0
/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
   mp_2expt(&a, 1024);
   mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
   mp_sub(&a, &b, &a);
#elif 1
/*  p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F  */
   mp_2expt(&a, 2048);
   mp_read_radix(&b,
		 "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
		 16);
   mp_sub(&a, &b, &a);
#endif

   mp_todecimal(&a, buf);
   printf("p==%s\n", buf);
/* now mp_reduce_is_2k_l() should return */
   if (mp_reduce_is_2k_l(&a) != 1) {
      printf("mp_reduce_is_2k_l() return 0, should be 1\n");
      return EXIT_FAILURE;
   }
   mp_reduce_2k_setup_l(&a, &d);
   /* now do a million square+1 to see if it varies */
   mp_rand(&b, 64);
   mp_mod(&b, &a, &b);
   mp_copy(&b, &c);
   printf("testing mp_reduce_2k_l...");
   fflush(stdout);
   for (cnt = 0; cnt < (1UL << 20); cnt++) {
      mp_sqr(&b, &b);
      mp_add_d(&b, 1, &b);
      mp_reduce_2k_l(&b, &a, &d);
      mp_sqr(&c, &c);
      mp_add_d(&c, 1, &c);
      mp_mod(&c, &a, &c);
      if (mp_cmp(&b, &c) != MP_EQ) {
	 printf("mp_reduce_2k_l() failed at step %lu\n", cnt);
	 mp_tohex(&b, buf);
	 printf("b == %s\n", buf);
	 mp_tohex(&c, buf);
	 printf("c == %s\n", buf);
	 return EXIT_FAILURE;
      }
   }
   printf("...Passed\n");
#endif

   div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
      sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n =
      sub_d_n = 0;

   /* force KARA and TOOM to enable despite cutoffs */
   KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8;
   TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16;

   for (;;) {
      /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
      switch (abs(rand()) % 7) {
      case 0:
	 mp_clear(&a);
	 mp_init(&a);
	 break;
      case 1:
	 mp_clear(&b);
	 mp_init(&b);
	 break;
      case 2:
	 mp_clear(&c);
	 mp_init(&c);
	 break;
      case 3:
	 mp_clear(&d);
	 mp_init(&d);
	 break;
      case 4:
	 mp_clear(&e);
	 mp_init(&e);
	 break;
      case 5:
	 mp_clear(&f);
	 mp_init(&f);
	 break;
      case 6:
	 break;			/* don't clear any */
      }


      printf
	 ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ",
	  add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n,
	  expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
      fgets(cmd, 4095, stdin);
      cmd[strlen(cmd) - 1] = 0;
      printf("%s  ]\r", cmd);
      fflush(stdout);
      if (!strcmp(cmd, "mul2d")) {
	 ++mul2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_mul_2d(&a, rr, &a);
	 a.sign = b.sign;
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("mul2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div2d")) {
	 ++div2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_div_2d(&a, rr, &a, &e);
	 a.sign = b.sign;
	 if (a.used == b.used && a.used == 0) {
	    a.sign = b.sign = MP_ZPOS;
	 }
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("div2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add")) {
	 ++add_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_add(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("add %lu failure!\n", add_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

	 /* test the sign/unsigned storage functions */

	 rr = mp_signed_bin_size(&c);
	 mp_to_signed_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_signed_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mp_signed_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }


	 rr = mp_unsigned_bin_size(&c);
	 mp_to_unsigned_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp_mag(&c, &d) != MP_EQ) {
	    printf("mp_unsigned_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sub")) {
	 ++sub_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_sub(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("sub %lu failure!\n", sub_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul")) {
	 ++mul_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_mul(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mul %lu failure!\n", mul_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div")) {
	 ++div_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);

	 mp_div(&a, &b, &e, &f);
	 if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
	    printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e),
		   mp_cmp(&d, &f));
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    draw(&f);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sqr")) {
	 ++sqr_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_copy(&a, &c);
	 mp_sqr(&c, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sqr %lu failure!\n", sqr_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "gcd")) {
	 ++gcd_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_gcd(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("gcd %lu failure!\n", gcd_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "lcm")) {
	 ++lcm_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_lcm(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("lcm %lu failure!\n", lcm_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "expt")) {
	 ++expt_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);
	 mp_copy(&a, &e);
	 mp_exptmod(&e, &b, &c, &e);
	 if (mp_cmp(&d, &e) != MP_EQ) {
	    printf("expt %lu failure!\n", expt_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    return 0;
	 }
      } else if (!strcmp(cmd, "invmod")) {
	 ++inv_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_invmod(&a, &b, &d);
	 mp_mulmod(&d, &a, &b, &e);
	 if (mp_cmp_d(&e, 1) != MP_EQ) {
	    printf("inv [wrong value from MPI?!] failure\n");
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    mp_gcd(&a, &b, &e);
	    draw(&e);
	    return 0;
	 }

      } else if (!strcmp(cmd, "div2")) {
	 ++div2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_div_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("div_2 %lu failure\n", div2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul2")) {
	 ++mul2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_mul_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("mul_2 %lu failure\n", mul2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add_d")) {
	 ++add_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_add_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("add_d %lu failure\n", add_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      } else if (!strcmp(cmd, "sub_d")) {
	 ++sub_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_sub_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sub_d %lu failure\n", sub_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      }
   }
   return 0;
}
Пример #17
0
int main(void)
{
    ulong64 tt, gg, CLK_PER_SEC;
    FILE *log, *logb, *logc, *logd;
    mp_int a, b, c, d, e, f;
    int n, cnt, ix, old_kara_m, old_kara_s;
    unsigned rr;

    mp_init(&a);
    mp_init(&b);
    mp_init(&c);
    mp_init(&d);
    mp_init(&e);
    mp_init(&f);

    srand(time(NULL));


    /* temp. turn off TOOM */
    TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;

    CLK_PER_SEC = TIMFUNC();
    sleep(1);
    CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;

    printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
    goto exptmod;
    log = fopen("logs/add.log", "w");
    for (cnt = 8; cnt <= 128; cnt += 8) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);
        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_add(&a, &b, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 100000);
        printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
        fflush(log);
    }
    fclose(log);

    log = fopen("logs/sub.log", "w");
    for (cnt = 8; cnt <= 128; cnt += 8) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);
        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_sub(&a, &b, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 100000);

        printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
        fflush(log);
    }
    fclose(log);

    /* do mult/square twice, first without karatsuba and second with */
multtest:
    old_kara_m = KARATSUBA_MUL_CUTOFF;
    old_kara_s = KARATSUBA_SQR_CUTOFF;
    for (ix = 0; ix < 2; ix++) {
        printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");

        KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
        KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;

        log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
        for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
            SLEEP;
            mp_rand(&a, cnt);
            mp_rand(&b, cnt);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_mul(&a, &b, &c));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 100);
            printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
            fflush(log);
        }
        fclose(log);

        log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
        for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
            SLEEP;
            mp_rand(&a, cnt);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_sqr(&a, &b));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 100);
            printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
            fflush(log);
        }
        fclose(log);

    }
exptmod:

    {
        char *primes[] = {
            /* 2K large moduli */
            "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
            "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
            "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
            /* 2K moduli mersenne primes */
            "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
            "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
            "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
            "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
            "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
            "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",

            /* DR moduli */
            "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
            "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
            "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
            "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
            "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
            "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
            "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",

            /* generic unrestricted moduli */
            "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
            "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
            "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
            "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
            "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
            "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
            "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
            NULL
        };
        log = fopen("logs/expt.log", "w");
        logb = fopen("logs/expt_dr.log", "w");
        logc = fopen("logs/expt_2k.log", "w");
        logd = fopen("logs/expt_2kl.log", "w");
        for (n = 0; primes[n]; n++) {
            SLEEP;
            mp_read_radix(&a, primes[n], 10);
            mp_zero(&b);
            for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
                mp_mul_2(&b, &b);
                b.dp[0] |= lbit();
                b.used += 1;
            }
            mp_sub_d(&a, 1, &c);
            mp_mod(&b, &c, &b);
            mp_set(&c, 3);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_exptmod(&c, &b, &a, &d));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 10);
            mp_sub_d(&a, 1, &e);
            mp_sub(&e, &b, &b);
            mp_exptmod(&c, &b, &a, &e);	/* c^(p-1-b) mod a */
            mp_mulmod(&e, &d, &a, &d);	/* c^b * c^(p-1-b) == c^p-1 == 1 */
            if (mp_cmp_d(&d, 1)) {
                printf("Different (%d)!!!\n", mp_count_bits(&a));
                draw(&d);
                exit(0);
            }
            printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
                    "%d %9llu\n", mp_count_bits(&a), tt);
        }
    }
    fclose(log);
    fclose(logb);
    fclose(logc);
    fclose(logd);

    log = fopen("logs/invmod.log", "w");
    for (cnt = 4; cnt <= 128; cnt += 4) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);

        do {
            mp_add_d(&b, 1, &b);
            mp_gcd(&a, &b, &c);
        } while (mp_cmp_d(&c, 1) != MP_EQ);

        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_invmod(&b, &a, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 1000);
        mp_mulmod(&b, &c, &a, &d);
        if (mp_cmp_d(&d, 1) != MP_EQ) {
            printf("Failed to invert\n");
            return 0;
        }
        printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
    }
    fclose(log);

    return 0;
}
Пример #18
0
int main(void)
{
   int n, tmp;
   mp_int a, b, c, d, e;
   clock_t t1;
   char buf[4096];

   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);


   /* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
/*
   mp_set(&a, 1);
   for (n = 1; n < 8192; n++) {
       mp_mul(&a, &a, &c);
       printf("mul\n");
       mp_to64(&a, buf);
       printf("%s\n%s\n", buf, buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);

       mp_add_d(&a, 1, &a);
       mp_mul_2(&a, &a);
       mp_sub_d(&a, 1, &a);
   }
*/

   rng = fopen("/dev/urandom", "rb");
   if (rng == NULL) {
      rng = fopen("/dev/random", "rb");
      if (rng == NULL) {
         fprintf(stderr, "\nWarning:  stdin used as random source\n\n");
         rng = stdin;
      }
   }

   t1 = clock();
   for (;;) {
#if 0
      if (clock() - t1 > CLOCKS_PER_SEC) {
         sleep(2);
         t1 = clock();
      }
#endif
       n = fgetc(rng) % 15;

   if (n == 0) {
       /* add tests */
       rand_num(&a);
       rand_num(&b);
       mp_add(&a, &b, &c);
       printf("add\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 1) {
      /* sub tests */
       rand_num(&a);
       rand_num(&b);
       mp_sub(&a, &b, &c);
       printf("sub\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 2) {
       /* mul tests */
       rand_num(&a);
       rand_num(&b);
       mp_mul(&a, &b, &c);
       printf("mul\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 3) {
      /* div tests */
       rand_num(&a);
       rand_num(&b);
       mp_div(&a, &b, &c, &d);
       printf("div\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
       mp_to64(&d, buf);
       printf("%s\n", buf);
   } else if (n == 4) {
      /* sqr tests */
       rand_num(&a);
       mp_sqr(&a, &b);
       printf("sqr\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
   } else if (n == 5) {
      /* mul_2d test */
      rand_num(&a);
      mp_copy(&a, &b);
      n = fgetc(rng) & 63;
      mp_mul_2d(&b, n, &b);
      mp_to64(&a, buf);
      printf("mul2d\n");
      printf("%s\n", buf);
      printf("%d\n", n);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 6) {
      /* div_2d test */
      rand_num(&a);
      mp_copy(&a, &b);
      n = fgetc(rng) & 63;
      mp_div_2d(&b, n, &b, NULL);
      mp_to64(&a, buf);
      printf("div2d\n");
      printf("%s\n", buf);
      printf("%d\n", n);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 7) {
      /* gcd test */
      rand_num(&a);
      rand_num(&b);
      a.sign = MP_ZPOS;
      b.sign = MP_ZPOS;
      mp_gcd(&a, &b, &c);
      printf("gcd\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 8) {
      /* lcm test */
      rand_num(&a);
      rand_num(&b);
      a.sign = MP_ZPOS;
      b.sign = MP_ZPOS;
      mp_lcm(&a, &b, &c);
      printf("lcm\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 9) {
      /* exptmod test */
      rand_num2(&a);
      rand_num2(&b);
      rand_num2(&c);
//      if (c.dp[0]&1) mp_add_d(&c, 1, &c);
      a.sign = b.sign = c.sign = 0;
      mp_exptmod(&a, &b, &c, &d);
      printf("expt\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
      mp_to64(&d, buf);
      printf("%s\n", buf);
   } else if (n == 10) {
      /* invmod test */
      rand_num2(&a);
      rand_num2(&b);
      b.sign = MP_ZPOS;
      a.sign = MP_ZPOS;
      mp_gcd(&a, &b, &c);
      if (mp_cmp_d(&c, 1) != 0) continue;
      if (mp_cmp_d(&b, 1) == 0) continue;
      mp_invmod(&a, &b, &c);
      printf("invmod\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 11) {
      rand_num(&a);
      mp_mul_2(&a, &a);
      mp_div_2(&a, &b);
      printf("div2\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 12) {
      rand_num2(&a);
      mp_mul_2(&a, &b);
      printf("mul2\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 13) {
      rand_num2(&a);
      tmp = abs(rand()) & THE_MASK;
      mp_add_d(&a, tmp, &b);
      printf("add_d\n");
      mp_to64(&a, buf);
      printf("%s\n%d\n", buf, tmp);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 14) {
      rand_num2(&a);
      tmp = abs(rand()) & THE_MASK;
      mp_sub_d(&a, tmp, &b);
      printf("sub_d\n");
      mp_to64(&a, buf);
      printf("%s\n%d\n", buf, tmp);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   }
   }
   fclose(rng);
   return 0;
}
Пример #19
0
/* Do modular exponentiation using integer multiply code. */
mp_err mp_exptmod_i(const mp_int *   montBase, 
                    const mp_int *   exponent, 
		    const mp_int *   modulus, 
		    mp_int *         result, 
		    mp_mont_modulus *mmm, 
		    int              nLen, 
		    mp_size          bits_in_exponent, 
		    mp_size          window_bits,
		    mp_size          odd_ints)
{
  mp_int *pa1, *pa2, *ptmp;
  mp_size i;
  mp_err  res;
  int     expOff;
  mp_int  accum1, accum2, power2, oddPowers[MAX_ODD_INTS];

  /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
  /* oddPowers[i] = base ** (2*i + 1); */

  MP_DIGITS(&accum1) = 0;
  MP_DIGITS(&accum2) = 0;
  MP_DIGITS(&power2) = 0;
  for (i = 0; i < MAX_ODD_INTS; ++i) {
    MP_DIGITS(oddPowers + i) = 0;
  }

  MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
  MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );

  MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );

  mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
  MP_CHECKOK( mp_sqr(montBase, &power2) );	/* power2 = montBase ** 2 */
  MP_CHECKOK( s_mp_redc(&power2, mmm) );

  for (i = 1; i < odd_ints; ++i) {
    mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
    MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
    MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
  }

  /* set accumulator to montgomery residue of 1 */
  mp_set(&accum1, 1);
  MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
  pa1 = &accum1;
  pa2 = &accum2;

  for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
    mp_size smallExp;
    MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
    smallExp = (mp_size)res;

    if (window_bits == 1) {
      if (!smallExp) {
	SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 1) {
	SQR(pa1,pa2); MUL(0,pa2,pa1);
      } else {
	ABORT;
      }
    } else if (window_bits == 4) {
      if (!smallExp) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
      } else if (smallExp & 1) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	MUL(smallExp/2, pa1,pa2); SWAPPA;
      } else if (smallExp & 2) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
	MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 4) {
	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 8) {
	SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else {
	ABORT;
      }
    } else if (window_bits == 5) {
      if (!smallExp) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 1) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
      } else if (smallExp & 2) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
      } else if (smallExp & 4) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
	MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
      } else if (smallExp & 8) {
	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
      } else if (smallExp & 0x10) {
	SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
      } else {
	ABORT;
      }
    } else if (window_bits == 6) {
      if (!smallExp) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); SQR(pa2,pa1);
      } else if (smallExp & 1) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
      } else if (smallExp & 2) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 4) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 8) {
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
	MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 0x10) {
	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else if (smallExp & 0x20) {
	SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2); 
	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
      } else {
	ABORT;
      }
    } else {
      ABORT;
    }
  }

  res = s_mp_redc(pa1, mmm);
  mp_exch(pa1, result);

CLEANUP:
  mp_clear(&accum1);
  mp_clear(&accum2);
  mp_clear(&power2);
  for (i = 0; i < odd_ints; ++i) {
    mp_clear(oddPowers + i);
  }
  return res;
}
Пример #20
0
int main(int argc, char *argv[])
{
   int n, tmp;
   long long max;
   mp_int a, b, c, d, e;
#ifdef MTEST_NO_FULLSPEED
   clock_t t1;
#endif
   char buf[4096];

   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);

   if (argc > 1) {
       max = strtol(argv[1], NULL, 0);
       if (max < 0) {
           if (max > -64) {
               max = (1 << -(max)) + 1;
           } else {
               max = 1;
           }
       } else if (max == 0) {
           max = 1;
       }
   }
   else {
       max = 0;
   }


   /* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
/*
   mp_set(&a, 1);
   for (n = 1; n < 8192; n++) {
       mp_mul(&a, &a, &c);
       printf("mul\n");
       mp_to64(&a, buf);
       printf("%s\n%s\n", buf, buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);

       mp_add_d(&a, 1, &a);
       mp_mul_2(&a, &a);
       mp_sub_d(&a, 1, &a);
   }
*/

#ifdef LTM_MTEST_REAL_RAND
   rng = fopen("/dev/urandom", "rb");
   if (rng == NULL) {
      rng = fopen("/dev/random", "rb");
      if (rng == NULL) {
         fprintf(stderr, "\nWarning:  stdin used as random source\n\n");
         rng = stdin;
      }
   }
#else
   srand(23);
#endif

#ifdef MTEST_NO_FULLSPEED
   t1 = clock();
#endif
   for (;;) {
#ifdef MTEST_NO_FULLSPEED
      if (clock() - t1 > CLOCKS_PER_SEC) {
         sleep(2);
         t1 = clock();
      }
#endif
       n = getRandChar() % 15;

       if (max != 0) {
           --max;
           if (max == 0)
             n = 255;
       }

   if (n == 0) {
       /* add tests */
       rand_num(&a);
       rand_num(&b);
       mp_add(&a, &b, &c);
       printf("add\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 1) {
      /* sub tests */
       rand_num(&a);
       rand_num(&b);
       mp_sub(&a, &b, &c);
       printf("sub\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 2) {
       /* mul tests */
       rand_num(&a);
       rand_num(&b);
       mp_mul(&a, &b, &c);
       printf("mul\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
   } else if (n == 3) {
      /* div tests */
       rand_num(&a);
       rand_num(&b);
       mp_div(&a, &b, &c, &d);
       printf("div\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
       mp_to64(&c, buf);
       printf("%s\n", buf);
       mp_to64(&d, buf);
       printf("%s\n", buf);
   } else if (n == 4) {
      /* sqr tests */
       rand_num(&a);
       mp_sqr(&a, &b);
       printf("sqr\n");
       mp_to64(&a, buf);
       printf("%s\n", buf);
       mp_to64(&b, buf);
       printf("%s\n", buf);
   } else if (n == 5) {
      /* mul_2d test */
      rand_num(&a);
      mp_copy(&a, &b);
      n = getRandChar() & 63;
      mp_mul_2d(&b, n, &b);
      mp_to64(&a, buf);
      printf("mul2d\n");
      printf("%s\n", buf);
      printf("%d\n", n);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 6) {
      /* div_2d test */
      rand_num(&a);
      mp_copy(&a, &b);
      n = getRandChar() & 63;
      mp_div_2d(&b, n, &b, NULL);
      mp_to64(&a, buf);
      printf("div2d\n");
      printf("%s\n", buf);
      printf("%d\n", n);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 7) {
      /* gcd test */
      rand_num(&a);
      rand_num(&b);
      a.sign = MP_ZPOS;
      b.sign = MP_ZPOS;
      mp_gcd(&a, &b, &c);
      printf("gcd\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 8) {
      /* lcm test */
      rand_num(&a);
      rand_num(&b);
      a.sign = MP_ZPOS;
      b.sign = MP_ZPOS;
      mp_lcm(&a, &b, &c);
      printf("lcm\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 9) {
      /* exptmod test */
      rand_num2(&a);
      rand_num2(&b);
      rand_num2(&c);
//      if (c.dp[0]&1) mp_add_d(&c, 1, &c);
      a.sign = b.sign = c.sign = 0;
      mp_exptmod(&a, &b, &c, &d);
      printf("expt\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
      mp_to64(&d, buf);
      printf("%s\n", buf);
   } else if (n == 10) {
      /* invmod test */
      do {
      rand_num2(&a);
      rand_num2(&b);
      b.sign = MP_ZPOS;
      a.sign = MP_ZPOS;
      mp_gcd(&a, &b, &c);
      } while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
      mp_invmod(&a, &b, &c);
      printf("invmod\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
      mp_to64(&c, buf);
      printf("%s\n", buf);
   } else if (n == 11) {
      rand_num(&a);
      mp_mul_2(&a, &a);
      mp_div_2(&a, &b);
      printf("div2\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 12) {
      rand_num2(&a);
      mp_mul_2(&a, &b);
      printf("mul2\n");
      mp_to64(&a, buf);
      printf("%s\n", buf);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 13) {
      rand_num2(&a);
      tmp = abs(rand()) & THE_MASK;
      mp_add_d(&a, tmp, &b);
      printf("add_d\n");
      mp_to64(&a, buf);
      printf("%s\n%d\n", buf, tmp);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 14) {
      rand_num2(&a);
      tmp = abs(rand()) & THE_MASK;
      mp_sub_d(&a, tmp, &b);
      printf("sub_d\n");
      mp_to64(&a, buf);
      printf("%s\n%d\n", buf, tmp);
      mp_to64(&b, buf);
      printf("%s\n", buf);
   } else if (n == 255) {
      printf("exit\n");
      break;
   }

   }
#ifdef LTM_MTEST_REAL_RAND
   fclose(rng);
#endif
   return 0;
}
Пример #21
0
/* sqr */
static int sqr(void *a, void *b)
{
   LTC_ARGCHK(a != NULL);
   LTC_ARGCHK(b != NULL);
   return mpi_to_ltc_error(mp_sqr(a, b));
}
//http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
int mp_acoth_binary_splitting(mp_int * q, mp_int * a, mp_int * b, mp_int * P,
			      mp_int * Q, mp_int * R)
{
    int err;
    mp_int p1, q1, r1, p2, q2, r2, t1, t2, one;
    if ((err =
	 mp_init_multi(&p1, &q1, &r1, &p2, &q2, &r2, &t1, &t2, &one,
		       NULL)) != MP_OKAY) {
	return err;
    }

    err = MP_OKAY;
    mp_set(&one, 1);
    if ((err = mp_sub(b, a, &t1)) != MP_OKAY) {
	goto _ERR;
    }
    if (mp_cmp(&t1, &one) == MP_EQ) {
	if ((err = mp_mul_2d(a, 1, &t1)) != MP_OKAY) {
	    goto _ERR;
	}
	if ((err = mp_add_d(&t1, 3, &t1)) != MP_OKAY) {
	    goto _ERR;
	}

	if ((err = mp_set_int(P, 1)) != MP_OKAY) {
	    goto _ERR;
	}
	if ((err = mp_sqr(q, &t2)) != MP_OKAY) {
	    goto _ERR;
	}
	if ((err = mp_mul(&t1, &t2, Q)) != MP_OKAY) {
	    goto _ERR;
	}
	if ((err = mp_copy(&t1, R)) != MP_OKAY) {
	    goto _ERR;
	}
	goto _ERR;
    }

    if ((err = mp_add(a, b, &t1)) != MP_OKAY) {
	goto _ERR;
    }
    if ((err = mp_div_2d(&t1, 1, &t1, NULL)) != MP_OKAY) {
	goto _ERR;
    }

    if ((err = mp_acoth_binary_splitting(q, a, &t1, &p1, &q1, &r1)) != MP_OKAY) {
	goto _ERR;
    }
    if ((err = mp_acoth_binary_splitting(q, &t1, b, &p2, &q2, &r2)) != MP_OKAY) {
	goto _ERR;
    }
    //P = q2*p1 + r1*p2
    if ((err = mp_mul(&q2, &p1, &t1)) != MP_OKAY) {
	goto _ERR;
    }
    if ((err = mp_mul(&r1, &p2, &t2)) != MP_OKAY) {
	goto _ERR;
    }
    if ((err = mp_add(&t1, &t2, P)) != MP_OKAY) {
	goto _ERR;
    }
    //Q =  q1*q2
    if ((err = mp_mul(&q1, &q2, Q)) != MP_OKAY) {
	goto _ERR;
    }
    //R = r1*r2
    if ((err = mp_mul(&r1, &r2, R)) != MP_OKAY) {
	goto _ERR;
    }

  _ERR:
    mp_clear_multi(&p1, &q1, &r1, &p2, &q2, &r2, &t1, &t2, &one, NULL);
    return err;
}
Пример #23
0
/* squaring using Toom-Cook 3-way algorithm */
int 
mp_toom_sqr(mp_int *a, mp_int *b)
{
    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
    int res, B;
        
    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
       return res;
    }

    /* B */
    B = a->used / 3;
    
    /* a = a2 * B^2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    mp_mod_2d(&a1, DIGIT_BIT * B, &a1);

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);
        
    /* w0 = a0*a0 */
    if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w4 = a2 * a2 */
    if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w1 = (a2 + 2(a1 + 2a0))**2 */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w3 = (a0 + 2(a1 + 2a2))**2 */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    

    /* w2 = (a2 + a1 + a0)**2 */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    
    /* now solve the matrix 
    
       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0
       
       using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
     */
     
     /* r1 - r4 */
     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r0 */
     if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/2 */
     if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/2 */
     if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r2 - r0 - r4 */
     if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - 8r0 */
     if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - 8r4 */
     if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* 3r2 - r1 - r3 */
     if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/3 */
     if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/3 */
     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
        goto ERR;
     }
     
     /* at this point shift W[n] by B*n */
     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
        goto ERR;
     }     
     
     if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
        goto ERR;
     }     
     
ERR:
     mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
     return res;
}     
Пример #24
0
int main(void)
{
   unsigned rr;
   int cnt, ix;
#if LTM_DEMO_TEST_VS_MTEST
   unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n,
      gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n;
   char* ret;
#else
   unsigned long s, t;
   unsigned long long q, r;
   mp_digit mp;
   int i, n, err, should;
#endif

   if (mp_init_multi(&a, &b, &c, &d, &e, &f, NULL)!= MP_OKAY)
     return EXIT_FAILURE;

   atexit(_cleanup);

#if defined(LTM_DEMO_REAL_RAND)
   if (!fd_urandom) {
      fd_urandom = fopen("/dev/urandom", "r");
      if (!fd_urandom) {
#if !defined(_WIN32)
         fprintf(stderr, "\ncould not open /dev/urandom\n");
#endif
      }
   }
#endif
   srand(LTM_DEMO_RAND_SEED);

#ifdef MP_8BIT
   printf("Digit size 8 Bit \n");
#endif
#ifdef MP_16BIT
   printf("Digit size 16 Bit \n");
#endif
#ifdef MP_32BIT
   printf("Digit size 32 Bit \n");
#endif
#ifdef MP_64BIT
   printf("Digit size 64 Bit \n");
#endif
   printf("Size of mp_digit: %u\n", (unsigned int)sizeof(mp_digit));
   printf("Size of mp_word: %u\n", (unsigned int)sizeof(mp_word));
   printf("DIGIT_BIT: %d\n", DIGIT_BIT);
   printf("MP_PREC: %d\n", MP_PREC);

#if LTM_DEMO_TEST_VS_MTEST == 0
   // trivial stuff
   // a: 0->5
   mp_set_int(&a, 5);
   // a: 5-> b: -5
   mp_neg(&a, &b);
   if (mp_cmp(&a, &b) != MP_GT) {
      return EXIT_FAILURE;
   }
   if (mp_cmp(&b, &a) != MP_LT) {
      return EXIT_FAILURE;
   }
   // a: 5-> a: -5
   mp_neg(&a, &a);
   if (mp_cmp(&b, &a) != MP_EQ) {
      return EXIT_FAILURE;
   }
   // a: -5-> b: 5
   mp_abs(&a, &b);
   if (mp_isneg(&b) != MP_NO) {
      return EXIT_FAILURE;
   }
   // a: -5-> b: -4
   mp_add_d(&a, 1, &b);
   if (mp_isneg(&b) != MP_YES) {
      return EXIT_FAILURE;
   }
   if (mp_get_int(&b) != 4) {
      return EXIT_FAILURE;
   }
   // a: -5-> b: 1
   mp_add_d(&a, 6, &b);
   if (mp_get_int(&b) != 1) {
      return EXIT_FAILURE;
   }
   // a: -5-> a: 1
   mp_add_d(&a, 6, &a);
   if (mp_get_int(&a) != 1) {
      return EXIT_FAILURE;
   }
   mp_zero(&a);
   // a: 0-> a: 6
   mp_add_d(&a, 6, &a);
   if (mp_get_int(&a) != 6) {
      return EXIT_FAILURE;
   }


   mp_set_int(&a, 0);
   mp_set_int(&b, 1);
   if ((err = mp_jacobi(&a, &b, &i)) != MP_OKAY) {
      printf("Failed executing mp_jacobi(0 | 1) %s.\n", mp_error_to_string(err));
      return EXIT_FAILURE;
   }
   if (i != 1) {
      printf("Failed trivial mp_jacobi(0 | 1) %d != 1\n", i);
      return EXIT_FAILURE;
   }
   for (cnt = 0; cnt < (int)(sizeof(jacobi)/sizeof(jacobi[0])); ++cnt) {
      mp_set_int(&b, jacobi[cnt].n);
      /* only test positive values of a */
      for (n = -5; n <= 10; ++n) {
         mp_set_int(&a, abs(n));
         should = MP_OKAY;
         if (n < 0) {
            mp_neg(&a, &a);
            /* Until #44 is fixed the negative a's must fail */
            should = MP_VAL;
         }
         if ((err = mp_jacobi(&a, &b, &i)) != should) {
            printf("Failed executing mp_jacobi(%d | %lu) %s.\n", n, jacobi[cnt].n, mp_error_to_string(err));
            return EXIT_FAILURE;
         }
         if (err == MP_OKAY && i != jacobi[cnt].c[n + 5]) {
            printf("Failed trivial mp_jacobi(%d | %lu) %d != %d\n", n, jacobi[cnt].n, i, jacobi[cnt].c[n + 5]);
            return EXIT_FAILURE;
         }
      }
   }

   // test mp_get_int
   printf("\n\nTesting: mp_get_int");
   for (i = 0; i < 1000; ++i) {
      t = ((unsigned long) rand () * rand () + 1) & 0xFFFFFFFF;
      mp_set_int (&a, t);
      if (t != mp_get_int (&a)) {
         printf ("\nmp_get_int() bad result!");
         return EXIT_FAILURE;
      }
   }
   mp_set_int(&a, 0);
   if (mp_get_int(&a) != 0) {
      printf("\nmp_get_int() bad result!");
      return EXIT_FAILURE;
   }
   mp_set_int(&a, 0xffffffff);
   if (mp_get_int(&a) != 0xffffffff) {
      printf("\nmp_get_int() bad result!");
      return EXIT_FAILURE;
   }

   printf("\n\nTesting: mp_get_long\n");
   for (i = 0; i < (int)(sizeof(unsigned long)*CHAR_BIT) - 1; ++i) {
      t = (1ULL << (i+1)) - 1;
      if (!t)
         t = -1;
      printf(" t = 0x%lx i = %d\r", t, i);
      do {
         if (mp_set_long(&a, t) != MP_OKAY) {
            printf("\nmp_set_long() error!");
            return EXIT_FAILURE;
         }
         s = mp_get_long(&a);
         if (s != t) {
            printf("\nmp_get_long() bad result! 0x%lx != 0x%lx", s, t);
            return EXIT_FAILURE;
         }
         t <<= 1;
      } while(t);
   }

   printf("\n\nTesting: mp_get_long_long\n");
   for (i = 0; i < (int)(sizeof(unsigned long long)*CHAR_BIT) - 1; ++i) {
      r = (1ULL << (i+1)) - 1;
      if (!r)
         r = -1;
      printf(" r = 0x%llx i = %d\r", r, i);
      do {
         if (mp_set_long_long(&a, r) != MP_OKAY) {
            printf("\nmp_set_long_long() error!");
            return EXIT_FAILURE;
         }
         q = mp_get_long_long(&a);
         if (q != r) {
            printf("\nmp_get_long_long() bad result! 0x%llx != 0x%llx", q, r);
            return EXIT_FAILURE;
         }
         r <<= 1;
      } while(r);
   }

   // test mp_sqrt
   printf("\n\nTesting: mp_sqrt\n");
   for (i = 0; i < 1000; ++i) {
      printf ("%6d\r", i);
      fflush (stdout);
      n = (rand () & 15) + 1;
      mp_rand (&a, n);
      if (mp_sqrt (&a, &b) != MP_OKAY) {
         printf ("\nmp_sqrt() error!");
         return EXIT_FAILURE;
      }
      mp_n_root_ex (&a, 2, &c, 0);
      mp_n_root_ex (&a, 2, &d, 1);
      if (mp_cmp_mag (&c, &d) != MP_EQ) {
         printf ("\nmp_n_root_ex() bad result!");
         return EXIT_FAILURE;
      }
      if (mp_cmp_mag (&b, &c) != MP_EQ) {
         printf ("mp_sqrt() bad result!\n");
         return EXIT_FAILURE;
      }
   }

   printf("\n\nTesting: mp_is_square\n");
   for (i = 0; i < 1000; ++i) {
      printf ("%6d\r", i);
      fflush (stdout);

      /* test mp_is_square false negatives */
      n = (rand () & 7) + 1;
      mp_rand (&a, n);
      mp_sqr (&a, &a);
      if (mp_is_square (&a, &n) != MP_OKAY) {
         printf ("\nfn:mp_is_square() error!");
         return EXIT_FAILURE;
      }
      if (n == 0) {
         printf ("\nfn:mp_is_square() bad result!");
         return EXIT_FAILURE;
      }

      /* test for false positives */
      mp_add_d (&a, 1, &a);
      if (mp_is_square (&a, &n) != MP_OKAY) {
         printf ("\nfp:mp_is_square() error!");
         return EXIT_FAILURE;
      }
      if (n == 1) {
         printf ("\nfp:mp_is_square() bad result!");
         return EXIT_FAILURE;
      }

   }
   printf("\n\n");

   // r^2 = n (mod p)
   for (i = 0; i < (int)(sizeof(sqrtmod_prime)/sizeof(sqrtmod_prime[0])); ++i) {
      mp_set_int(&a, sqrtmod_prime[i].p);
      mp_set_int(&b, sqrtmod_prime[i].n);
      if (mp_sqrtmod_prime(&b, &a, &c) != MP_OKAY) {
         printf("Failed executing %d. mp_sqrtmod_prime\n", (i+1));
         return EXIT_FAILURE;
      }
      if (mp_cmp_d(&c, sqrtmod_prime[i].r) != MP_EQ) {
         printf("Failed %d. trivial mp_sqrtmod_prime\n", (i+1));
         ndraw(&c, "r");
         return EXIT_FAILURE;
      }
   }

   /* test for size */
   for (ix = 10; ix < 128; ix++) {
      printf ("Testing (not safe-prime): %9d bits    \r", ix);
      fflush (stdout);
      err = mp_prime_random_ex (&a, 8, ix,
                                (rand () & 1) ? 0 : LTM_PRIME_2MSB_ON, myrng,
                                NULL);
      if (err != MP_OKAY) {
         printf ("failed with err code %d\n", err);
         return EXIT_FAILURE;
      }
      if (mp_count_bits (&a) != ix) {
         printf ("Prime is %d not %d bits!!!\n", mp_count_bits (&a), ix);
         return EXIT_FAILURE;
      }
   }
   printf("\n");

   for (ix = 16; ix < 128; ix++) {
      printf ("Testing (    safe-prime): %9d bits    \r", ix);
      fflush (stdout);
      err = mp_prime_random_ex (
            &a, 8, ix, ((rand () & 1) ? 0 : LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE,
            myrng, NULL);
      if (err != MP_OKAY) {
         printf ("failed with err code %d\n", err);
         return EXIT_FAILURE;
      }
      if (mp_count_bits (&a) != ix) {
         printf ("Prime is %d not %d bits!!!\n", mp_count_bits (&a), ix);
         return EXIT_FAILURE;
      }
      /* let's see if it's really a safe prime */
      mp_sub_d (&a, 1, &a);
      mp_div_2 (&a, &a);
      mp_prime_is_prime (&a, 8, &cnt);
      if (cnt != MP_YES) {
         printf ("sub is not prime!\n");
         return EXIT_FAILURE;
      }
   }

   printf("\n\n");

   // test montgomery
   printf("Testing: montgomery...\n");
   for (i = 1; i <= 10; i++) {
      if (i == 10)
         i = 1000;
      printf(" digit size: %2d\r", i);
      fflush(stdout);
      for (n = 0; n < 1000; n++) {
         mp_rand(&a, i);
         a.dp[0] |= 1;

         // let's see if R is right
         mp_montgomery_calc_normalization(&b, &a);
         mp_montgomery_setup(&a, &mp);

         // now test a random reduction
         for (ix = 0; ix < 100; ix++) {
             mp_rand(&c, 1 + abs(rand()) % (2*i));
             mp_copy(&c, &d);
             mp_copy(&c, &e);

             mp_mod(&d, &a, &d);
             mp_montgomery_reduce(&c, &a, mp);
             mp_mulmod(&c, &b, &a, &c);

             if (mp_cmp(&c, &d) != MP_EQ) {
printf("d = e mod a, c = e MOD a\n");
mp_todecimal(&a, buf); printf("a = %s\n", buf);
mp_todecimal(&e, buf); printf("e = %s\n", buf);
mp_todecimal(&d, buf); printf("d = %s\n", buf);
mp_todecimal(&c, buf); printf("c = %s\n", buf);
printf("compare no compare!\n"); return EXIT_FAILURE; }
             /* only one big montgomery reduction */
             if (i > 10)
             {
                n = 1000;
                ix = 100;
             }
         }
      }
   }

   printf("\n\n");

   mp_read_radix(&a, "123456", 10);
   mp_toradix_n(&a, buf, 10, 3);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 4);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 30);
   printf("a == %s\n", buf);


#if 0
   for (;;) {
      fgets(buf, sizeof(buf), stdin);
      mp_read_radix(&a, buf, 10);
      mp_prime_next_prime(&a, 5, 1);
      mp_toradix(&a, buf, 10);
      printf("%s, %lu\n", buf, a.dp[0] & 3);
   }
#endif

   /* test mp_cnt_lsb */
   printf("\n\nTesting: mp_cnt_lsb");
   mp_set(&a, 1);
   for (ix = 0; ix < 1024; ix++) {
      if (mp_cnt_lsb (&a) != ix) {
         printf ("Failed at %d, %d\n", ix, mp_cnt_lsb (&a));
         return EXIT_FAILURE;
      }
      mp_mul_2 (&a, &a);
   }

/* test mp_reduce_2k */
   printf("\n\nTesting: mp_reduce_2k\n");
   for (cnt = 3; cnt <= 128; ++cnt) {
      mp_digit tmp;

      mp_2expt (&a, cnt);
      mp_sub_d (&a, 2, &a); /* a = 2**cnt - 2 */

      printf ("\r %4d bits", cnt);
      printf ("(%d)", mp_reduce_is_2k (&a));
      mp_reduce_2k_setup (&a, &tmp);
      printf ("(%lu)", (unsigned long) tmp);
      for (ix = 0; ix < 1000; ix++) {
         if (!(ix & 127)) {
            printf (".");
            fflush (stdout);
         }
         mp_rand (&b, (cnt / DIGIT_BIT + 1) * 2);
         mp_copy (&c, &b);
         mp_mod (&c, &a, &c);
         mp_reduce_2k (&b, &a, 2);
         if (mp_cmp (&c, &b)) {
            printf ("FAILED\n");
            return EXIT_FAILURE;
         }
      }
   }

/* test mp_div_3  */
   printf("\n\nTesting: mp_div_3...\n");
   mp_set(&d, 3);
   for (cnt = 0; cnt < 10000;) {
      mp_digit r2;

      if (!(++cnt & 127))
      {
        printf("%9d\r", cnt);
        fflush(stdout);
      }
      mp_rand(&a, abs(rand()) % 128 + 1);
      mp_div(&a, &d, &b, &e);
      mp_div_3(&a, &c, &r2);

      if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
	 printf("\nmp_div_3 => Failure\n");
      }
   }
   printf("\nPassed div_3 testing");

/* test the DR reduction */
   printf("\n\nTesting: mp_dr_reduce...\n");
   for (cnt = 2; cnt < 32; cnt++) {
      printf ("\r%d digit modulus", cnt);
      mp_grow (&a, cnt);
      mp_zero (&a);
      for (ix = 1; ix < cnt; ix++) {
         a.dp[ix] = MP_MASK;
      }
      a.used = cnt;
      a.dp[0] = 3;

      mp_rand (&b, cnt - 1);
      mp_copy (&b, &c);

      rr = 0;
      do {
         if (!(rr & 127)) {
            printf (".");
            fflush (stdout);
         }
         mp_sqr (&b, &b);
         mp_add_d (&b, 1, &b);
         mp_copy (&b, &c);

         mp_mod (&b, &a, &b);
         mp_dr_setup(&a, &mp),
         mp_dr_reduce (&c, &a, mp);

         if (mp_cmp (&b, &c) != MP_EQ) {
            printf ("Failed on trial %u\n", rr);
            return EXIT_FAILURE;
         }
      } while (++rr < 500);
      printf (" passed");
      fflush (stdout);
   }

#if LTM_DEMO_TEST_REDUCE_2K_L
/* test the mp_reduce_2k_l code */
#if LTM_DEMO_TEST_REDUCE_2K_L == 1
/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
   mp_2expt(&a, 1024);
   mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
   mp_sub(&a, &b, &a);
#elif LTM_DEMO_TEST_REDUCE_2K_L == 2
/*  p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F  */
   mp_2expt(&a, 2048);
   mp_read_radix(&b,
		 "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
		 16);
   mp_sub(&a, &b, &a);
#else
#error oops
#endif

   mp_todecimal(&a, buf);
   printf("\n\np==%s\n", buf);
/* now mp_reduce_is_2k_l() should return */
   if (mp_reduce_is_2k_l(&a) != 1) {
      printf("mp_reduce_is_2k_l() return 0, should be 1\n");
      return EXIT_FAILURE;
   }
   mp_reduce_2k_setup_l(&a, &d);
   /* now do a million square+1 to see if it varies */
   mp_rand(&b, 64);
   mp_mod(&b, &a, &b);
   mp_copy(&b, &c);
   printf("Testing: mp_reduce_2k_l...");
   fflush(stdout);
   for (cnt = 0; cnt < (int)(1UL << 20); cnt++) {
      mp_sqr(&b, &b);
      mp_add_d(&b, 1, &b);
      mp_reduce_2k_l(&b, &a, &d);
      mp_sqr(&c, &c);
      mp_add_d(&c, 1, &c);
      mp_mod(&c, &a, &c);
      if (mp_cmp(&b, &c) != MP_EQ) {
	 printf("mp_reduce_2k_l() failed at step %d\n", cnt);
	 mp_tohex(&b, buf);
	 printf("b == %s\n", buf);
	 mp_tohex(&c, buf);
	 printf("c == %s\n", buf);
	 return EXIT_FAILURE;
      }
   }
   printf("...Passed\n");
#endif /* LTM_DEMO_TEST_REDUCE_2K_L */

#else

   div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
      sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n =
      sub_d_n = 0;

   /* force KARA and TOOM to enable despite cutoffs */
   KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8;
   TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16;

   for (;;) {
      /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
      switch (abs(rand()) % 7) {
      case 0:
	 mp_clear(&a);
	 mp_init(&a);
	 break;
      case 1:
	 mp_clear(&b);
	 mp_init(&b);
	 break;
      case 2:
	 mp_clear(&c);
	 mp_init(&c);
	 break;
      case 3:
	 mp_clear(&d);
	 mp_init(&d);
	 break;
      case 4:
	 mp_clear(&e);
	 mp_init(&e);
	 break;
      case 5:
	 mp_clear(&f);
	 mp_init(&f);
	 break;
      case 6:
	 break;			/* don't clear any */
      }


      printf
	 ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ",
	  add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n,
	  expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
      ret=fgets(cmd, 4095, stdin); if(!ret){_panic(__LINE__);}
      cmd[strlen(cmd) - 1] = 0;
      printf("%-6s ]\r", cmd);
      fflush(stdout);
      if (!strcmp(cmd, "mul2d")) {
	 ++mul2d_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 sscanf(buf, "%d", &rr);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);

	 mp_mul_2d(&a, rr, &a);
	 a.sign = b.sign;
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("mul2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "div2d")) {
	 ++div2d_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 sscanf(buf, "%d", &rr);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);

	 mp_div_2d(&a, rr, &a, &e);
	 a.sign = b.sign;
	 if (a.used == b.used && a.used == 0) {
	    a.sign = b.sign = MP_ZPOS;
	 }
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("div2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "add")) {
	 ++add_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_add(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("add %lu failure!\n", add_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }

	 /* test the sign/unsigned storage functions */

	 rr = mp_signed_bin_size(&c);
	 mp_to_signed_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_signed_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mp_signed_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }


	 rr = mp_unsigned_bin_size(&c);
	 mp_to_unsigned_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp_mag(&c, &d) != MP_EQ) {
	    printf("mp_unsigned_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }

      } else if (!strcmp(cmd, "sub")) {
	 ++sub_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_sub(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("sub %lu failure!\n", sub_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "mul")) {
	 ++mul_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_mul(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mul %lu failure!\n", mul_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "div")) {
	 ++div_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&d, buf, 64);

	 mp_div(&a, &b, &e, &f);
	 if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
	    printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e),
		   mp_cmp(&d, &f));
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    draw(&f);
	    return EXIT_FAILURE;
	 }

      } else if (!strcmp(cmd, "sqr")) {
	 ++sqr_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 mp_copy(&a, &c);
	 mp_sqr(&c, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sqr %lu failure!\n", sqr_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "gcd")) {
	 ++gcd_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_gcd(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("gcd %lu failure!\n", gcd_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "lcm")) {
	 ++lcm_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_lcm(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("lcm %lu failure!\n", lcm_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "expt")) {
	 ++expt_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&d, buf, 64);
	 mp_copy(&a, &e);
	 mp_exptmod(&e, &b, &c, &e);
	 if (mp_cmp(&d, &e) != MP_EQ) {
	    printf("expt %lu failure!\n", expt_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "invmod")) {
	 ++inv_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&c, buf, 64);
	 mp_invmod(&a, &b, &d);
	 mp_mulmod(&d, &a, &b, &e);
	 if (mp_cmp_d(&e, 1) != MP_EQ) {
	    printf("inv [wrong value from MPI?!] failure\n");
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    mp_gcd(&a, &b, &e);
	    draw(&e);
	    return EXIT_FAILURE;
	 }

      } else if (!strcmp(cmd, "div2")) {
	 ++div2_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 mp_div_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("div_2 %lu failure\n", div2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "mul2")) {
	 ++mul2_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 mp_mul_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("mul_2 %lu failure\n", mul2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "add_d")) {
	 ++add_d_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 sscanf(buf, "%d", &ix);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 mp_add_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("add_d %lu failure\n", add_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "sub_d")) {
	 ++sub_d_n;
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&a, buf, 64);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 sscanf(buf, "%d", &ix);
	 ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);}
	 mp_read_radix(&b, buf, 64);
	 mp_sub_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sub_d %lu failure\n", sub_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return EXIT_FAILURE;
	 }
      } else if (!strcmp(cmd, "exit")) {
         printf("\nokay, exiting now\n");
         break;
      }
   }
#endif
   return 0;
}
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret) 
{
  int           res;
  mp_digit      c;
  mp_int        t;
  unsigned long r;

  /* Default to Non-square :) */
  *ret = MP_NO; 

  if (arg->sign == MP_NEG) {
    return MP_VAL;
  }

  /* digits used?  (TSD) */
  if (arg->used == 0) {
     return MP_OKAY;
  }

  /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
  if (rem_128[127 & DIGIT(arg,0)] == 1) {
     return MP_OKAY;
  }

  /* Next check mod 105 (3*5*7) */
  if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
     return res;
  }
  if (rem_105[c] == 1) {
     return MP_OKAY;
  }

  /* product of primes less than 2^31 */
  if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
     return res;
  }
  if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
     goto ERR;
  }
  r = mp_get_int(&t);
  /* Check for other prime modules, note it's not an ERROR but we must
   * free "t" so the easiest way is to goto ERR.  We know that res
   * is already equal to MP_OKAY from the mp_mod call 
   */ 
  if ( (1L<<(r%11)) & 0x5C4L )             goto ERR;
  if ( (1L<<(r%13)) & 0x9E4L )             goto ERR;
  if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR;
  if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR;
  if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR;
  if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR;
  if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR;

  /* Final check - is sqr(sqrt(arg)) == arg ? */
  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
     goto ERR;
  }
  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
     goto ERR;
  }

  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
  return res;
}
Пример #26
0
int main(int argc, char *argv[])
{
  int      ix;
  mp_int   a, b, c, d;
  mp_digit r;
  mp_err   res;

  if(argc < 3) {
    fprintf(stderr, "Usage: %s <a> <b>\n", argv[0]);
    return 1;
  }

  printf("Test 3: Multiplication and division\n\n");
  srand(time(NULL));

  mp_init(&a);
  mp_init(&b);

  mp_read_radix(&a, argv[1], 10);
  mp_read_radix(&b, argv[2], 10);
  printf("a = "); mp_print(&a, stdout); fputc('\n', stdout);
  printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
  
  mp_init(&c);
  printf("\nc = a * b\n");

  mp_mul(&a, &b, &c);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);

  printf("\nc = b * 32523\n");

  mp_mul_d(&b, 32523, &c);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
  
  mp_init(&d);
  printf("\nc = a / b, d = a mod b\n");
  
  mp_div(&a, &b, &c, &d);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);  
  printf("d = "); mp_print(&d, stdout); fputc('\n', stdout);  

  ix = rand() % 256;
  printf("\nc = a / %d, r = a mod %d\n", ix, ix);
  mp_div_d(&a, (mp_digit)ix, &c, &r);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);  
  printf("r = %04X\n", r);

#if EXPT
  printf("\nc = a ** b\n");
  mp_expt(&a, &b, &c);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);  
#endif

  ix = rand() % 256;
  printf("\nc = 2^%d\n", ix);
  mp_2expt(&c, ix);
  printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);

#if SQRT
  printf("\nc = sqrt(a)\n");
  if((res = mp_sqrt(&a, &c)) != MP_OKAY) {
    printf("mp_sqrt: %s\n", mp_strerror(res));
  } else {
    printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
    mp_sqr(&c, &c);
    printf("c^2 = "); mp_print(&c, stdout); fputc('\n', stdout);
  }
#endif

  mp_clear(&d);
  mp_clear(&c);
  mp_clear(&b);
  mp_clear(&a);

  return 0;
}
/**
   Double an ECC point
   @param P   The point to double
   @param R   [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp)
{
   void *t1, *t2;
   int   err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
      return err;
   }

   if (P != R) {
      if ((err = mp_copy(P->x, R->x)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_copy(P->y, R->y)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_copy(P->z, R->z)) != CRYPT_OK)                                { goto done; }
   }

   /* t1 = Z * Z */
   if ((err = mp_sqr(R->z, t1)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* Z = Y * Z */
   if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK)                              { goto done; }
   if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* Z = 2Z */
   if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp(R->z, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK)                        { goto done; }
   }

   /* T2 = X - T1 */
   if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
   }
   /* T1 = X + T1 */
   if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }
   /* T2 = T1 * T2 */
   if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* T1 = 2T2 */
   if ((err = mp_add(t2, t2, t1)) != CRYPT_OK)                                    { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }
   /* T1 = T1 + T2 */
   if ((err = mp_add(t1, t2, t1)) != CRYPT_OK)                                    { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }

   /* Y = 2Y */
   if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp(R->y, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }
   /* Y = Y * Y */
   if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* T2 = Y * Y */
   if ((err = mp_sqr(R->y, t2)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* T2 = T2/2 */
   if (mp_isodd(t2)) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
   }
   if ((err = mp_div_2(t2, t2)) != CRYPT_OK)                                      { goto done; }
   /* Y = Y * X */
   if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }

   /* X  = T1 * T1 */
   if ((err = mp_sqr(t1, R->x)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* X = X - Y */
   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
   }
   /* X = X - Y */
   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
   }

   /* Y = Y - X */
   if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }
   /* Y = Y * T1 */
   if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK)                                { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* Y = Y - T2 */
   if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK)                                { goto done; }
   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }

   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, NULL);
   return err;
}
/**
   Add two ECC points
   @param P        The point to add
   @param Q        The point to add
   @param R        [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp)
{
   void  *t1, *t2, *x, *y, *z;
   int    err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(Q       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) {
      return err;
   }
   
   /* should we dbl instead? */
   if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK)                          { goto done; }

   if ( (mp_cmp(P->x, Q->x) == LTC_MP_EQ) && 
        (Q->z != NULL && mp_cmp(P->z, Q->z) == LTC_MP_EQ) &&
        (mp_cmp(P->y, Q->y) == LTC_MP_EQ || mp_cmp(P->y, t1) == LTC_MP_EQ)) {
        mp_clear_multi(t1, t2, x, y, z, NULL);
        return ltc_ecc_projective_dbl_point(P, R, modulus, mp);
   }

   if ((err = mp_copy(P->x, x)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(P->y, y)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(P->z, z)) != CRYPT_OK)                                   { goto done; }

   /* if Z is one then these are no-operations */
   if (Q->z != NULL) {
      /* T1 = Z' * Z' */
      if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
      /* X = X * T1 */
      if ((err = mp_mul(t1, x, x)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)            { goto done; }
      /* T1 = Z' * T1 */
      if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK)                            { goto done; }
      if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
      /* Y = Y * T1 */
      if ((err = mp_mul(t1, y, y)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK)            { goto done; }
   }

   /* T1 = Z*Z */
   if ((err = mp_sqr(z, t1)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T2 = X' * T1 */
   if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK)                               { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = Z * T1 */
   if ((err = mp_mul(z, t1, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = Y' * T1 */
   if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK)                               { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }

   /* Y = Y - T1 */
   if ((err = mp_sub(y, t1, y)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(y, 0) == LTC_MP_LT) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   /* T1 = 2T1 */
   if ((err = mp_add(t1, t1, t1)) != CRYPT_OK)                                 { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
   }
   /* T1 = Y + T1 */
   if ((err = mp_add(t1, y, t1)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
   }
   /* X = X - T2 */
   if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(x, 0) == LTC_MP_LT) {
      if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
   }
   /* T2 = 2T2 */
   if ((err = mp_add(t2, t2, t2)) != CRYPT_OK)                                 { goto done; }
   if (mp_cmp(t2, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }
   /* T2 = X + T2 */
   if ((err = mp_add(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t2, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }

   /* if Z' != 1 */
   if (Q->z != NULL) {
      /* Z = Z * Z' */
      if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK)                              { goto done; }
      if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)            { goto done; }
   }

   /* Z = Z * X */
   if ((err = mp_mul(z, x, z)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)               { goto done; }

   /* T1 = T1 * X  */
   if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* X = X * X */
   if ((err = mp_sqr(x, x)) != CRYPT_OK)                                       { goto done; }
   if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* T2 = T2 * x */
   if ((err = mp_mul(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = T1 * X  */
   if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
 
   /* X = Y*Y */
   if ((err = mp_sqr(y, x)) != CRYPT_OK)                                       { goto done; }
   if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* X = X - T2 */
   if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(x, 0) == LTC_MP_LT) {
      if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
   }

   /* T2 = T2 - X */
   if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   } 
   /* T2 = T2 - X */
   if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }
   /* T2 = T2 * Y */
   if ((err = mp_mul(t2, y, t2)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* Y = T2 - T1 */
   if ((err = mp_sub(t2, t1, y)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(y, 0) == LTC_MP_LT) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   /* Y = Y/2 */
   if (mp_isodd(y)) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   if ((err = mp_div_2(y, y)) != CRYPT_OK)                                     { goto done; }

   if ((err = mp_copy(x, R->x)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(y, R->y)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(z, R->z)) != CRYPT_OK)                                   { goto done; }

   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, x, y, z, NULL);
   return err;
}
Пример #29
0
/* Karatsuba squaring, computes b = a*a using three
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It
 * is essentially the same algorithm but merely
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   mp_int  x0, x1, t1, t2, x0x0, x1x1;
   int     B, err;

   err = MP_MEM;

   /* min # of digits */
   B = a->used;

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto LBL_ERR;
   if (mp_init_size(&x1, a->used - B) != MP_OKAY)
      goto X0;

   /* init temps */
   if (mp_init_size(&t1, a->used * 2) != MP_OKAY)
      goto X1;
   if (mp_init_size(&t2, a->used * 2) != MP_OKAY)
      goto T1;
   if (mp_init_size(&x0x0, B * 2) != MP_OKAY)
      goto T2;
   if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY)
      goto X0X0;

   {
      int x;
      mp_digit *dst, *src;

      src = a->dp;

      /* now shift the digits */
      dst = x0.dp;
      for (x = 0; x < B; x++) {
         *dst++ = *src++;
      }

      dst = x1.dp;
      for (x = B; x < a->used; x++) {
         *dst++ = *src++;
      }
   }

   x0.used = B;
   x1.used = a->used - B;

   mp_clamp(&x0);

   /* now calc the products x0*x0 and x1*x1 */
   if (mp_sqr(&x0, &x0x0) != MP_OKAY)
      goto X1X1;           /* x0x0 = x0*x0 */
   if (mp_sqr(&x1, &x1x1) != MP_OKAY)
      goto X1X1;           /* x1x1 = x1*x1 */

   /* now calc (x1+x0)**2 */
   if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = x1 - x0 */
   if (mp_sqr(&t1, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

   /* add x0y0 */
   if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY)
      goto X1X1;           /* t2 = x0x0 + x1x1 */
   if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

   /* shift by B */
   if (mp_lshd(&t1, B) != MP_OKAY)
      goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
   if (mp_lshd(&x1x1, B * 2) != MP_OKAY)
      goto X1X1;           /* x1x1 = x1x1 << 2*B */

   if (mp_add(&x0x0, &t1, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = x0x0 + t1 */
   if (mp_add(&t1, &x1x1, b) != MP_OKAY)
      goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

   err = MP_OKAY;

X1X1:
   mp_clear(&x1x1);
X0X0:
   mp_clear(&x0x0);
T2:
   mp_clear(&t2);
T1:
   mp_clear(&t1);
X1:
   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
Пример #30
0
int main(int argc, char *argv[])
{
  int           ntests, prec, ix;
  unsigned int  seed;
  clock_t       start, stop;
  double        multime, sqrtime;
  mp_int        a, c;

  seed = (unsigned int)time(NULL);

  if(argc < 3) {
    fprintf(stderr, "Usage: %s <ntests> <nbits>\n", argv[0]);
    return 1;
  }

  if((ntests = abs(atoi(argv[1]))) == 0) {
    fprintf(stderr, "%s: must request at least 1 test.\n", argv[0]);
    return 1;
  }
  if((prec = abs(atoi(argv[2]))) < CHAR_BIT) {
    fprintf(stderr, "%s: must request at least %d bits.\n", argv[0],
	    CHAR_BIT);
    return 1;
  }

  prec = (prec + (DIGIT_BIT - 1)) / DIGIT_BIT;

  mp_init_size(&a, prec);
  mp_init_size(&c, 2 * prec);

  /* Test multiplication by self */
  srand(seed);
  start = clock();
  for(ix = 0; ix < ntests; ix++) {
    mpp_random_size(&a, prec);
    mp_mul(&a, &a, &c);
  }
  stop = clock();

  multime = (double)(stop - start) / CLOCKS_PER_SEC;

  /* Test squaring */
  srand(seed);
  start = clock();
  for(ix = 0; ix < ntests; ix++) {
    mpp_random_size(&a, prec);
    mp_sqr(&a, &c);
  }
  stop = clock();

  sqrtime = (double)(stop - start) / CLOCKS_PER_SEC;

  printf("Multiply: %.4f\n", multime);
  printf("Square:   %.4f\n", sqrtime);
  if(multime < sqrtime) {
    printf("Speedup:  %.1f%%\n", 100.0 * (1.0 - multime / sqrtime));
    printf("Prefer:   multiply\n");
  } else {
    printf("Speedup:  %.1f%%\n", 100.0 * (1.0 - sqrtime / multime));
    printf("Prefer:   square\n");
  }

  mp_clear(&a); mp_clear(&c);
  return 0;

}