static void atan2_pow_of_2 (void) { mpfr_t x, y, r, g; int i; int d[] = { 0, -1, 1 }; int ntests = sizeof (d) / sizeof (int); mpfr_init2 (x, 53); mpfr_init2 (y, 53); mpfr_init2 (r, 53); mpfr_init2 (g, 53); /* atan(42) */ mpfr_set_str_binary (g, "1100011000000011110011111001100110101000011010010011E-51"); for (i = 0; i < ntests; ++i) { mpfr_set_ui (y, 42, MPFR_RNDN); mpfr_mul_2si (y, y, d[i], MPFR_RNDN); mpfr_set_ui_2exp (x, 1, d[i], MPFR_RNDN); mpfr_atan2 (r, y, x, MPFR_RNDN); if (mpfr_equal_p (r, g) == 0) { printf ("Error in mpfr_atan2 (5)\n"); printf ("Expected "); mpfr_print_binary (g); printf ("\n"); printf ("Got "); mpfr_print_binary (r); printf ("\n"); exit (1); } } mpfr_clear (x); mpfr_clear (y); mpfr_clear (r); mpfr_clear (g); }
int main (void) { int i, base; mpfr_t x; mpfr_prec_t p; mpfr_exp_t e; mpfr_init (x); printf ("struct dymmy_test { \n" " mpfr_prec_t prec; \n" " int base; \n" " const char *str; \n" " const char *binstr; \n" " } RefTable[] = { \n"); for (i = 0 ; i < MAX_NUM ; i++) { p = randomab(2, 180); base = randomab (2, 30); e = randomab (-1<<15, 1<<15); mpfr_set_prec (x, p); mpfr_urandomb (x, RANDS); mpfr_mul_2si (x, x, e, MPFR_RNDN); printf("{%lu, %d,\n\"", p, base); mpfr_out_str (stdout, base, p, x, MPFR_RNDN); printf ("\",\n\""); mpfr_out_str (stdout, 2, 0, x, MPFR_RNDN); printf ("\"}%c\n", i == MAX_NUM-1 ? ' ' : ',' ); } printf("};\n"); mpfr_clear (x); }
static void check_min(void) { mpfr_t xx, yy, zz; mpfr_init2(xx, 4); mpfr_init2(yy, 4); mpfr_init2(zz, 3); mpfr_set_str1(xx, "0.9375"); mpfr_mul_2si(xx, xx, MPFR_EMIN_DEFAULT/2, MPFR_RNDN); mpfr_set_str1(yy, "0.9375"); mpfr_mul_2si(yy, yy, MPFR_EMIN_DEFAULT - MPFR_EMIN_DEFAULT/2 - 1, MPFR_RNDN); test_mul(zz, xx, yy, MPFR_RNDD); if (mpfr_sgn(zz) != 0) { printf("check_min failed: got "); mpfr_out_str(stdout, 2, 0, zz, MPFR_RNDZ); printf(" instead of 0\n"); exit(1); } test_mul(zz, xx, yy, MPFR_RNDU); mpfr_set_str1 (xx, "0.5"); mpfr_mul_2si(xx, xx, MPFR_EMIN_DEFAULT, MPFR_RNDN); if (mpfr_sgn(xx) <= 0) { printf("check_min failed (internal error)\n"); exit(1); } if (mpfr_cmp(xx, zz) != 0) { printf("check_min failed: got "); mpfr_out_str(stdout, 2, 0, zz, MPFR_RNDZ); printf(" instead of "); mpfr_out_str(stdout, 2, 0, xx, MPFR_RNDZ); printf("\n"); exit(1); } mpfr_clear(xx); mpfr_clear(yy); mpfr_clear(zz); }
mpz_class FirstLogTable::function(int x) { mpz_class result; double apprinv; mpfr_t i,l; mpz_t r; mpfr_init(i); mpfr_init2(l,wOut); mpz_init2(r,400); apprinv = fit->output2double(fit->function(x));; // result = double2output(log(apprinv)); mpfr_set_d(i, apprinv, GMP_RNDN); mpfr_log(l, i, GMP_RNDN); mpfr_neg(l, l, GMP_RNDN); // Remove the sum of small offsets that are added to the other log tables for(int j=1; j<=op->stages; j++){ mpfr_set_d(i, 1.0, GMP_RNDN); int pi=op->p[j]; mpfr_mul_2si(i, i, -2*pi, GMP_RNDN); mpfr_sub(l, l, i, GMP_RNDN); } // code the log in 2's compliment mpfr_mul_2si(l, l, wOut, GMP_RNDN); mpfr_get_z(r, l, GMP_RNDN); result = mpz_class(r); // signed // This is a very inefficient way of converting mpz_class t = mpz_class(1) << wOut; result = t+result; if(result>t) result-=t; // cout << "x="<<x<<" apprinv="<<apprinv<<" logapprinv="<<log(apprinv)<<" result="<<result<<endl; mpfr_clear(i); mpfr_clear(l); mpz_clear(r); return result; }
/* Return in y an approximation of Ei(x) using the asymptotic expansion: Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...) Assumes x >= PREC(y) * log(2). Returns the error bound in terms of ulp(y). */ static mp_exp_t mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x) { mp_prec_t p = MPFR_PREC(y); mpfr_t invx, t, err; unsigned long k; mp_exp_t err_exp; mpfr_init2 (t, p); mpfr_init2 (invx, p); mpfr_init2 (err, 31); /* error in ulps on y */ mpfr_ui_div (invx, 1, x, GMP_RNDN); /* invx = 1/x*(1+u) with |u|<=2^(1-p) */ mpfr_set_ui (t, 1, GMP_RNDN); /* exact */ mpfr_set (y, t, GMP_RNDN); mpfr_set_ui (err, 0, GMP_RNDN); for (k = 1; MPFR_GET_EXP(t) + (mp_exp_t) p > MPFR_GET_EXP(y); k++) { mpfr_mul (t, t, invx, GMP_RNDN); /* 2 more roundings */ mpfr_mul_ui (t, t, k, GMP_RNDN); /* 1 more rounding: t = k!/x^k*(1+u)^e with u=2^{-p} and |e| <= 3*k */ /* we use the fact that |(1+u)^n-1| <= 2*|n*u| for |n*u| <= 1, thus the error on t is less than 6*k*2^{-p}*t <= 6*k*ulp(t) */ /* err is in terms of ulp(y): transform it in terms of ulp(t) */ mpfr_mul_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), GMP_RNDU); mpfr_add_ui (err, err, 6 * k, GMP_RNDU); /* transform back in terms of ulp(y) */ mpfr_div_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), GMP_RNDU); mpfr_add (y, y, t, GMP_RNDN); } /* add the truncation error bounded by ulp(y): 1 ulp */ mpfr_mul (y, y, invx, GMP_RNDN); /* err <= 2*err + 3/2 */ mpfr_exp (t, x, GMP_RNDN); /* err(t) <= 1/2*ulp(t) */ mpfr_mul (y, y, t, GMP_RNDN); /* again: err <= 2*err + 3/2 */ mpfr_mul_2ui (err, err, 2, GMP_RNDU); mpfr_add_ui (err, err, 8, GMP_RNDU); err_exp = MPFR_GET_EXP(err); mpfr_clear (t); mpfr_clear (invx); mpfr_clear (err); return err_exp; }
void HOTBM::emulate(TestCase* tc) { /* Get inputs / outputs */ mpz_class sx = tc->getInputValue ("X"); // int outSign = 0; mpfr_t mpX, mpR; mpfr_inits(mpX, mpR, 0, NULL); /* Convert a random signal to an mpfr_t in [0,1[ */ mpfr_set_z(mpX, sx.get_mpz_t(), GMP_RNDN); mpfr_div_2si(mpX, mpX, wI, GMP_RNDN); /* Compute the function */ f.eval(mpR, mpX); /* Compute the signal value */ if (mpfr_signbit(mpR)) { // outSign = 1; mpfr_abs(mpR, mpR, GMP_RNDN); } mpfr_mul_2si(mpR, mpR, wO, GMP_RNDN); /* NOT A TYPO. HOTBM only guarantees faithful * rounding, so we will round down here, * add both the upper and lower neighbor. */ mpz_t rd_t; mpz_init (rd_t); mpfr_get_z(rd_t, mpR, GMP_RNDD); mpz_class rd (rd_t), ru = rd + 1; tc->addExpectedOutput ("R", rd); tc->addExpectedOutput ("R", ru); mpz_clear (rd_t); mpfr_clear (mpX); mpfr_clear (mpR); }
SeedValue seed_mpfr_mul_2si (SeedContext ctx, SeedObject function, SeedObject this_object, gsize argument_count, const SeedValue args[], SeedException *exception) { mpfr_rnd_t rnd; mpfr_ptr rop, op; gint ret; gulong k; CHECK_ARG_COUNT("mpfr.mul_2si", 3); rop = seed_object_get_private(this_object); rnd = seed_value_to_mpfr_rnd_t(ctx, args[2], exception); if ( seed_value_is_object_of_class(ctx, args[0], mpfr_class) ) { op = seed_object_get_private(args[0]); } else { TYPE_EXCEPTION("mpfr.mul_2si", "mpfr_t"); } if ( seed_value_is_number(ctx, args[1]) ) { k = seed_value_to_ulong(ctx, args[1], exception); } else { TYPE_EXCEPTION("mpfr.mul_2si", "long int"); } ret = mpfr_mul_2si(rop, op, k, rnd); return seed_value_from_int(ctx, ret, exception); }
static void reuse_bug (void) { mpc_t z1; /* reuse bug found by Paul Zimmermann 20081021 */ mpc_init2 (z1, 2); /* RE (z1^2) overflows, IM(z^2) = -0 */ mpfr_set_str (mpc_realref (z1), "0.11", 2, MPFR_RNDN); mpfr_mul_2si (mpc_realref (z1), mpc_realref (z1), mpfr_get_emax (), MPFR_RNDN); mpfr_set_ui (mpc_imagref (z1), 0, MPFR_RNDN); mpc_conj (z1, z1, MPC_RNDNN); mpc_sqr (z1, z1, MPC_RNDNN); if (!mpfr_inf_p (mpc_realref (z1)) || mpfr_signbit (mpc_realref (z1)) ||!mpfr_zero_p (mpc_imagref (z1)) || !mpfr_signbit (mpc_imagref (z1))) { printf ("Error: Regression, bug 20081021 reproduced\n"); MPC_OUT (z1); exit (1); } mpc_clear (z1); }
static number read_number(ast_number const &n, mp_rnd_t rnd) { number_base *res = new number_base; switch (n.base) { case 10: { std::stringstream s; s << n.mantissa << 'e' << n.exponent; mpfr_set_str(res->val, s.str().c_str(), 10, rnd); break; } case 2: { mpfr_set_str(res->val, n.mantissa.c_str(), 10, rnd); mpfr_mul_2si(res->val, res->val, n.exponent, rnd); break; } case 1: { mpfr_set_str(res->val, n.mantissa.c_str(), 10, rnd); break; } case 0: { mpfr_set_ui(res->val, 0, rnd); break; } default: assert(false); } return res; }
static void check_max(void) { mpfr_t xx, yy, zz; mpfr_exp_t emin; mpfr_init2(xx, 4); mpfr_init2(yy, 4); mpfr_init2(zz, 4); mpfr_set_str1 (xx, "0.68750"); mpfr_mul_2si(xx, xx, MPFR_EMAX_DEFAULT/2, MPFR_RNDN); mpfr_set_str1 (yy, "0.68750"); mpfr_mul_2si(yy, yy, MPFR_EMAX_DEFAULT - MPFR_EMAX_DEFAULT/2 + 1, MPFR_RNDN); mpfr_clear_flags(); test_mul(zz, xx, yy, MPFR_RNDU); if (!(mpfr_overflow_p() && MPFR_IS_INF(zz))) { printf("check_max failed (should be an overflow)\n"); exit(1); } mpfr_clear_flags(); test_mul(zz, xx, yy, MPFR_RNDD); if (mpfr_overflow_p() || MPFR_IS_INF(zz)) { printf("check_max failed (should NOT be an overflow)\n"); exit(1); } mpfr_set_str1 (xx, "0.93750"); mpfr_mul_2si(xx, xx, MPFR_EMAX_DEFAULT, MPFR_RNDN); if (!(MPFR_IS_FP(xx) && MPFR_IS_FP(zz))) { printf("check_max failed (internal error)\n"); exit(1); } if (mpfr_cmp(xx, zz) != 0) { printf("check_max failed: got "); mpfr_out_str(stdout, 2, 0, zz, MPFR_RNDZ); printf(" instead of "); mpfr_out_str(stdout, 2, 0, xx, MPFR_RNDZ); printf("\n"); exit(1); } /* check underflow */ emin = mpfr_get_emin (); set_emin (0); mpfr_set_str_binary (xx, "0.1E0"); mpfr_set_str_binary (yy, "0.1E0"); test_mul (zz, xx, yy, MPFR_RNDN); /* exact result is 0.1E-1, which should round to 0 */ MPFR_ASSERTN(mpfr_cmp_ui (zz, 0) == 0 && MPFR_IS_POS(zz)); set_emin (emin); /* coverage test for mpfr_powerof2_raw */ emin = mpfr_get_emin (); set_emin (0); mpfr_set_prec (xx, mp_bits_per_limb + 1); mpfr_set_str_binary (xx, "0.1E0"); mpfr_nextabove (xx); mpfr_set_str_binary (yy, "0.1E0"); test_mul (zz, xx, yy, MPFR_RNDN); /* exact result is just above 0.1E-1, which should round to minfloat */ MPFR_ASSERTN(mpfr_cmp (zz, yy) == 0); set_emin (emin); mpfr_clear(xx); mpfr_clear(yy); mpfr_clear(zz); }
int mpfr_grandom (mpfr_ptr rop1, mpfr_ptr rop2, gmp_randstate_t rstate, mpfr_rnd_t rnd) { int inex1, inex2, s1, s2; mpz_t x, y, xp, yp, t, a, b, s; mpfr_t sfr, l, r1, r2; mpfr_prec_t tprec, tprec0; inex2 = inex1 = 0; if (rop2 == NULL) /* only one output requested. */ { tprec0 = MPFR_PREC (rop1); } else { tprec0 = MAX (MPFR_PREC (rop1), MPFR_PREC (rop2)); } tprec0 += 11; /* We use "Marsaglia polar method" here (cf. George Marsaglia, Normal (Gaussian) random variables for supercomputers The Journal of Supercomputing, Volume 5, Number 1, 49–55 DOI: 10.1007/BF00155857). First we draw uniform x and y in [0,1] using mpz_urandomb (in fixed precision), and scale them to [-1, 1]. */ mpz_init (xp); mpz_init (yp); mpz_init (x); mpz_init (y); mpz_init (t); mpz_init (s); mpz_init (a); mpz_init (b); mpfr_init2 (sfr, MPFR_PREC_MIN); mpfr_init2 (l, MPFR_PREC_MIN); mpfr_init2 (r1, MPFR_PREC_MIN); if (rop2 != NULL) mpfr_init2 (r2, MPFR_PREC_MIN); mpz_set_ui (xp, 0); mpz_set_ui (yp, 0); for (;;) { tprec = tprec0; do { mpz_urandomb (xp, rstate, tprec); mpz_urandomb (yp, rstate, tprec); mpz_mul (a, xp, xp); mpz_mul (b, yp, yp); mpz_add (s, a, b); } while (mpz_sizeinbase (s, 2) > tprec * 2); /* x^2 + y^2 <= 2^{2tprec} */ for (;;) { /* FIXME: compute s as s += 2x + 2y + 2 */ mpz_add_ui (a, xp, 1); mpz_add_ui (b, yp, 1); mpz_mul (a, a, a); mpz_mul (b, b, b); mpz_add (s, a, b); if ((mpz_sizeinbase (s, 2) <= 2 * tprec) || ((mpz_sizeinbase (s, 2) == 2 * tprec + 1) && (mpz_scan1 (s, 0) == 2 * tprec))) goto yeepee; /* Extend by 32 bits */ mpz_mul_2exp (xp, xp, 32); mpz_mul_2exp (yp, yp, 32); mpz_urandomb (x, rstate, 32); mpz_urandomb (y, rstate, 32); mpz_add (xp, xp, x); mpz_add (yp, yp, y); tprec += 32; mpz_mul (a, xp, xp); mpz_mul (b, yp, yp); mpz_add (s, a, b); if (mpz_sizeinbase (s, 2) > tprec * 2) break; } } yeepee: /* FIXME: compute s with s -= 2x + 2y + 2 */ mpz_mul (a, xp, xp); mpz_mul (b, yp, yp); mpz_add (s, a, b); /* Compute the signs of the output */ mpz_urandomb (x, rstate, 2); s1 = mpz_tstbit (x, 0); s2 = mpz_tstbit (x, 1); for (;;) { /* s = xp^2 + yp^2 (loop invariant) */ mpfr_set_prec (sfr, 2 * tprec); mpfr_set_prec (l, tprec); mpfr_set_z (sfr, s, MPFR_RNDN); /* exact */ mpfr_mul_2si (sfr, sfr, -2 * tprec, MPFR_RNDN); /* exact */ mpfr_log (l, sfr, MPFR_RNDN); mpfr_neg (l, l, MPFR_RNDN); mpfr_mul_2si (l, l, 1, MPFR_RNDN); mpfr_div (l, l, sfr, MPFR_RNDN); mpfr_sqrt (l, l, MPFR_RNDN); mpfr_set_prec (r1, tprec); mpfr_mul_z (r1, l, xp, MPFR_RNDN); mpfr_div_2ui (r1, r1, tprec, MPFR_RNDN); /* exact */ if (s1) mpfr_neg (r1, r1, MPFR_RNDN); if (MPFR_CAN_ROUND (r1, tprec - 2, MPFR_PREC (rop1), rnd)) { if (rop2 != NULL) { mpfr_set_prec (r2, tprec); mpfr_mul_z (r2, l, yp, MPFR_RNDN); mpfr_div_2ui (r2, r2, tprec, MPFR_RNDN); /* exact */ if (s2) mpfr_neg (r2, r2, MPFR_RNDN); if (MPFR_CAN_ROUND (r2, tprec - 2, MPFR_PREC (rop2), rnd)) break; } else break; } /* Extend by 32 bits */ mpz_mul_2exp (xp, xp, 32); mpz_mul_2exp (yp, yp, 32); mpz_urandomb (x, rstate, 32); mpz_urandomb (y, rstate, 32); mpz_add (xp, xp, x); mpz_add (yp, yp, y); tprec += 32; mpz_mul (a, xp, xp); mpz_mul (b, yp, yp); mpz_add (s, a, b); } inex1 = mpfr_set (rop1, r1, rnd); if (rop2 != NULL) { inex2 = mpfr_set (rop2, r2, rnd); inex2 = mpfr_check_range (rop2, inex2, rnd); } inex1 = mpfr_check_range (rop1, inex1, rnd); if (rop2 != NULL) mpfr_clear (r2); mpfr_clear (r1); mpfr_clear (l); mpfr_clear (sfr); mpz_clear (b); mpz_clear (a); mpz_clear (s); mpz_clear (t); mpz_clear (y); mpz_clear (x); mpz_clear (yp); mpz_clear (xp); return INEX (inex1, inex2); }
static void check_1111 (void) { mpfr_t one; long n; mpfr_init2 (one, MPFR_PREC_MIN); mpfr_set_ui (one, 1, MPFR_RNDN); for (n = 0; n < NUM; n++) { mpfr_prec_t prec_a, prec_b, prec_c; mpfr_exp_t tb=0, tc, diff; mpfr_t a, b, c, s; int m = 512; int sb, sc; int inex_a, inex_s; mpfr_rnd_t rnd_mode; prec_a = MPFR_PREC_MIN + (randlimb () % m); prec_b = MPFR_PREC_MIN + (randlimb () % m); prec_c = MPFR_PREC_MIN + (randlimb () % m); mpfr_init2 (a, prec_a); mpfr_init2 (b, prec_b); mpfr_init2 (c, prec_c); sb = randlimb () % 3; if (sb != 0) { tb = 1 + (randlimb () % (prec_b - (sb != 2))); mpfr_div_2ui (b, one, tb, MPFR_RNDN); if (sb == 2) mpfr_neg (b, b, MPFR_RNDN); test_add (b, b, one, MPFR_RNDN); } else mpfr_set (b, one, MPFR_RNDN); tc = 1 + (randlimb () % (prec_c - 1)); mpfr_div_2ui (c, one, tc, MPFR_RNDN); sc = randlimb () % 2; if (sc) mpfr_neg (c, c, MPFR_RNDN); test_add (c, c, one, MPFR_RNDN); diff = (randlimb () % (2*m)) - m; mpfr_mul_2si (c, c, diff, MPFR_RNDN); rnd_mode = RND_RAND (); inex_a = test_add (a, b, c, rnd_mode); mpfr_init2 (s, MPFR_PREC_MIN + 2*m); inex_s = test_add (s, b, c, MPFR_RNDN); /* exact */ if (inex_s) { printf ("check_1111: result should have been exact.\n"); exit (1); } inex_s = mpfr_prec_round (s, prec_a, rnd_mode); if ((inex_a < 0 && inex_s >= 0) || (inex_a == 0 && inex_s != 0) || (inex_a > 0 && inex_s <= 0) || !mpfr_equal_p (a, s)) { printf ("check_1111: results are different.\n"); printf ("prec_a = %d, prec_b = %d, prec_c = %d\n", (int) prec_a, (int) prec_b, (int) prec_c); printf ("tb = %d, tc = %d, diff = %d, rnd = %s\n", (int) tb, (int) tc, (int) diff, mpfr_print_rnd_mode (rnd_mode)); printf ("sb = %d, sc = %d\n", sb, sc); printf ("a = "); mpfr_print_binary (a); puts (""); printf ("s = "); mpfr_print_binary (s); puts (""); printf ("inex_a = %d, inex_s = %d\n", inex_a, inex_s); exit (1); } mpfr_clear (a); mpfr_clear (b); mpfr_clear (c); mpfr_clear (s); } mpfr_clear (one); }
/* Put in y an approximation of erfc(x) for large x, using formulae 7.1.23 and 7.1.24 from Abramowitz and Stegun. Returns e such that the error is bounded by 2^e ulp(y), or returns 0 in case of underflow. */ static mpfr_exp_t mpfr_erfc_asympt (mpfr_ptr y, mpfr_srcptr x) { mpfr_t t, xx, err; unsigned long k; mpfr_prec_t prec = MPFR_PREC(y); mpfr_exp_t exp_err; mpfr_init2 (t, prec); mpfr_init2 (xx, prec); mpfr_init2 (err, 31); /* let u = 2^(1-p), and let us represent the error as (1+u)^err with a bound for err */ mpfr_mul (xx, x, x, MPFR_RNDD); /* err <= 1 */ mpfr_ui_div (xx, 1, xx, MPFR_RNDU); /* upper bound for 1/(2x^2), err <= 2 */ mpfr_div_2ui (xx, xx, 1, MPFR_RNDU); /* exact */ mpfr_set_ui (t, 1, MPFR_RNDN); /* current term, exact */ mpfr_set (y, t, MPFR_RNDN); /* current sum */ mpfr_set_ui (err, 0, MPFR_RNDN); for (k = 1; ; k++) { mpfr_mul_ui (t, t, 2 * k - 1, MPFR_RNDU); /* err <= 4k-3 */ mpfr_mul (t, t, xx, MPFR_RNDU); /* err <= 4k */ /* for -1 < x < 1, and |nx| < 1, we have |(1+x)^n| <= 1+7/4|nx|. Indeed, for x>=0: log((1+x)^n) = n*log(1+x) <= n*x. Let y=n*x < 1, then exp(y) <= 1+7/4*y. For x<=0, let x=-x, we can prove by induction that (1-x)^n >= 1-n*x.*/ mpfr_mul_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU); mpfr_add_ui (err, err, 14 * k, MPFR_RNDU); /* 2^(1-p) * t <= 2 ulp(t) */ mpfr_div_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU); if (MPFR_GET_EXP (t) + (mpfr_exp_t) prec <= MPFR_GET_EXP (y)) { /* the truncation error is bounded by |t| < ulp(y) */ mpfr_add_ui (err, err, 1, MPFR_RNDU); break; } if (k & 1) mpfr_sub (y, y, t, MPFR_RNDN); else mpfr_add (y, y, t, MPFR_RNDN); } /* the error on y is bounded by err*ulp(y) */ mpfr_mul (t, x, x, MPFR_RNDU); /* rel. err <= 2^(1-p) */ mpfr_div_2ui (err, err, 3, MPFR_RNDU); /* err/8 */ mpfr_add (err, err, t, MPFR_RNDU); /* err/8 + xx */ mpfr_mul_2ui (err, err, 3, MPFR_RNDU); /* err + 8*xx */ mpfr_exp (t, t, MPFR_RNDU); /* err <= 1/2*ulp(t) + err(x*x)*t <= 1/2*ulp(t)+2*|x*x|*ulp(t) <= (2*|x*x|+1/2)*ulp(t) */ mpfr_mul (t, t, x, MPFR_RNDN); /* err <= 1/2*ulp(t) + (4*|x*x|+1)*ulp(t) <= (4*|x*x|+3/2)*ulp(t) */ mpfr_const_pi (xx, MPFR_RNDZ); /* err <= ulp(Pi) */ mpfr_sqrt (xx, xx, MPFR_RNDN); /* err <= 1/2*ulp(xx) + ulp(Pi)/2/sqrt(Pi) <= 3/2*ulp(xx) */ mpfr_mul (t, t, xx, MPFR_RNDN); /* err <= (8 |xx| + 13/2) * ulp(t) */ mpfr_div (y, y, t, MPFR_RNDN); /* the relative error on input y is bounded by (1+u)^err with u = 2^(1-p), that on t is bounded by (1+u)^(8 |xx| + 13/2), thus that on output y is bounded by 8 |xx| + 7 + err. */ if (MPFR_IS_ZERO(y)) { /* If y is zero, most probably we have underflow. We check it directly using the fact that erfc(x) <= exp(-x^2)/sqrt(Pi)/x for x >= 0. We compute an upper approximation of exp(-x^2)/sqrt(Pi)/x. */ mpfr_mul (t, x, x, MPFR_RNDD); /* t <= x^2 */ mpfr_neg (t, t, MPFR_RNDU); /* -x^2 <= t */ mpfr_exp (t, t, MPFR_RNDU); /* exp(-x^2) <= t */ mpfr_const_pi (xx, MPFR_RNDD); /* xx <= sqrt(Pi), cached */ mpfr_mul (xx, xx, x, MPFR_RNDD); /* xx <= sqrt(Pi)*x */ mpfr_div (y, t, xx, MPFR_RNDN); /* if y is zero, this means that the upper approximation of exp(-x^2)/sqrt(Pi)/x is nearer from 0 than from 2^(-emin-1), thus we have underflow. */ exp_err = 0; } else { mpfr_add_ui (err, err, 7, MPFR_RNDU); exp_err = MPFR_GET_EXP (err); } mpfr_clear (t); mpfr_clear (xx); mpfr_clear (err); return exp_err; }
CRFPConstMult::CRFPConstMult(Target* target, int wE_in, int wF_in, int wE_out, int wF_out, string _constant): FPConstMult(target, wE_in, wF_in, wE_out, wF_out), constant (_constant) { #if 0 sollya_obj_t node; mpfr_t mpR; mpz_t zz; srcFileName="CRFPConstMult"; /* Convert the input string into a sollya evaluation tree */ node = sollya_lib_parse_string(constant.c_str()); /* If parse error throw an exception */ if (sollya_lib_obj_is_error(node)) { ostringstream error; error << srcFileName << ": Unable to parse string "<< constant << " as a numeric constant" <<endl; throw error.str(); } mpfr_inits(mpR, NULL); sollya_lib_get_constant(mpR, node); if(verbose){ double r; r = mpfr_get_d(mpR, GMP_RNDN); cout << " Constant evaluates to " <<r <<endl; } // compute the precision -- TODO with NWB cst_width = 2*wF_in+4; REPORT(0, "***** WARNING Taking constant with 2*wF_in+4 bits. Correct rounding is not yet guaranteed. This is being implemented." ); REPORT(INFO, "Required significand precision to reach correct rounding is " << cst_width ); mpfr_set_prec(mpfrC, cst_width); sollya_lib_get_constant(mpR, node); // Now convert mpR into exponent + integral significand // sign cst_sgn = mpfr_sgn(mpR); if(cst_sgn<0) mpfr_neg(mpR, mpR, GMP_RNDN); // compute exponent and mantissa cst_exp_when_mantissa_1_2 = mpfr_get_exp(mpR) - 1; //mpfr_get_exp() assumes significand in [1/2,1) cst_exp_when_mantissa_int = cst_exp_when_mantissa_1_2 - cst_width + 1; mpfr_init2(mpfr_cst_sig, cst_width); mpfr_div_2si(mpfr_cst_sig, mpR, cst_exp_when_mantissa_1_2, GMP_RNDN); REPORT(INFO, "mpfr_cst_sig = " << mpfr_get_d(mpfr_cst_sig, GMP_RNDN)); // Build the corresponding FPConstMult. // initialize mpfr_xcut_sig = 2/cst_sig, will be between 1 and 2 mpfr_init2(mpfr_xcut_sig, 32*(cst_width+wE_in+wE_out)); // should be accurate enough mpfr_set_d(mpfr_xcut_sig, 2.0, GMP_RNDN); // exaxt op mpfr_div(mpfr_xcut_sig, mpfr_xcut_sig, mpfr_cst_sig, GMP_RNDD); // now round it down to wF_in+1 bits mpfr_t xcut_wF; mpfr_init2(xcut_wF, wF_in+1); mpfr_set(xcut_wF, mpfr_xcut_sig, GMP_RNDD); mpfr_mul_2si(xcut_wF, xcut_wF, wF_in, GMP_RNDN); // It should now be an int; cast it into a mpz, then a mpz_class mpz_init2(zz, wF_in+1); mpfr_get_z(zz, xcut_wF, GMP_RNDN); xcut_sig_rd = mpz_class(zz); mpz_clear(zz); REPORT(DETAILED, "mpfr_xcut_sig = " << mpfr_get_d(mpfr_xcut_sig, GMP_RNDN) ); // Now build the mpz significand mpfr_mul_2si(mpfr_cst_sig, mpfr_cst_sig, cst_width, GMP_RNDN); // It should now be an int; cast it into a mpz, then a mpz_class mpz_init2(zz, cst_width); mpfr_get_z(zz, mpfr_cst_sig, GMP_RNDN); cst_sig = mpz_class(zz); mpz_clear(zz); REPORT(DETAILED, "mpzclass cst_sig = " << cst_sig); // build the name ostringstream name; name <<"FPConstMult_"<<(cst_sgn==0?"":"M") <<cst_sig<<"b" <<(cst_exp_when_mantissa_int<0?"M":"")<<abs(cst_exp_when_mantissa_int) <<"_"<<wE_in<<"_"<<wF_in<<"_"<<wE_out<<"_"<<wF_out; uniqueName_=name.str(); // cleaning up mpfr_clears(mpR, mpfr_xcut_sig, xcut_wF, mpfr_cst_sig, NULL); icm = new IntConstMult(target, wF_in+1, cst_sig); oplist.push_back(icm); buildVHDL(); #endif }
int mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { int inexact; long xint; mpfr_t xfrac; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (MPFR_IS_POS (x)) MPFR_SET_INF (y); else MPFR_SET_ZERO (y); MPFR_SET_POS (y); MPFR_RET (0); } else /* 2^0 = 1 */ { MPFR_ASSERTD (MPFR_IS_ZERO(x)); return mpfr_set_ui (y, 1, rnd_mode); } } /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2); if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0)) { mpfr_rnd_t rnd2 = rnd_mode; /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ if (rnd_mode == MPFR_RNDN && mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) rnd2 = MPFR_RNDZ; return mpfr_underflow (y, rnd2, 1); } MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0)) return mpfr_overflow (y, rnd_mode, 1); /* We now know that emin - 1 <= x < emax. */ MPFR_SAVE_EXPO_MARK (expo); /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1); if x < 0 we must round toward 0 (dir=0). */ MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0, MPFR_IS_POS (x), rnd_mode, expo, {}); xint = mpfr_get_si (x, MPFR_RNDZ); mpfr_init2 (xfrac, MPFR_PREC (x)); mpfr_sub_si (xfrac, x, xint, MPFR_RNDN); /* exact */ if (MPFR_IS_ZERO (xfrac)) { mpfr_set_ui (y, 1, MPFR_RNDN); inexact = 0; } else { /* Declaration of the intermediary variable */ mpfr_t t; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */ mpfr_prec_t Nt; /* working precision */ mpfr_exp_t err; /* error */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny); /* initialize of intermediary variable */ mpfr_init2 (t, Nt); /* First computation */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute exp(x*ln(2))*/ mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */ mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */ err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */ mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */ if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, t, rnd_mode); mpfr_clear (t); } mpfr_clear (xfrac); MPFR_CLEAR_FLAGS (); mpfr_mul_2si (y, y, xint, MPFR_RNDN); /* exact or overflow */ /* Note: We can have an overflow only when t was rounded up to 2. */ MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
int main (void) { mpfr_t x; int r; mp_prec_t p; unsigned long k; tests_start_mpfr (); special (); mpfr_init (x); for (p = 2; p < 100; p++) { mpfr_set_prec (x, p); for (r = 0; r < GMP_RND_MAX; r++) { mpfr_set_ui (x, 1, GMP_RNDN); k = 2 + randlimb () % 4; /* 2 <= k <= 5 */ mpfr_root (x, x, k, (mp_rnd_t) r); if (mpfr_cmp_ui (x, 1)) { printf ("Error in mpfr_root(%lu) for x=1, rnd=%s\ngot ", k, mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\n"); exit (1); } mpfr_set_si (x, -1, GMP_RNDN); if (k % 2) { mpfr_root (x, x, k, (mp_rnd_t) r); if (mpfr_cmp_si (x, -1)) { printf ("Error in mpfr_root(%lu) for x=-1, rnd=%s\ngot ", k, mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\n"); exit (1); } } if (p >= 5) { int i; for (i = -12; i <= 12; i++) { mpfr_set_ui (x, 27, GMP_RNDN); mpfr_mul_2si (x, x, 3*i, GMP_RNDN); mpfr_root (x, x, 3, GMP_RNDN); if (mpfr_cmp_si_2exp (x, 3, i)) { printf ("Error in mpfr_root(3) for " "x = 27.0 * 2^(%d), rnd=%s\ngot ", 3*i, mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\ninstead of 3 * 2^(%d)\n", i); exit (1); } } } } } mpfr_clear (x); test_generic_ui (2, 200, 30); tests_end_mpfr (); return 0; }
int main (void) { mpfr_t x; int r; mp_prec_t p; tests_start_mpfr (); special (); mpfr_init (x); for (p=2; p<100; p++) { mpfr_set_prec (x, p); for (r = 0; r < GMP_RND_MAX; r++) { mpfr_set_ui (x, 1, GMP_RNDN); mpfr_cbrt (x, x, (mp_rnd_t) r); if (mpfr_cmp_ui (x, 1)) { printf ("Error in mpfr_cbrt for x=1, rnd=%s\ngot ", mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\n"); exit (1); } mpfr_set_si (x, -1, GMP_RNDN); mpfr_cbrt (x, x, (mp_rnd_t) r); if (mpfr_cmp_si (x, -1)) { printf ("Error in mpfr_cbrt for x=-1, rnd=%s\ngot ", mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\n"); exit (1); } if (p >= 5) { int i; for (i = -12; i <= 12; i++) { mpfr_set_ui (x, 27, GMP_RNDN); mpfr_mul_2si (x, x, 3*i, GMP_RNDN); mpfr_cbrt (x, x, GMP_RNDN); if (mpfr_cmp_si_2exp (x, 3, i)) { printf ("Error in mpfr_cbrt for " "x = 27.0 * 2^(%d), rnd=%s\ngot ", 3*i, mpfr_print_rnd_mode ((mp_rnd_t) r)); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\ninstead of 3 * 2^(%d)\n", i); exit (1); } } } } } mpfr_clear (x); tests_end_mpfr (); return 0; }
void mpfr_bisect_sqrt(mpfr_t R, mpfr_t N, mpfr_t T) { if(mpfr_cmp_ui(N, 0) < 0) { fprintf(stderr, "The value to square root must be non-negative\n"); exit(-1); } if(mpfr_cmp_ui(T, 0) < 0) { fprintf(stderr, "The tolerance must be non-negative\n"); exit(-1); } mpfr_exp_t e; mpfr_t a, b, x, f, d, fab, n; mpfr_init(n); mpfr_frexp(&e, n, N, MPFR_RNDN); if(e%2) { mpfr_div_ui(n, n, 2, MPFR_RNDN); e += 1; } //Set a == 0 mpfr_init_set_ui(a, 0, MPFR_RNDN); //Set b == 1 mpfr_init_set_ui(b, 1, MPFR_RNDN); //Set x = (a + b)/2 mpfr_init(x); mpfr_add(x, a, b, MPFR_RNDN); mpfr_mul(x, x, MPFR_HALF, MPFR_RNDN); //Set f = x^2 - N and fab = |f| mpfr_init(f); mpfr_init(fab); mpfr_mul(f, x, x, MPFR_RNDN); mpfr_sub(f, f, N, MPFR_RNDN); mpfr_abs(fab, f, MPFR_RNDN); //Set d = b - a mpfr_init(d); mpfr_sub(d, b, a, MPFR_RNDN); while(mpfr_cmp(fab, T) > 0 && mpfr_cmp(d, T) > 0) { //Update the bounds, a and b if(mpfr_cmp_ui(f, 0) < 0) mpfr_set(a, x, MPFR_RNDN); else mpfr_set(b, x, MPFR_RNDN); //Update x mpfr_add(x, a, b, MPFR_RNDN); mpfr_mul(x, x, MPFR_HALF, MPFR_RNDN); //Update f and fab mpfr_mul(f, x, x, MPFR_RNDN); mpfr_sub(f, f, n, MPFR_RNDN); mpfr_abs(fab, f, MPFR_RNDN); } printf("beep"); mpfr_mul_2si(R, x, e/2, MPFR_RNDN); }
static void large (mpfr_exp_t e) { mpfr_t x, y, z; mpfr_exp_t emax; int inex; unsigned int flags; emax = mpfr_get_emax (); set_emax (e); mpfr_init2 (x, 8); mpfr_init2 (y, 8); mpfr_init2 (z, 4); mpfr_set_inf (x, 1); mpfr_nextbelow (x); mpfr_mul_2si (y, x, -1, MPFR_RNDU); mpfr_prec_round (y, 4, MPFR_RNDU); mpfr_clear_flags (); inex = mpfr_mul_2si (z, x, -1, MPFR_RNDU); flags = __gmpfr_flags; if (inex <= 0 || flags != MPFR_FLAGS_INEXACT || ! mpfr_equal_p (y, z)) { printf ("Error in large("); if (e == MPFR_EMAX_MAX) printf ("MPFR_EMAX_MAX"); else if (e == emax) printf ("default emax"); else if (e <= LONG_MAX) printf ("%ld", (long) e); else printf (">LONG_MAX"); printf (") for mpfr_mul_2si\n"); printf ("Expected inex > 0, flags = %u,\n y = ", (unsigned int) MPFR_FLAGS_INEXACT); mpfr_dump (y); printf ("Got inex = %d, flags = %u,\n y = ", inex, flags); mpfr_dump (z); exit (1); } mpfr_clear_flags (); inex = mpfr_div_2si (z, x, 1, MPFR_RNDU); flags = __gmpfr_flags; if (inex <= 0 || flags != MPFR_FLAGS_INEXACT || ! mpfr_equal_p (y, z)) { printf ("Error in large("); if (e == MPFR_EMAX_MAX) printf ("MPFR_EMAX_MAX"); else if (e == emax) printf ("default emax"); else if (e <= LONG_MAX) printf ("%ld", (long) e); else printf (">LONG_MAX"); printf (") for mpfr_div_2si\n"); printf ("Expected inex > 0, flags = %u,\n y = ", (unsigned int) MPFR_FLAGS_INEXACT); mpfr_dump (y); printf ("Got inex = %d, flags = %u,\n y = ", inex, flags); mpfr_dump (z); exit (1); } mpfr_clear_flags (); inex = mpfr_div_2ui (z, x, 1, MPFR_RNDU); flags = __gmpfr_flags; if (inex <= 0 || flags != MPFR_FLAGS_INEXACT || ! mpfr_equal_p (y, z)) { printf ("Error in large("); if (e == MPFR_EMAX_MAX) printf ("MPFR_EMAX_MAX"); else if (e == emax) printf ("default emax"); else if (e <= LONG_MAX) printf ("%ld", (long) e); else printf (">LONG_MAX"); printf (") for mpfr_div_2ui\n"); printf ("Expected inex > 0, flags = %u,\n y = ", (unsigned int) MPFR_FLAGS_INEXACT); mpfr_dump (y); printf ("Got inex = %d, flags = %u,\n y = ", inex, flags); mpfr_dump (z); exit (1); } mpfr_clears (x, y, z, (mpfr_ptr) 0); set_emax (emax); }
/* If x^y is exactly representable (with maybe a larger precision than z), round it in z and return the (mpc) inexact flag in [0, 10]. If x^y is not exactly representable, return -1. If intermediate computations lead to numbers of more than maxprec bits, then abort and return -2 (in that case, to avoid loops, mpc_pow_exact should be called again with a larger value of maxprec). Assume one of Re(x) or Im(x) is non-zero, and y is non-zero (y is real). Warning: z and x might be the same variable, same for Re(z) or Im(z) and y. In case -1 or -2 is returned, z is not modified. */ static int mpc_pow_exact (mpc_ptr z, mpc_srcptr x, mpfr_srcptr y, mpc_rnd_t rnd, mpfr_prec_t maxprec) { mpfr_exp_t ec, ed, ey; mpz_t my, a, b, c, d, u; unsigned long int t; int ret = -2; int sign_rex = mpfr_signbit (mpc_realref(x)); int sign_imx = mpfr_signbit (mpc_imagref(x)); int x_imag = mpfr_zero_p (mpc_realref(x)); int z_is_y = 0; mpfr_t copy_of_y; if (mpc_realref (z) == y || mpc_imagref (z) == y) { z_is_y = 1; mpfr_init2 (copy_of_y, mpfr_get_prec (y)); mpfr_set (copy_of_y, y, MPFR_RNDN); } mpz_init (my); mpz_init (a); mpz_init (b); mpz_init (c); mpz_init (d); mpz_init (u); ey = mpfr_get_z_exp (my, y); /* normalize so that my is odd */ t = mpz_scan1 (my, 0); ey += (mpfr_exp_t) t; mpz_tdiv_q_2exp (my, my, t); /* y = my*2^ey with my odd */ if (x_imag) { mpz_set_ui (c, 0); ec = 0; } else ec = mpfr_get_z_exp (c, mpc_realref(x)); if (mpfr_zero_p (mpc_imagref(x))) { mpz_set_ui (d, 0); ed = ec; } else { ed = mpfr_get_z_exp (d, mpc_imagref(x)); if (x_imag) ec = ed; } /* x = c*2^ec + I * d*2^ed */ /* equalize the exponents of x */ if (ec < ed) { mpz_mul_2exp (d, d, (unsigned long int) (ed - ec)); if ((mpfr_prec_t) mpz_sizeinbase (d, 2) > maxprec) goto end; } else if (ed < ec) { mpz_mul_2exp (c, c, (unsigned long int) (ec - ed)); if ((mpfr_prec_t) mpz_sizeinbase (c, 2) > maxprec) goto end; ec = ed; } /* now ec=ed and x = (c + I * d) * 2^ec */ /* divide by two if possible */ if (mpz_cmp_ui (c, 0) == 0) { t = mpz_scan1 (d, 0); mpz_tdiv_q_2exp (d, d, t); ec += (mpfr_exp_t) t; } else if (mpz_cmp_ui (d, 0) == 0) { t = mpz_scan1 (c, 0); mpz_tdiv_q_2exp (c, c, t); ec += (mpfr_exp_t) t; } else /* neither c nor d is zero */ { unsigned long v; t = mpz_scan1 (c, 0); v = mpz_scan1 (d, 0); if (v < t) t = v; mpz_tdiv_q_2exp (c, c, t); mpz_tdiv_q_2exp (d, d, t); ec += (mpfr_exp_t) t; } /* now either one of c, d is odd */ while (ey < 0) { /* check if x is a square */ if (ec & 1) { mpz_mul_2exp (c, c, 1); mpz_mul_2exp (d, d, 1); ec --; } /* now ec is even */ if (mpc_perfect_square_p (a, b, c, d) == 0) break; mpz_swap (a, c); mpz_swap (b, d); ec /= 2; ey ++; } if (ey < 0) { ret = -1; /* not representable */ goto end; } /* Now ey >= 0, it thus suffices to check that x^my is representable. If my > 0, this is always true. If my < 0, we first try to invert (c+I*d)*2^ec. */ if (mpz_cmp_ui (my, 0) < 0) { /* If my < 0, 1 / (c + I*d) = (c - I*d)/(c^2 + d^2), thus a sufficient condition is that c^2 + d^2 is a power of two, assuming |c| <> |d|. Assume a prime p <> 2 divides c^2 + d^2, then if p does not divide c or d, 1 / (c + I*d) cannot be exact. If p divides both c and d, then we can write c = p*c', d = p*d', and 1 / (c + I*d) = 1/p * 1/(c' + I*d'). This shows that if 1/(c+I*d) is exact, then 1/(c' + I*d') is exact too, and we are back to the previous case. In conclusion, a necessary and sufficient condition is that c^2 + d^2 is a power of two. */ /* FIXME: we could first compute c^2+d^2 mod a limb for example */ mpz_mul (a, c, c); mpz_addmul (a, d, d); t = mpz_scan1 (a, 0); if (mpz_sizeinbase (a, 2) != 1 + t) /* a is not a power of two */ { ret = -1; /* not representable */ goto end; } /* replace (c,d) by (c/(c^2+d^2), -d/(c^2+d^2)) */ mpz_neg (d, d); ec = -ec - (mpfr_exp_t) t; mpz_neg (my, my); } /* now ey >= 0 and my >= 0, and we want to compute [(c + I * d) * 2^ec] ^ (my * 2^ey). We first compute [(c + I * d) * 2^ec]^my, then square ey times. */ t = mpz_sizeinbase (my, 2) - 1; mpz_set (a, c); mpz_set (b, d); ed = ec; /* invariant: (a + I*b) * 2^ed = ((c + I*d) * 2^ec)^trunc(my/2^t) */ while (t-- > 0) { unsigned long int v, w; /* square a + I*b */ mpz_mul (u, a, b); mpz_mul (a, a, a); mpz_submul (a, b, b); mpz_mul_2exp (b, u, 1); ed *= 2; if (mpz_tstbit (my, t)) /* multiply by c + I*d */ { mpz_mul (u, a, c); mpz_submul (u, b, d); /* ac-bd */ mpz_mul (b, b, c); mpz_addmul (b, a, d); /* bc+ad */ mpz_swap (a, u); ed += ec; } /* remove powers of two in (a,b) */ if (mpz_cmp_ui (a, 0) == 0) { w = mpz_scan1 (b, 0); mpz_tdiv_q_2exp (b, b, w); ed += (mpfr_exp_t) w; } else if (mpz_cmp_ui (b, 0) == 0) { w = mpz_scan1 (a, 0); mpz_tdiv_q_2exp (a, a, w); ed += (mpfr_exp_t) w; } else { w = mpz_scan1 (a, 0); v = mpz_scan1 (b, 0); if (v < w) w = v; mpz_tdiv_q_2exp (a, a, w); mpz_tdiv_q_2exp (b, b, w); ed += (mpfr_exp_t) w; } if ( (mpfr_prec_t) mpz_sizeinbase (a, 2) > maxprec || (mpfr_prec_t) mpz_sizeinbase (b, 2) > maxprec) goto end; } /* now a+I*b = (c+I*d)^my */ while (ey-- > 0) { unsigned long sa, sb; /* square a + I*b */ mpz_mul (u, a, b); mpz_mul (a, a, a); mpz_submul (a, b, b); mpz_mul_2exp (b, u, 1); ed *= 2; /* divide by largest 2^n possible, to avoid many loops for e.g., (2+2*I)^16777216 */ sa = mpz_scan1 (a, 0); sb = mpz_scan1 (b, 0); sa = (sa <= sb) ? sa : sb; mpz_tdiv_q_2exp (a, a, sa); mpz_tdiv_q_2exp (b, b, sa); ed += (mpfr_exp_t) sa; if ( (mpfr_prec_t) mpz_sizeinbase (a, 2) > maxprec || (mpfr_prec_t) mpz_sizeinbase (b, 2) > maxprec) goto end; } ret = mpfr_set_z (mpc_realref(z), a, MPC_RND_RE(rnd)); ret = MPC_INEX(ret, mpfr_set_z (mpc_imagref(z), b, MPC_RND_IM(rnd))); mpfr_mul_2si (mpc_realref(z), mpc_realref(z), ed, MPC_RND_RE(rnd)); mpfr_mul_2si (mpc_imagref(z), mpc_imagref(z), ed, MPC_RND_IM(rnd)); end: mpz_clear (my); mpz_clear (a); mpz_clear (b); mpz_clear (c); mpz_clear (d); mpz_clear (u); if (ret >= 0 && x_imag) fix_sign (z, sign_rex, sign_imx, (z_is_y) ? copy_of_y : y); if (z_is_y) mpfr_clear (copy_of_y); return ret; }
int mpfr_log (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode) { int inexact; mpfr_prec_t p, q; mpfr_t tmp1, tmp2; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_GROUP_DECL(group); MPFR_LOG_FUNC (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode), ("r[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (r), mpfr_log_prec, r, inexact)); /* Special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a))) { /* If a is NaN, the result is NaN */ if (MPFR_IS_NAN (a)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* check for infinity before zero */ else if (MPFR_IS_INF (a)) { if (MPFR_IS_NEG (a)) /* log(-Inf) = NaN */ { MPFR_SET_NAN (r); MPFR_RET_NAN; } else /* log(+Inf) = +Inf */ { MPFR_SET_INF (r); MPFR_SET_POS (r); MPFR_RET (0); } } else /* a is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (a)); MPFR_SET_INF (r); MPFR_SET_NEG (r); mpfr_set_divby0 (); MPFR_RET (0); /* log(0) is an exact -infinity */ } } /* If a is negative, the result is NaN */ else if (MPFR_UNLIKELY (MPFR_IS_NEG (a))) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ else if (MPFR_UNLIKELY (MPFR_GET_EXP (a) == 1 && mpfr_cmp_ui (a, 1) == 0)) { MPFR_SET_ZERO (r); MPFR_SET_POS (r); MPFR_RET (0); /* only "normal" case where the result is exact */ } q = MPFR_PREC (r); /* use initial precision about q+lg(q)+5 */ p = q + 5 + 2 * MPFR_INT_CEIL_LOG2 (q); /* % ~(mpfr_prec_t)GMP_NUMB_BITS ; m=q; while (m) { p++; m >>= 1; } */ /* if (MPFR_LIKELY(p % GMP_NUMB_BITS != 0)) p += GMP_NUMB_BITS - (p%GMP_NUMB_BITS); */ MPFR_SAVE_EXPO_MARK (expo); MPFR_GROUP_INIT_2 (group, p, tmp1, tmp2); MPFR_ZIV_INIT (loop, p); for (;;) { long m; mpfr_exp_t cancel; /* Calculus of m (depends on p) */ m = (p + 1) / 2 - MPFR_GET_EXP (a) + 1; mpfr_mul_2si (tmp2, a, m, MPFR_RNDN); /* s=a*2^m, err<=1 ulp */ mpfr_div (tmp1, __gmpfr_four, tmp2, MPFR_RNDN);/* 4/s, err<=2 ulps */ mpfr_agm (tmp2, __gmpfr_one, tmp1, MPFR_RNDN); /* AG(1,4/s),err<=3 ulps */ mpfr_mul_2ui (tmp2, tmp2, 1, MPFR_RNDN); /* 2*AG(1,4/s), err<=3 ulps */ mpfr_const_pi (tmp1, MPFR_RNDN); /* compute pi, err<=1ulp */ mpfr_div (tmp2, tmp1, tmp2, MPFR_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */ mpfr_const_log2 (tmp1, MPFR_RNDN); /* compute log(2), err<=1ulp */ mpfr_mul_si (tmp1, tmp1, m, MPFR_RNDN); /* compute m*log(2),err<=2ulps */ mpfr_sub (tmp1, tmp2, tmp1, MPFR_RNDN); /* log(a), err<=7ulps+cancel */ if (MPFR_LIKELY (MPFR_IS_PURE_FP (tmp1) && MPFR_IS_PURE_FP (tmp2))) { cancel = MPFR_GET_EXP (tmp2) - MPFR_GET_EXP (tmp1); MPFR_LOG_MSG (("canceled bits=%ld\n", (long) cancel)); MPFR_LOG_VAR (tmp1); if (MPFR_UNLIKELY (cancel < 0)) cancel = 0; /* we have 7 ulps of error from the above roundings, 4 ulps from the 4/s^2 second order term, plus the canceled bits */ if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp1, p-cancel-4, q, rnd_mode))) break; /* VL: I think it is better to have an increment that it isn't too low; in particular, the increment must be positive even if cancel = 0 (can this occur?). */ p += cancel >= 8 ? cancel : 8; } else { /* TODO: find why this case can occur and what is best to do with it. */ p += 32; } MPFR_ZIV_NEXT (loop, p); MPFR_GROUP_REPREC_2 (group, p, tmp1, tmp2); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (r, tmp1, rnd_mode); /* We clean */ MPFR_GROUP_CLEAR (group); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); }
void FixComplexKCM::emulate(TestCase * tc) { /* first we are going to format the entries */ mpz_class reIn = tc->getInputValue("ReIN"); mpz_class imIn = tc->getInputValue("ImIN"); /* Sign handling */ // Msb index counting from one bool reInNeg = ( signedInput && (mpz_tstbit(reIn.get_mpz_t(), input_width - 1) == 1) ); bool imInNeg = ( signedInput && (mpz_tstbit(imIn.get_mpz_t(), input_width - 1) == 1) ); // 2's complement -> absolute value unsigned representation if(reInNeg) { reIn = (mpz_class(1) << input_width) - reIn; } if(imInNeg) { imIn = (mpz_class(1) << input_width) - imIn; } //Cast to mp floating point number mpfr_t reIn_mpfr, imIn_mpfr; mpfr_init2(reIn_mpfr, input_width + 1); mpfr_init2(imIn_mpfr, input_width + 1); //Exact mpfr_set_z(reIn_mpfr, reIn.get_mpz_t(), GMP_RNDN); mpfr_set_z(imIn_mpfr, imIn.get_mpz_t(), GMP_RNDN); //Scaling : Exact mpfr_mul_2si(reIn_mpfr, reIn_mpfr, lsb_in, GMP_RNDN); mpfr_mul_2si(imIn_mpfr, imIn_mpfr, lsb_in, GMP_RNDN); mpfr_t re_prod, im_prod, crexim_prod, xrecim_prod; mpfr_t reOut, imOut; mpfr_inits2( 2 * input_width + 1, re_prod, im_prod, crexim_prod, xrecim_prod, NULL ); mpfr_inits2(5 * max(outputim_width, outputre_width) + 1, reOut, imOut, NULL); // c_r * x_r -> re_prod mpfr_mul(re_prod, reIn_mpfr, mpfr_constant_re, GMP_RNDN); // c_i * x_i -> im_prod mpfr_mul(im_prod, imIn_mpfr, mpfr_constant_im, GMP_RNDN); // c_r * x_i -> crexim_prod mpfr_mul(crexim_prod, mpfr_constant_re, imIn_mpfr, GMP_RNDN); // x_r * c_im -> xrecim_prod mpfr_mul(xrecim_prod, reIn_mpfr, mpfr_constant_im, GMP_RNDN); /* Input sign correction */ if(reInNeg) { //Exact mpfr_neg(re_prod, re_prod, GMP_RNDN); mpfr_neg(xrecim_prod, xrecim_prod, GMP_RNDN); } if(imInNeg) { //Exact mpfr_neg(im_prod, im_prod, GMP_RNDN); mpfr_neg(crexim_prod, crexim_prod, GMP_RNDN); } mpfr_sub(reOut, re_prod, im_prod, GMP_RNDN); mpfr_add(imOut, crexim_prod, xrecim_prod, GMP_RNDN); bool reOutNeg = (mpfr_sgn(reOut) < 0); bool imOutNeg = (mpfr_sgn(imOut) < 0); if(reOutNeg) { //Exact mpfr_abs(reOut, reOut, GMP_RNDN); } if(imOutNeg) { //Exact mpfr_abs(imOut, imOut, GMP_RNDN); } //Scale back (Exact) mpfr_mul_2si(reOut, reOut, -lsb_out, GMP_RNDN); mpfr_mul_2si(imOut, imOut, -lsb_out, GMP_RNDN); //Get bits vector mpz_class reUp, reDown, imUp, imDown, carry; mpfr_get_z(reUp.get_mpz_t(), reOut, GMP_RNDU); mpfr_get_z(reDown.get_mpz_t(), reOut, GMP_RNDD); mpfr_get_z(imDown.get_mpz_t(), imOut, GMP_RNDD); mpfr_get_z(imUp.get_mpz_t(), imOut, GMP_RNDU); carry = 0; //If result was negative, compute 2's complement if(reOutNeg) { reUp = (mpz_class(1) << outputre_width) - reUp; reDown = (mpz_class(1) << outputre_width) - reDown; } if(imOutNeg) { imUp = (mpz_class(1) << outputim_width) - imUp; imDown = (mpz_class(1) << outputim_width) - imDown; } //Handle border cases if(imUp > (mpz_class(1) << outputim_width) - 1 ) { imUp = 0; } if(reUp > (mpz_class(1) << outputre_width) - 1) { reUp = 0; } if(imDown > (mpz_class(1) << outputim_width) - 1 ) { imDown = 0; } if(reDown > (mpz_class(1) << outputre_width) - 1) { reDown = 0; } //Add expected results to corresponding outputs tc->addExpectedOutput("ReOut", reUp); tc->addExpectedOutput("ReOut", reDown); tc->addExpectedOutput("ImOut", imUp); tc->addExpectedOutput("ImOut", imDown); mpfr_clears( reOut, imOut, re_prod, im_prod, crexim_prod, xrecim_prod, reIn_mpfr, imIn_mpfr, NULL ); }
int main (void) { #ifdef MPFR_HAVE_FESETROUND mpfr_t half, x, y; mp_rnd_t rnd_mode; #endif mpfr_test_init (); #ifdef MPFR_HAVE_FESETROUND mpfr_init2(half, 2); mpfr_set_ui(half, 1, GMP_RNDZ); mpfr_div_2ui(half, half, 1, GMP_RNDZ); /* has exponent 0 */ mpfr_init2(x, 128); mpfr_init2(y, 128); for (rnd_mode = 0; rnd_mode <= 3; rnd_mode++) { int i, j, si, sj; double di, dj; mpfr_set_machine_rnd_mode (rnd_mode); for (i = 1, di = 0.25; i < 127; i++, di *= 0.5) for (si = 0; si <= 1; si++) { mpfr_div_2ui (x, half, i, GMP_RNDZ); (si ? mpfr_sub : mpfr_add)(x, half, x, GMP_RNDZ); /* x = 1/2 +/- 1/2^(1+i) */ for (j = i+1, dj = di * 0.5; j < 128 && j < i+53; j++, dj *= 0.5) for (sj = 0; sj <= 1; sj++) { double c, d, dd; int exp; char *f; mpfr_div_2ui (y, half, j, GMP_RNDZ); (sj ? mpfr_sub : mpfr_add)(y, x, y, GMP_RNDZ); /* y = 1/2 +/- 1/2^(1+i) +/- 1/2^(1+j) */ exp = (LONG_RAND() % 47) - 23; mpfr_mul_2si (y, y, exp, GMP_RNDZ); if (mpfr_inexflag_p()) { fprintf(stderr, "Error in tget_d: inexact flag for " "(i,si,j,sj,rnd,exp) = (%d,%d,%d,%d,%d,%d)\n", i, si, j, sj, rnd_mode, exp); exit(1); } dd = si != sj ? di - dj : di + dj; d = si ? 0.5 - dd : 0.5 + dd; if ((LONG_RAND() / 1024) & 1) { c = mpfr_get_d (y, rnd_mode); f = "mpfr_get_d"; } else { exp = (LONG_RAND() % 47) - 23; c = mpfr_get_d3 (y, exp, rnd_mode); f = "mpfr_get_d3"; if (si) /* then real d < 0.5 */ d *= sj && i == 1 ? 4 : 2; /* normalize real d */ } if (exp > 0) d *= 1 << exp; if (exp < 0) d /= 1 << -exp; if (c != d) { fprintf (stderr, "Error in tget_d (%s) for " "(i,si,j,sj,rnd,exp) = (%d,%d,%d,%d,%d,%d)\n" "got %.25Le instead of %.25Le\n" "Difference: %.19e\n", f, i, si, j, sj, rnd_mode, exp, (long double) c, (long double) d, d - c); exit (1); } } } } mpfr_clear(half); mpfr_clear(x); mpfr_clear(y); #endif if (check_denorms ()) exit (1); return 0; }
/* set f to the rational q */ int mpfr_set_q (mpfr_ptr f, mpq_srcptr q, mp_rnd_t rnd) { mpz_srcptr num, den; mpfr_t n, d; int inexact; int cn, cd; long shift; mp_size_t sn, sd; MPFR_SAVE_EXPO_DECL (expo); num = mpq_numref (q); den = mpq_denref (q); /* NAN and INF for mpq are not really documented, but could be found */ if (MPFR_UNLIKELY (mpz_sgn (num) == 0)) { if (MPFR_UNLIKELY (mpz_sgn (den) == 0)) { MPFR_SET_NAN (f); MPFR_RET_NAN; } else { MPFR_SET_ZERO (f); MPFR_SET_POS (f); MPFR_RET (0); } } if (MPFR_UNLIKELY (mpz_sgn (den) == 0)) { MPFR_SET_INF (f); MPFR_SET_SIGN (f, mpz_sgn (num)); MPFR_RET (0); } MPFR_SAVE_EXPO_MARK (expo); cn = set_z (n, num, &sn); cd = set_z (d, den, &sd); sn -= sd; if (MPFR_UNLIKELY (sn > MPFR_EMAX_MAX / BITS_PER_MP_LIMB)) { inexact = mpfr_overflow (f, rnd, MPFR_SIGN (f)); goto end; } if (MPFR_UNLIKELY (sn < MPFR_EMIN_MIN / BITS_PER_MP_LIMB -1)) { if (rnd == GMP_RNDN) rnd = GMP_RNDZ; inexact = mpfr_underflow (f, rnd, MPFR_SIGN (f)); goto end; } inexact = mpfr_div (f, n, d, rnd); shift = BITS_PER_MP_LIMB*sn+cn-cd; MPFR_ASSERTD (shift == BITS_PER_MP_LIMB*sn+cn-cd); cd = mpfr_mul_2si (f, f, shift, rnd); MPFR_SAVE_EXPO_FREE (expo); if (MPFR_UNLIKELY (cd != 0)) inexact = cd; else inexact = mpfr_check_range (f, inexact, rnd); end: mpfr_clear (d); mpfr_clear (n); return inexact; }
/* Assumes that the exponent range has already been extended and if y is an integer, then the result is not exact in unbounded exponent range. */ int mpfr_pow_general (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode, int y_is_integer, mpfr_save_expo_t *expo) { mpfr_t t, u, k, absx; int neg_result = 0; int k_non_zero = 0; int check_exact_case = 0; int inexact; /* Declaration of the size variable */ mpfr_prec_t Nz = MPFR_PREC(z); /* target precision */ mpfr_prec_t Nt; /* working precision */ mpfr_exp_t err; /* error */ MPFR_ZIV_DECL (ziv_loop); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode), ("z[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (z), mpfr_log_prec, z, inexact)); /* We put the absolute value of x in absx, pointing to the significand of x to avoid allocating memory for the significand of absx. */ MPFR_ALIAS(absx, x, /*sign=*/ 1, /*EXP=*/ MPFR_EXP(x)); /* We will compute the absolute value of the result. So, let's invert the rounding mode if the result is negative. */ if (MPFR_IS_NEG (x) && is_odd (y)) { neg_result = 1; rnd_mode = MPFR_INVERT_RND (rnd_mode); } /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz); /* initialise of intermediary variable */ mpfr_init2 (t, Nt); MPFR_ZIV_INIT (ziv_loop, Nt); for (;;) { MPFR_BLOCK_DECL (flags1); /* compute exp(y*ln|x|), using MPFR_RNDU to get an upper bound, so that we can detect underflows. */ mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDD : MPFR_RNDU); /* ln|x| */ mpfr_mul (t, y, t, MPFR_RNDU); /* y*ln|x| */ if (k_non_zero) { MPFR_LOG_MSG (("subtract k * ln(2)\n", 0)); mpfr_const_log2 (u, MPFR_RNDD); mpfr_mul (u, u, k, MPFR_RNDD); /* Error on u = k * log(2): < k * 2^(-Nt) < 1. */ mpfr_sub (t, t, u, MPFR_RNDU); MPFR_LOG_MSG (("t = y * ln|x| - k * ln(2)\n", 0)); MPFR_LOG_VAR (t); } /* estimate of the error -- see pow function in algorithms.tex. The error on t is at most 1/2 + 3*2^(EXP(t)+1) ulps, which is <= 2^(EXP(t)+3) for EXP(t) >= -1, and <= 2 ulps for EXP(t) <= -2. Additional error if k_no_zero: treal = t * errk, with 1 - |k| * 2^(-Nt) <= exp(-|k| * 2^(-Nt)) <= errk <= 1, i.e., additional absolute error <= 2^(EXP(k)+EXP(t)-Nt). Total error <= 2^err1 + 2^err2 <= 2^(max(err1,err2)+1). */ err = MPFR_NOTZERO (t) && MPFR_GET_EXP (t) >= -1 ? MPFR_GET_EXP (t) + 3 : 1; if (k_non_zero) { if (MPFR_GET_EXP (k) > err) err = MPFR_GET_EXP (k); err++; } MPFR_BLOCK (flags1, mpfr_exp (t, t, MPFR_RNDN)); /* exp(y*ln|x|)*/ /* We need to test */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (t) || MPFR_UNDERFLOW (flags1))) { mpfr_prec_t Ntmin; MPFR_BLOCK_DECL (flags2); MPFR_ASSERTN (!k_non_zero); MPFR_ASSERTN (!MPFR_IS_NAN (t)); /* Real underflow? */ if (MPFR_IS_ZERO (t)) { /* Underflow. We computed rndn(exp(t)), where t >= y*ln|x|. Therefore rndn(|x|^y) = 0, and we have a real underflow on |x|^y. */ inexact = mpfr_underflow (z, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode, MPFR_SIGN_POS); if (expo != NULL) MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT | MPFR_FLAGS_UNDERFLOW); break; } /* Real overflow? */ if (MPFR_IS_INF (t)) { /* Note: we can probably use a low precision for this test. */ mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDU : MPFR_RNDD); mpfr_mul (t, y, t, MPFR_RNDD); /* y * ln|x| */ MPFR_BLOCK (flags2, mpfr_exp (t, t, MPFR_RNDD)); /* t = lower bound on exp(y * ln|x|) */ if (MPFR_OVERFLOW (flags2)) { /* We have computed a lower bound on |x|^y, and it overflowed. Therefore we have a real overflow on |x|^y. */ inexact = mpfr_overflow (z, rnd_mode, MPFR_SIGN_POS); if (expo != NULL) MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT | MPFR_FLAGS_OVERFLOW); break; } } k_non_zero = 1; Ntmin = sizeof(mpfr_exp_t) * CHAR_BIT; if (Ntmin > Nt) { Nt = Ntmin; mpfr_set_prec (t, Nt); } mpfr_init2 (u, Nt); mpfr_init2 (k, Ntmin); mpfr_log2 (k, absx, MPFR_RNDN); mpfr_mul (k, y, k, MPFR_RNDN); mpfr_round (k, k); MPFR_LOG_VAR (k); /* |y| < 2^Ntmin, therefore |k| < 2^Nt. */ continue; } if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Nz, rnd_mode))) { inexact = mpfr_set (z, t, rnd_mode); break; } /* check exact power, except when y is an integer (since the exact cases for y integer have already been filtered out) */ if (check_exact_case == 0 && ! y_is_integer) { if (mpfr_pow_is_exact (z, absx, y, rnd_mode, &inexact)) break; check_exact_case = 1; } /* reactualisation of the precision */ MPFR_ZIV_NEXT (ziv_loop, Nt); mpfr_set_prec (t, Nt); if (k_non_zero) mpfr_set_prec (u, Nt); } MPFR_ZIV_FREE (ziv_loop); if (k_non_zero) { int inex2; long lk; /* The rounded result in an unbounded exponent range is z * 2^k. As * MPFR chooses underflow after rounding, the mpfr_mul_2si below will * correctly detect underflows and overflows. However, in rounding to * nearest, if z * 2^k = 2^(emin - 2), then the double rounding may * affect the result. We need to cope with that before overwriting z. * This can occur only if k < 0 (this test is necessary to avoid a * potential integer overflow). * If inexact >= 0, then the real result is <= 2^(emin - 2), so that * o(2^(emin - 2)) = +0 is correct. If inexact < 0, then the real * result is > 2^(emin - 2) and we need to round to 2^(emin - 1). */ MPFR_ASSERTN (MPFR_EXP_MAX <= LONG_MAX); lk = mpfr_get_si (k, MPFR_RNDN); /* Due to early overflow detection, |k| should not be much larger than * MPFR_EMAX_MAX, and as MPFR_EMAX_MAX <= MPFR_EXP_MAX/2 <= LONG_MAX/2, * an overflow should not be possible in mpfr_get_si (and lk is exact). * And one even has the following assertion. TODO: complete proof. */ MPFR_ASSERTD (lk > LONG_MIN && lk < LONG_MAX); /* Note: even in case of overflow (lk inexact), the code is correct. * Indeed, for the 3 occurrences of lk: * - The test lk < 0 is correct as sign(lk) = sign(k). * - In the test MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk, * if lk is inexact, then lk = LONG_MIN <= MPFR_EXP_MIN * (the minimum value of the mpfr_exp_t type), and * __gmpfr_emin - 1 - lk >= MPFR_EMIN_MIN - 1 - 2 * MPFR_EMIN_MIN * >= - MPFR_EMIN_MIN - 1 = MPFR_EMAX_MAX - 1. However, from the * choice of k, z has been chosen to be around 1, so that the * result of the test is false, as if lk were exact. * - In the mpfr_mul_2si (z, z, lk, rnd_mode), if lk is inexact, * then |lk| >= LONG_MAX >= MPFR_EXP_MAX, and as z is around 1, * mpfr_mul_2si underflows or overflows in the same way as if * lk were exact. * TODO: give a bound on |t|, then on |EXP(z)|. */ if (rnd_mode == MPFR_RNDN && inexact < 0 && lk < 0 && MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk && mpfr_powerof2_raw (z)) { /* Rounding to nearest, real result > z * 2^k = 2^(emin - 2), * underflow case: as the minimum precision is > 1, we will * obtain the correct result and exceptions by replacing z by * nextabove(z). */ MPFR_ASSERTN (MPFR_PREC_MIN > 1); mpfr_nextabove (z); } MPFR_CLEAR_FLAGS (); inex2 = mpfr_mul_2si (z, z, lk, rnd_mode); if (inex2) /* underflow or overflow */ { inexact = inex2; if (expo != NULL) MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, __gmpfr_flags); } mpfr_clears (u, k, (mpfr_ptr) 0); } mpfr_clear (t); /* update the sign of the result if x was negative */ if (neg_result) { MPFR_SET_NEG(z); inexact = -inexact; } return inexact; }
int mpfr_mul_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode) { mp_limb_t *yp; mp_size_t xn; int cnt, inexact; MPFR_TMP_DECL (marker); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (u != 0) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); /* infinity is exact */ } else /* 0 * infinity */ { MPFR_SET_NAN (y); MPFR_RET_NAN; } } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); /* zero is exact */ } } else if (MPFR_UNLIKELY (u <= 1)) { if (u < 1) { MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); /* zero is exact */ } else return mpfr_set (y, x, rnd_mode); } else if (MPFR_UNLIKELY (IS_POW2 (u))) return mpfr_mul_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode); yp = MPFR_MANT (y); xn = MPFR_LIMB_SIZE (x); MPFR_ASSERTD (xn < MP_SIZE_T_MAX); MPFR_TMP_MARK(marker); yp = MPFR_TMP_LIMBS_ALLOC (xn + 1); MPFR_ASSERTN (u == (mp_limb_t) u); yp[xn] = mpn_mul_1 (yp, MPFR_MANT (x), xn, u); /* x * u is stored in yp[xn], ..., yp[0] */ /* since the case u=1 was treated above, we have u >= 2, thus yp[xn] >= 1 since x was msb-normalized */ MPFR_ASSERTD (yp[xn] != 0); if (MPFR_LIKELY (MPFR_LIMB_MSB (yp[xn]) == 0)) { count_leading_zeros (cnt, yp[xn]); mpn_lshift (yp, yp, xn + 1, cnt); } else { cnt = 0; } /* now yp[xn], ..., yp[0] is msb-normalized too, and has at most PREC(x) + (GMP_NUMB_BITS - cnt) non-zero bits */ MPFR_RNDRAW (inexact, y, yp, (mpfr_prec_t) (xn + 1) * GMP_NUMB_BITS, rnd_mode, MPFR_SIGN (x), cnt -- ); MPFR_TMP_FREE (marker); cnt = GMP_NUMB_BITS - cnt; if (MPFR_UNLIKELY (__gmpfr_emax < MPFR_EMAX_MIN + cnt || MPFR_GET_EXP (x) > __gmpfr_emax - cnt)) return mpfr_overflow (y, rnd_mode, MPFR_SIGN(x)); MPFR_SET_EXP (y, MPFR_GET_EXP (x) + cnt); MPFR_SET_SAME_SIGN (y, x); return inexact; }
/* return non zero iff x^y is exact. Assumes x and y are ordinary numbers, y is not an integer, x is not a power of 2 and x is positive If x^y is exact, it computes it and sets *inexact. */ static int mpfr_pow_is_exact (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode, int *inexact) { mpz_t a, c; mpfr_exp_t d, b; unsigned long i; int res; MPFR_ASSERTD (!MPFR_IS_SINGULAR (y)); MPFR_ASSERTD (!MPFR_IS_SINGULAR (x)); MPFR_ASSERTD (!mpfr_integer_p (y)); MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_INT_SIGN (x), MPFR_GET_EXP (x) - 1) != 0); MPFR_ASSERTD (MPFR_IS_POS (x)); if (MPFR_IS_NEG (y)) return 0; /* x is not a power of two => x^-y is not exact */ /* compute d such that y = c*2^d with c odd integer */ mpz_init (c); d = mpfr_get_z_2exp (c, y); i = mpz_scan1 (c, 0); mpz_fdiv_q_2exp (c, c, i); d += i; /* now y=c*2^d with c odd */ /* Since y is not an integer, d is necessarily < 0 */ MPFR_ASSERTD (d < 0); /* Compute a,b such that x=a*2^b */ mpz_init (a); b = mpfr_get_z_2exp (a, x); i = mpz_scan1 (a, 0); mpz_fdiv_q_2exp (a, a, i); b += i; /* now x=a*2^b with a is odd */ for (res = 1 ; d != 0 ; d++) { /* a*2^b is a square iff (i) a is a square when b is even (ii) 2*a is a square when b is odd */ if (b % 2 != 0) { mpz_mul_2exp (a, a, 1); /* 2*a */ b --; } MPFR_ASSERTD ((b % 2) == 0); if (!mpz_perfect_square_p (a)) { res = 0; goto end; } mpz_sqrt (a, a); b = b / 2; } /* Now x = (a'*2^b')^(2^-d) with d < 0 so x^y = ((a'*2^b')^(2^-d))^(c*2^d) = ((a'*2^b')^c with c odd integer */ { mpfr_t tmp; mpfr_prec_t p; MPFR_MPZ_SIZEINBASE2 (p, a); mpfr_init2 (tmp, p); /* prec = 1 should not be possible */ res = mpfr_set_z (tmp, a, MPFR_RNDN); MPFR_ASSERTD (res == 0); res = mpfr_mul_2si (tmp, tmp, b, MPFR_RNDN); MPFR_ASSERTD (res == 0); *inexact = mpfr_pow_z (z, tmp, c, rnd_mode); mpfr_clear (tmp); res = 1; } end: mpz_clear (a); mpz_clear (c); return res; }
static void underflow (mpfr_exp_t e) { mpfr_t x, y, z1, z2; mpfr_exp_t emin; int i, k; int prec; int rnd; int div; int inex1, inex2; unsigned int flags1, flags2; /* Test mul_2si(x, e - k), div_2si(x, k - e) and div_2ui(x, k - e) * with emin = e, x = 1 + i/16, i in { -1, 0, 1 }, and k = 1 to 4, * by comparing the result with the one of a simple division. */ emin = mpfr_get_emin (); set_emin (e); mpfr_inits2 (8, x, y, (mpfr_ptr) 0); for (i = 15; i <= 17; i++) { inex1 = mpfr_set_ui_2exp (x, i, -4, MPFR_RNDN); MPFR_ASSERTN (inex1 == 0); for (prec = 6; prec >= 3; prec -= 3) { mpfr_inits2 (prec, z1, z2, (mpfr_ptr) 0); RND_LOOP (rnd) for (k = 1; k <= 4; k++) { /* The following one is assumed to be correct. */ inex1 = mpfr_mul_2si (y, x, e, MPFR_RNDN); MPFR_ASSERTN (inex1 == 0); inex1 = mpfr_set_ui (z1, 1 << k, MPFR_RNDN); MPFR_ASSERTN (inex1 == 0); mpfr_clear_flags (); /* Do not use mpfr_div_ui to avoid the optimization by mpfr_div_2si. */ inex1 = mpfr_div (z1, y, z1, (mpfr_rnd_t) rnd); flags1 = __gmpfr_flags; for (div = 0; div <= 2; div++) { mpfr_clear_flags (); inex2 = div == 0 ? mpfr_mul_2si (z2, x, e - k, (mpfr_rnd_t) rnd) : div == 1 ? mpfr_div_2si (z2, x, k - e, (mpfr_rnd_t) rnd) : mpfr_div_2ui (z2, x, k - e, (mpfr_rnd_t) rnd); flags2 = __gmpfr_flags; if (flags1 == flags2 && SAME_SIGN (inex1, inex2) && mpfr_equal_p (z1, z2)) continue; printf ("Error in underflow("); if (e == MPFR_EMIN_MIN) printf ("MPFR_EMIN_MIN"); else if (e == emin) printf ("default emin"); else printf ("%ld", e); printf (") with mpfr_%s,\nx = %d/16, prec = %d, k = %d, " "%s\n", div == 0 ? "mul_2si" : div == 1 ? "div_2si" : "div_2ui", i, prec, k, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); printf ("Expected "); mpfr_out_str (stdout, 16, 0, z1, MPFR_RNDN); printf (", inex = %d, flags = %u\n", SIGN (inex1), flags1); printf ("Got "); mpfr_out_str (stdout, 16, 0, z2, MPFR_RNDN); printf (", inex = %d, flags = %u\n", SIGN (inex2), flags2); exit (1); } /* div */ } /* k */ mpfr_clears (z1, z2, (mpfr_ptr) 0); } /* prec */ } /* i */ mpfr_clears (x, y, (mpfr_ptr) 0); set_emin (emin); }
/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity), and return e such that the absolute error is bound by 2^e ulp(y) */ static mp_exp_t mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) { mpfr_t eps; /* dynamic (absolute) error bound on t */ mpfr_t erru, errs; mpz_t m, s, t, u; mp_exp_t e, sizeinbase; mp_prec_t w = MPFR_PREC(y); unsigned long k; MPFR_GROUP_DECL (group); /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x) where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2 thus |R(x)/x| <= |x|/2 thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */ if (MPFR_GET_EXP(x) <= - (mp_exp_t) w) { mpfr_set (y, x, GMP_RNDN); return 0; } mpz_init (s); /* initializes to 0 */ mpz_init (t); mpz_init (u); mpz_init (m); MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs); e = mpfr_get_z_exp (m, x); /* x = m * 2^e */ MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x)); if (MPFR_PREC (x) > w) { e += MPFR_PREC (x) - w; mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w); } /* remove trailing zeroes from m: this will speed up much cases where x is a small integer divided by a power of 2 */ k = mpz_scan1 (m, 0); mpz_tdiv_q_2exp (m, m, k); e += k; /* initialize t to 2^w */ mpz_set_ui (t, 1); mpz_mul_2exp (t, t, w); mpfr_set_ui (eps, 0, GMP_RNDN); /* eps[0] = 0 */ mpfr_set_ui (errs, 0, GMP_RNDN); for (k = 1;; k++) { /* let eps[k] be the absolute error on t[k]: since t[k] = trunc(t[k-1]*m*2^e/k), we have eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */ mpfr_mul_2ui (eps, eps, w - 1, GMP_RNDU); mpfr_add_z (eps, eps, t, GMP_RNDU); MPFR_MPZ_SIZEINBASE2 (sizeinbase, m); mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, GMP_RNDU); mpfr_div_ui (eps, eps, k, GMP_RNDU); mpfr_add_ui (eps, eps, 1, GMP_RNDU); mpz_mul (t, t, m); if (e < 0) mpz_tdiv_q_2exp (t, t, -e); else mpz_mul_2exp (t, t, e); mpz_tdiv_q_ui (t, t, k); mpz_tdiv_q_ui (u, t, k); mpz_add (s, s, u); /* the absolute error on u is <= 1 + eps[k]/k */ mpfr_div_ui (erru, eps, k, GMP_RNDU); mpfr_add_ui (erru, erru, 1, GMP_RNDU); /* and that on s is the sum of all errors on u */ mpfr_add (errs, errs, erru, GMP_RNDU); /* we are done when t is smaller than errs */ if (mpz_sgn (t) == 0) sizeinbase = 0; else MPFR_MPZ_SIZEINBASE2 (sizeinbase, t); if (sizeinbase < MPFR_GET_EXP (errs)) break; } /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...) <= (|t|+eps)/k*|x|/(k-|x|) */ mpz_abs (t, t); mpfr_add_z (eps, eps, t, GMP_RNDU); mpfr_div_ui (eps, eps, k, GMP_RNDU); mpfr_abs (erru, x, GMP_RNDU); /* |x| */ mpfr_mul (eps, eps, erru, GMP_RNDU); mpfr_ui_sub (erru, k, erru, GMP_RNDD); if (MPFR_IS_NEG (erru)) { /* the truncated series does not converge, return fail */ e = w; } else { mpfr_div (eps, eps, erru, GMP_RNDU); mpfr_add (errs, errs, eps, GMP_RNDU); mpfr_set_z (y, s, GMP_RNDN); mpfr_div_2ui (y, y, w, GMP_RNDN); /* errs was an absolute error bound on s. We must convert it to an error in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must divide the error by 2^(EXP(y)-PREC(y)), but since we divided also y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */ e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y); } MPFR_GROUP_CLEAR (group); mpz_clear (s); mpz_clear (t); mpz_clear (u); mpz_clear (m); return e; }