// Set up a signal_info to begin waiting for signal static int setup_pipes (signal_info** signals, int count, struct pollfd *fd_structs, int *currfd) { int i; int r = 0; for (i = 0; i < count; ++i) { signal_info* h; int filedes[2]; h = signals [i]; if (mph_int_get (&h->pipecnt) == 0) { // First listener for this signal_info if ((r = pipe (filedes)) != 0) { break; } mph_int_set (&h->read_fd, filedes [0]); mph_int_set (&h->write_fd, filedes [1]); } mph_int_inc (&h->pipecnt); fd_structs[*currfd].fd = mph_int_get (&h->read_fd); fd_structs[*currfd].events = POLLIN; ++(*currfd); // count is verified less than NUM_SIGNALS by caller } return r; }
// This handler is registered once for each UnixSignal object. A pipe is maintained // for each one; Wait users read at one end of this pipe, and default_handler sends // a write on the pipe for each signal received while the Wait is ongoing. // // Notice a fairly unlikely race condition exists here: Because we synchronize with // pipe teardown, but not install/uninstall (in other words, we are only trying to // protect against writing on a closed pipe) it is technically possible a full // uninstall and then an install could complete after signum is checked but before // the remaining instructions execute. In this unlikely case count could be // incremented or a byte written on the wrong signal handler. static void default_handler (int signum) { int i; for (i = 0; i < NUM_SIGNALS; ++i) { int fd; signal_info* h = &signals [i]; if (mph_int_get (&h->signum) != signum) continue; mph_int_inc (&h->count); if (!acquire_pipelock_handler (&h->pipelock)) continue; // Teardown is occurring on this object, no one to send to. fd = mph_int_get (&h->write_fd); if (fd > 0) { // If any listener exists to write to int j,pipecounter; char c = signum; // (Value is meaningless) pipecounter = mph_int_get (&h->pipecnt); // Write one byte per pipe listener for (j = 0; j < pipecounter; ++j) { int r; do { r = write (fd, &c, 1); } while (keep_trying (r)); } } release_pipelock_handler (&h->pipelock); } }
static int setup_pipes (signal_info** signals, int count, struct pollfd *fd_structs, int *currfd) { int i; int r = 0; for (i = 0; i < count; ++i) { signal_info* h; int filedes[2]; h = signals [i]; if (mph_int_get (&h->pipecnt) == 0) { if ((r = pipe (filedes)) != 0) { break; } h->read_fd = filedes [0]; h->write_fd = filedes [1]; } mph_int_inc (&h->pipecnt); fd_structs[*currfd].fd = h->read_fd; fd_structs[*currfd].events = POLLIN; ++(*currfd); } return r; }
// A UnixSignal object is being Disposed int Mono_Unix_UnixSignal_uninstall (void* info) { #if defined(HAVE_SIGNAL) signal_info* h; int r = -1; if (acquire_mutex (&signals_mutex) == -1) return -1; h = info; if (h == NULL || h < signals || h > &signals [NUM_SIGNALS]) errno = EINVAL; else { /* last UnixSignal -- we can unregister */ int signum = mph_int_get (&h->signum); if (h->have_handler && count_handlers (signum) == 1) { mph_sighandler_t p = signal (signum, h->handler); if (p != SIG_ERR) r = 0; h->handler = NULL; h->have_handler = 0; } mph_int_set (&h->signum, 0); } release_mutex (&signals_mutex); return r; #else g_error ("signal() is not supported by this platform"); return 0; #endif }
static inline void release_pipelock_handler (int *lock) { while (1) { int lockvalue = mph_int_get (lock); int lockvalue_new = PIPELOCK_INCR_COUNT (lockvalue, -1); if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return; } }
static int count_handlers (int signum) { int i; int count = 0; for (i = 0; i < NUM_SIGNALS; ++i) { if (mph_int_get (&signals [i].signum) == signum) ++count; } return count; }
static inline void release_pipelock_teardown (int *lock) { while (1) { int lockvalue = mph_int_get (lock); int lockvalue_new = lockvalue & ~PIPELOCK_TEARDOWN_BIT; // Technically this can't fail, because we hold both the pipelock and the mutex, but if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return; } }
static inline void acquire_pipelock_teardown (int *lock) { int lockvalue_draining; // First mark that a teardown is occurring, so handlers will stop entering the lock. while (1) { int lockvalue = mph_int_get (lock); lockvalue_draining = lockvalue | PIPELOCK_TEARDOWN_BIT; if (mph_int_test_and_set (lock, lockvalue, lockvalue_draining)) break; } // Now wait for all handlers to complete. while (1) { if (0 == PIPELOCK_GET_COUNT (lockvalue_draining)) break; // We now hold the lock. // Handler is still running, spin until it completes. sched_yield (); // We can call this because !defined(HOST_WIN32) lockvalue_draining = mph_int_get (lock); } }
// Cleanup a signal_info after waiting for signal static void teardown_pipes (signal_info** signals, int count) { int i; for (i = 0; i < count; ++i) { signal_info* h = signals [i]; if (mph_int_dec_test (&h->pipecnt)) { // Final listener for this signal_info acquire_pipelock_teardown (&h->pipelock); int read_fd = mph_int_get (&h->read_fd); int write_fd = mph_int_get (&h->write_fd); if (read_fd != 0) close (read_fd); if (write_fd != 0) close (write_fd); mph_int_set (&h->read_fd, 0); mph_int_set (&h->write_fd, 0); release_pipelock_teardown (&h->pipelock); } } }
// Return 1 for success static inline int acquire_pipelock_handler (int *lock) { while (1) { int lockvalue = mph_int_get (lock); if (lockvalue & PIPELOCK_TEARDOWN_BIT) // Final lock is being torn down return 0; int lockvalue_new = PIPELOCK_INCR_COUNT (lockvalue, 1); if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return 1; } }
static void default_handler (int signum) { int i; for (i = 0; i < NUM_SIGNALS; ++i) { int fd; signal_info* h = &signals [i]; if (mph_int_get (&h->signum) != signum) continue; mph_int_inc (&h->count); fd = mph_int_get (&h->write_fd); if (fd > 0) { int j,pipecounter; char c = signum; pipecounter = mph_int_get (&h->pipecnt); for (j = 0; j < pipecounter; ++j) { int r; do { r = write (fd, &c, 1); } while (keep_trying (r)); } } } }
// Given pipes set up, wait for a byte to arrive on one of them static int wait_for_any (signal_info** signals, int count, int *currfd, struct pollfd* fd_structs, int timeout, Mono_Posix_RuntimeIsShuttingDown shutting_down) { int r, idx; // Poll until one of this signal_info's pipes is ready to read. // Once a second, stop to check if the VM is shutting down. do { struct timeval tv; struct timeval *ptv = NULL; if (timeout != -1) { tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000)*1000; ptv = &tv; } r = poll (fd_structs, count, timeout); } while (keep_trying (r) && !shutting_down ()); idx = -1; if (r == 0) idx = timeout; else if (r > 0) { // The pipe[s] are ready to read. int i; for (i = 0; i < count; ++i) { signal_info* h = signals [i]; if (fd_structs[i].revents & POLLIN) { int r; char c; do { r = read (mph_int_get (&h->read_fd), &c, 1); } while (keep_trying (r) && !shutting_down ()); if (idx == -1) idx = i; } } } return idx; }
// A UnixSignal object is being constructed void* Mono_Unix_UnixSignal_install (int sig) { #if defined(HAVE_SIGNAL) int i; signal_info* h = NULL; // signals[] slot to install to int have_handler = 0; // Candidates for signal_info handler fields void* handler = NULL; if (acquire_mutex (&signals_mutex) == -1) return NULL; #if defined (SIGRTMIN) && defined (SIGRTMAX) /*The runtime uses some rt signals for itself so it's important to not override them.*/ if (sig >= SIGRTMIN && sig <= SIGRTMAX && count_handlers (sig) == 0) { struct sigaction sinfo; sigaction (sig, NULL, &sinfo); if (sinfo.sa_handler != SIG_DFL || (void*)sinfo.sa_sigaction != (void*)SIG_DFL) { pthread_mutex_unlock (&signals_mutex); errno = EADDRINUSE; return NULL; // This is an rt signal with an existing handler. Bail out. } } #endif /*defined (SIGRTMIN) && defined (SIGRTMAX)*/ // Scan through signals list looking for (1) an unused spot (2) a usable value for handler for (i = 0; i < NUM_SIGNALS; ++i) { int just_installed = 0; // We're still looking for a signal_info spot, and this one is available: if (h == NULL && mph_int_get (&signals [i].signum) == 0) { h = &signals [i]; h->handler = signal (sig, default_handler); if (h->handler == SIG_ERR) { h->handler = NULL; h = NULL; break; } else { just_installed = 1; } } // Check if this slot has a "usable" (not installed by this file) handler-to-restore-later: // (On the first signal to be installed, signals [i] will be == h when this happens.) if (!have_handler && (just_installed || mph_int_get (&signals [i].signum) == sig) && signals [i].handler != default_handler) { have_handler = 1; handler = signals [i].handler; } if (h && have_handler) // We have everything we need break; } if (h) { // If we reached here without have_handler, this means that default_handler // was set as the signal handler before the first UnixSignal object was installed. g_assert (have_handler); // Overwrite the tenative handler we set a moment ago with a known-usable one h->handler = handler; h->have_handler = 1; mph_int_set (&h->count, 0); mph_int_set (&h->pipecnt, 0); mph_int_set (&h->signum, sig); } release_mutex (&signals_mutex); return h; #else g_error ("signal() is not supported by this platform"); return 0; #endif }