Пример #1
0
UniquePtr<Elem> InfPrism6::build_edge (const unsigned int i) const
{
  libmesh_assert_less (i, n_edges());

  if (i < 3)
    return UniquePtr<Elem>(new SideEdge<Edge2,InfPrism6>(this,i));
  return UniquePtr<Elem>(new SideEdge<InfEdge2,InfPrism6>(this,i));
}
Пример #2
0
bool Pyramid14::is_node_on_edge(const unsigned int n,
                                const unsigned int e) const
{
  libmesh_assert_less (e, n_edges());
  return std::find(std::begin(edge_nodes_map[e]),
                   std::end(edge_nodes_map[e]),
                   n) != std::end(edge_nodes_map[e]);
}
Пример #3
0
bool InfPrism6::is_node_on_edge(const unsigned int n,
                                const unsigned int e) const
{
  libmesh_assert_less (e, n_edges());
  for (unsigned int i = 0; i != 2; ++i)
    if (edge_nodes_map[e][i] == n)
      return true;
  return false;
}
Пример #4
0
bool Tet10::is_node_on_edge(const unsigned int n,
			    const unsigned int e) const
{
  libmesh_assert(e < n_edges());
  for (unsigned int i = 0; i != 3; ++i)
    if (edge_nodes_map[e][i] == n)
      return true;
  return false;
}
Пример #5
0
void make_biconnected_planar(Graph& g,
                             PlanarEmbedding embedding,
                             EdgeIndexMap em,
                             AddEdgeVisitor& vis
                            )
{
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename graph_traits<Graph>::edges_size_type edge_size_t;
    typedef typename
    property_traits<PlanarEmbedding>::value_type embedding_value_t;
    typedef typename embedding_value_t::const_iterator embedding_iterator_t;
    typedef iterator_property_map
    <std::vector<std::size_t>::iterator, EdgeIndexMap> component_map_t;

    edge_size_t n_edges(num_edges(g));
    std::vector<vertex_t> articulation_points;
    std::vector<edge_size_t> component_vector(n_edges);
    component_map_t component_map(component_vector.begin(), em);

    biconnected_components(g, component_map,
                           std::back_inserter(articulation_points));

    typename std::vector<vertex_t>::iterator ap, ap_end;
    ap_end = articulation_points.end();
    for(ap = articulation_points.begin(); ap != ap_end; ++ap)
    {
        vertex_t v(*ap);
        embedding_iterator_t pi = embedding[v].begin();
        embedding_iterator_t pi_end = embedding[v].end();
        edge_size_t previous_component(n_edges + 1);
        vertex_t previous_vertex = graph_traits<Graph>::null_vertex();

        for(; pi != pi_end; ++pi)
        {
            edge_t e(*pi);
            vertex_t e_source(source(e,g));
            vertex_t e_target(target(e,g));

            //Skip self-loops and parallel edges
            if (e_source == e_target || previous_vertex == e_target)
                continue;

            vertex_t current_vertex = e_source == v ? e_target : e_source;
            edge_size_t current_component = component_map[e];
            if (previous_vertex != graph_traits<Graph>::null_vertex() &&
                    current_component != previous_component)
            {
                vis.visit_vertex_pair(current_vertex, previous_vertex, g);
            }
            previous_vertex = current_vertex;
            previous_component = current_component;
        }
    }

}
Пример #6
0
void Node::calculateForces(const double *map,int width,int height,int W,int H,float x,float y,float friction_factor)
{
	if (!scene() || scene()->mouseGrabberItem() == this) 
	{
		newPos = pos();
		return;
	}


	// Sum up all forces pushing this item away
	qreal xforce = 0;
	qreal yforce = 0;

	float dei=0.0f ;
	float dej=0.0f ;

	static float *e = NULL ;
	static const int KS = 5 ;

	if(e == NULL)
	{
		e = new float[(2*KS+1)*(2*KS+1)] ;

		for(int i=-KS;i<=KS;++i)
			for(int j=-KS;j<=KS;++j)
				e[i+KS+(2*KS+1)*(j+KS)] = exp( -(i*i+j*j)/30.0 ) ;	// can be precomputed
	}

	for(int i=-KS;i<=KS;++i)
		for(int j=-KS;j<=KS;++j)
		{
			int X = std::min(W-1,std::max(0,(int)rint(x))) ;
			int Y = std::min(H-1,std::max(0,(int)rint(y))) ;

			float val = map[2*((i+X+W)%W + W*((j+Y+H)%H))] ;

			dei += i * e[i+KS+(2*KS+1)*(j+KS)] * val ;
			dej += j * e[i+KS+(2*KS+1)*(j+KS)] * val ;
		}

	xforce = REPULSION_FACTOR * dei/25.0;
	yforce = REPULSION_FACTOR * dej/25.0;

	// Now subtract all forces pulling items together
	double weight = (n_edges() + 1) ;

	foreach (Edge *edge, edgeList) {
		QPointF pos;
		double w2 ;	// This factor makes the edge length depend on connectivity, so clusters of friends tend to stay in the
						// same location.
						//
		if (edge->sourceNode() == this)
		{
			pos = mapFromItem(edge->destNode(), 0, 0);
			w2 = sqrtf(std::min(n_edges(),edge->destNode()->n_edges())) ;
		}
		else
		{
			pos = mapFromItem(edge->sourceNode(), 0, 0);
			w2 = sqrtf(std::min(n_edges(),edge->sourceNode()->n_edges())) ;
		}

		float dist = sqrtf(pos.x()*pos.x() + pos.y()*pos.y()) ;
		float val = dist - graph->edgeLength() * w2 ;

		xforce += 0.01*pos.x() * val / weight;
		yforce += 0.01*pos.y() * val / weight;
	}