Пример #1
0
static PyObject*
pyndf_bound(NDF *self)
{
    int i;

    PyArrayObject* bound = NULL;
    int ndim;
    int lbnd[NDF__MXDIM];
    int ubnd[NDF__MXDIM];
    npy_intp odim[2];

    int status = SAI__OK;
    errBegin(&status);
    ndfBound(self->_ndfid, NDF__MXDIM, lbnd, ubnd, &ndim, &status );
    if (raiseNDFException(&status)) return NULL;

    odim[0] = 2;
    odim[1] = ndim;
    bound   = (PyArrayObject*) PyArray_SimpleNew(2, odim, PyArray_INT);
    if(bound == NULL) goto fail;
    int *bptr = (int *)bound->data;
    for(i=0; i<ndim; i++){
	bptr[i]      = lbnd[ndim-i-1];
	bptr[i+ndim] = ubnd[ndim-i-1];
    }
    return Py_BuildValue("N", PyArray_Return(bound));

fail:
    Py_XDECREF(bound);
    return NULL;
};
Пример #2
0
static void smf1_jsadicer( int indfo, int *olbnd, int *oubnd,
                           AstMapping *tile_map, AstFrame *tile_frm,
                           AstMapping *p2pmap, void *ipd, void *ipv,
                           unsigned char *ipq, int *status ){
/*
*  Name:
*     smf1_jsadicer

*  Purpose:
*     Copy one tile from the input NDF into a specified output NDF.

*  Language:
*     Starlink ANSI C

*  Type of Module:
*     C function

*  Invocation:
*     void smf1_jsadicer( int indfo, int *olbnd, int *oubnd,
*                         AstMapping *tile_map, AstFrame *tile_frm,
*                         AstMapping *p2pmap, void *ipd, void *ipv,
*                         unsigned char *ipq, int *status )

*  Arguments:
*     indfo = int (Given)
*        An identifier for the NDF in which the copied data is to be
*        stored. It's original pixel bounds are used as the bounds of the
*        ipd, ipv and ipq arrays.
*     olbnd = int * (Given)
*        The new lower pixel bounds required for the output NDF. The bounds
*        of the supplied NDF are changed to match these values.
*     oubnd = int * (Given)
*        The new upper pixel bounds required for the output NDF. The bounds
*        of the supplied NDF are changed to match these values.
*     tile_map = AstMapping * (Given)
*        The mapping from pixel coords in the output NDF to WCS coords.
*     tile_frm = AstMapping * (Given)
*        The WCS Frame for the output NDF.
*     p2pmap = AstMapping * (Given)
*        The mapping from pixel coords in the input NDF to pixel coords in
*        the output NDF.
*     ipd = void * (Given)
*        Pointer to the start of the input data array. If this is NULL,
*        the existing contents of the NDF are used as input.
*     ipv = void * (Given)
*        Pointer to the start of the input variance array. Should be NULL
*        if no variances are available.
*     ipq = unsigned char * (Given)
*        Pointer to the start of the input quality array. Should be NULL
*        if no quality is available.
*     status = int * (Given)
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstFrame *use_frm = NULL;
   AstFrameSet *owcs;
   AstMapping *use_map = NULL;
   AstMapping *use_p2pmap = NULL;
   AstShiftMap *sm;
   char type[ NDF__SZTYP + 1 ];
   double shifts[ 3 ];
   int axes[ 2 ];
   int axout[ NDF__MXDIM ];
   int free_arrays;
   int isreal;
   int lbnd_tile[ 3 ];
   int ndim;
   int nel;
   int nin;
   int there;
   int ubnd_tile[ 3 ];
   unsigned char *ipq_out = NULL;
   void *ipd_out = NULL;
   void *ipv_out = NULL;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context. */
   astBegin;

/* Get the NDF data type - _REAL or _DOUBLE. */
   ndfType( indfo, "Data", type, sizeof(type), status );
   isreal = !strcmp( type, "_REAL" );

/* Get the existing bounds of the NDF. */
   ndfBound( indfo, 3, lbnd_tile, ubnd_tile, &ndim, status );

/* If no data array has been supplied, take a copy of the original Data,
   Quality and Variance arrays and use these as the input arrays. */
   if( !ipd ) {
      free_arrays = 1;

      ndfMap( indfo, "Data", type, "Read", &ipd_out, &nel, status );
      ipd = astStore( NULL, ipd_out,
                      nel*(isreal?sizeof(float):sizeof(double)) );
      ndfUnmap( indfo, "Data", status );

      ndfState( indfo, "Variance", &there, status );
      if( there ) {
         ndfMap( indfo, "Variance", type, "Read", &ipv_out, &nel, status );
         ipv = astStore( NULL, ipv_out,
                         nel*(isreal?sizeof(float):sizeof(double)) );
         ndfUnmap( indfo, "Variance", status );
      } else {
         ipv = NULL;
      }

      ndfState( indfo, "Quality", &there, status );
      if( there ) {
         ndfMap( indfo, "Quality", "_UBYTE", "Read", (void **) &ipq_out,
                 &nel, status );
         ipq = astStore( NULL, ipq_out, nel*sizeof(*ipq) );
         ndfUnmap( indfo, "Quality", status );
      } else {
         ipq = NULL;
      }

   } else {
      free_arrays = 0;
   }

/* Set the bounds of the NDF to the required values. */
   ndfSbnd( ndim, olbnd, oubnd, indfo, status );

/* Erase the existing WCS FrameSet and then get the default WCS FrameSet. */
   ndfReset( indfo, "WCS", status );
   ndfGtwcs( indfo, &owcs, status );

/* If the supplied mapping and Frame have two many axes, strip some off.
   The orering of pixel axes in the output JSA tile is hardwired by SMURF
   as (ra,dec,spec). */
   nin = astGetI( tile_map, "Nin" );
   if( nin == 3 && ndim == 2 ) {
      axes[ 0 ] = 1;
      axes[ 1 ] = 2;
      astMapSplit( tile_map, 2, axes, axout, &use_map );
      if( use_map ) {
         use_frm = astPickAxes( tile_frm, 2, axout, NULL );
      } else if( *status == SAI__OK ) {
         *status = SAI__ERROR;
         errRepf( " ", "smf1_jsadicer: cannot split mapping (programming "
                  "error).", status );
      }

      astMapSplit( p2pmap, 2, axes, axout, &use_p2pmap );
      if( !use_p2pmap && *status == SAI__OK ) {
         *status = SAI__ERROR;
         errRepf( " ", "smf1_jsadicer: cannot split mapping (programming "
                  "error).", status );
      }

   } else if( nin == ndim ) {
      use_p2pmap = astClone( p2pmap );
      use_map = astClone( tile_map );
      use_frm = astClone( tile_frm );

   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRepf( " ", "smf1_jsadicer: unexpected combination of nin (%d) and "
               "ndim (%d) (programming error).", status, nin, ndim );
   }

/* Add the tile WCS Frame into the output NDF's WCS FrameSet, using "tilemap"
   to connect it to the PIXEL Frame (NDF ensure Frame 2 is the PIXEL
   Frame). */
   astAddFrame( owcs, 2, use_map, use_frm );

/* The astResample function is odd in that it assumes that pixel coords
   are defined such that the centre of pixel "I" has integral pixel
   coord "I" (rather than "I-0.5" as is usual in Starlink). So we need to
   use a half-pixel ShiftMap at start and end of the p2pmap Mapping to
   account for this. */
   shifts[ 0 ] = -0.5;
   shifts[ 1 ] = -0.5;
   shifts[ 2 ] = -0.5;
   sm = astShiftMap( ndim, shifts, " " );
   use_p2pmap = (AstMapping *) astCmpMap( sm, use_p2pmap, 1, " " );
   astInvert( sm );
   use_p2pmap = (AstMapping *) astCmpMap( use_p2pmap, sm, 1, " " );

/* Store this modified WCS FrameSet in the output NDF. */
   ndfPtwcs( owcs, indfo, status );

/* Map the required arrays of the output NDF. */
   ndfMap( indfo, "Data", type, "Write", &ipd_out, &nel, status );
   if( ipv ) ndfMap( indfo, "Variance", type, "Write", &ipv_out, &nel,
                     status );
   if( ipq ) ndfMap( indfo, "Quality", "_UBYTE", "Write",
                      (void **) &ipq_out, &nel, status );

/* Copy the input data values to the output, using nearest neighbour
   interpolation (the mapping should always map input pixel centres onto
   output pixel centres). We can set the "tol" argument non-zero (e.g. 0.1)
   without introducing any error because the the p2pmap mapping will be
   piecewise linear. This gives a factor of about 5 decrease in the time
   spent within astResample. */
   if( !strcmp( type, "_REAL" ) ) {
      (void) astResampleF( use_p2pmap, ndim, lbnd_tile, ubnd_tile, (float *) ipd,
                           (float *) ipv, AST__NEAREST, NULL, NULL,
                           AST__USEBAD, 0.1, 1000, VAL__BADR, ndim,
                           olbnd, oubnd, olbnd, oubnd,
                           (float *) ipd_out, (float *) ipv_out );
   } else {
      (void) astResampleD( use_p2pmap, ndim, lbnd_tile, ubnd_tile, (double *) ipd,
                           (double *) ipv, AST__NEAREST, NULL, NULL,
                           AST__USEBAD, 0.1, 1000, VAL__BADD, ndim,
                           olbnd, oubnd, olbnd, oubnd,
                           (double *) ipd_out, (double *) ipv_out );
   }

   if( ipq ) {
      (void) astResampleUB( use_p2pmap, ndim, lbnd_tile, ubnd_tile, ipq, NULL,
                            AST__NEAREST, NULL, NULL, 0, 0.1, 1000, 0,
                            ndim, olbnd, oubnd, olbnd, oubnd, ipq_out,
                            NULL );
   }

/* Unmap everything the output NDF. */
   ndfUnmap( indfo, "*", status );

/* Free the input arrays if they were allocated in this function. */
   if( free_arrays ) {
      ipd = astFree( ipd );
      ipv = astFree( ipv );
      ipq = astFree( ipq );
   }

/* End the AST context. */
   astEnd;
}
Пример #3
0
/* Main entry */
void smf_jsadicer( int indf, const char *base, int trim, smf_inst_t instrument,
                   smf_jsaproj_t proj, size_t *ntile, Grp *grp, int *status ){

/* Local Variables: */
   AstBox *box;
   AstFitsChan *fc;
   AstFrame *specfrm = NULL;
   AstFrame *tile_frm = NULL;
   AstFrameSet *iwcs;
   AstFrameSet *tfs = NULL;
   AstFrameSet *tile_wcs;
   AstMapping *ndf_map = NULL;
   AstMapping *p2pmap = NULL;
   AstMapping *specmap = NULL;
   AstMapping *tile_map = NULL;
   AstRegion *region;
   Grp *grpt = NULL;
   char *path;
   char dtype[ NDF__SZFTP + 1 ];
   char jsatile_comment[45];
   char type[ NDF__SZTYP + 1 ];
   const char *dom = NULL;
   const char *keyword;
   const char *latsys = NULL;
   const char *lonsys = NULL;
   double *pd;
   double dlbnd[3];
   double dubnd[3];
   double gcen[3];
   double lbnd_in[3];
   double lbnd_out[3];
   double ubnd_in[3];
   double ubnd_out[3];
   float *pf;
   int *created_tiles = NULL;
   int *tiles;
   int axlat;
   int axlon;
   int axspec;
   int bbox[ 6 ];
   int i;
   int ifrm;
   int igrid;
   int indfo;
   int indfs;
   int indfx;
   int inperm[3];
   int ipixel;
   int ishpx;
   int isxph;
   int itile;
   int ix;
   int iy;
   int iz;
   int junk;
   int latax = -1;
   int lbnd[3];
   int lbnd_tile[ 3 ];
   int lbndx[ NDF__MXDIM ];
   int lonax = -1;
   int nbase;
   int ndim;
   int ndimx;
   int nfrm;
   int nsig;
   int ntiles;
   int olbnd[ 3 ];
   int oubnd[ 3 ];
   int outperm[ 3 ];
   int place;
   int qual;
   int tile_index;
   int tile_lbnd[2];
   int tile_ubnd[2];
   int ubnd[3];
   int ubnd_tile[ 3 ];
   int ubndx[ NDF__MXDIM ];
   int var;
   size_t iext;
   size_t size;
   smfJSATiling tiling;
   unsigned char *ipq = NULL;
   void *ipd = NULL;
   void *ipv = NULL;

/* Initialise */
   *ntile = 0;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context. */
   astBegin;

/* Begin an NDF context. */
   ndfBegin();

/* Note the used length of the supplied base string. If it ends with
   ".sdf", reduce it by 4. */
   nbase = astChrLen( base );
   if( !strcmp( base + nbase - 4, ".sdf" ) ) nbase -= 4;

/* Allocate a buffer large enough to hold the full path for an output NDF. */
   path = astMalloc( nbase + 25 );

/* Get the WCS from the NDF. */
   kpg1Gtwcs( indf, &iwcs, status );

/* Note if the NDF projection is HPX or XPH. */
   ishpx = astChrMatch( astGetC( iwcs, "Projection" ), "HEALPix" );
   isxph = astChrMatch( astGetC( iwcs, "Projection" ), "polar HEALPix" );

/* Report an error if the NDFs projection is neither of these. */
   if( !ishpx && !isxph && *status == SAI__OK ) {
      ndfMsg( "N", indf );
      *status = SAI__ERROR;
      errRep( "", "The input NDF (^N) does not appear to be gridded "
              "on the JSA all-sky pixel grid.", status );
   }

/* Get the bounds of the NDF in pixel indices and the the corresponding
   double precision GRID bounds (reduce the size of the grid by a small
   amount to avoid problems with tiles that are on the edge of the valid sky
   regions - astMapRegion can report an error for such tiles). Also store
   the GRID coords of the centre. Also count the number of significant
   pixel axes. */
   ndfBound( indf, 3, lbnd, ubnd, &ndim, status );
   nsig = 0;
   for( i = 0; i < ndim; i++ ) {
      dlbnd[ i ] = 0.5 + 0.1;
      dubnd[ i ] = ubnd[ i ] - lbnd[ i ]  + 1.5 - 0.1;
      gcen[ i ] = 0.5*( dlbnd[ i ] + dubnd[ i ] );
      if( ubnd[ i ] > lbnd[ i ] ) nsig++;
   }

/* Find the one-based indices of the RA, Dec and spectral axes in the
   current Frame of the NDF. */
   axlon = 0;
   if( astGetI( iwcs, "IsLonAxis(1)" ) ) {
      axlon = 1;
      lonsys = astGetC( iwcs, "System(1)" );
   } else if( astGetI( iwcs, "IsLonAxis(2)" ) ) {
      axlon = 2;
      lonsys = astGetC( iwcs, "System(2)" );
   } else if( ndim == 3 && astGetI( iwcs, "IsLonAxis(3)" ) ) {
      axlon = 3;
      lonsys = astGetC( iwcs, "System(3)" );
   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( "", "smf_jsadicer: Cannot find the longitude axis in the "
              "input NDF.", status );
   }

   axlat = 0;
   if( astGetI( iwcs, "IsLatAxis(1)" ) ) {
      axlat = 1;
      latsys = astGetC( iwcs, "System(1)" );
   } else if( astGetI( iwcs, "IsLatAxis(2)" ) ) {
      axlat = 2;
      latsys = astGetC( iwcs, "System(2)" );
   } else if( ndim == 3 && astGetI( iwcs, "IsLatAxis(3)" ) ) {
      axlat = 3;
      latsys = astGetC( iwcs, "System(3)" );
   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( "", "smf_jsadicer: Cannot find the latitude axis in the "
              "input NDF.", status );
   }

   axspec = 6 - axlon - axlat;

/* Report an error if the spatial axes are not ICRS RA and Dec. */
   if( ( lonsys && strcmp( lonsys, "ICRS" ) ) ||
       ( latsys && strcmp( latsys, "ICRS" ) ) ) {
      if( *status == SAI__OK ) {
         *status = SAI__ERROR;
         ndfMsg( "N", indf );
         errRep( "", "smf_jsadicer: The spatial axes in '^N' are not "
                 "ICRS RA and Dec.", status );
      }
   }

/* Create a Box describing the region covered by the NDF pixel grid in
   GRID coords. */
   box = astBox( astGetFrame( iwcs, AST__BASE ), 1, dlbnd, dubnd,
                 AST__NULL, " " );

/* Map this Box into the current WCS Frame of the NDF. */
   region = astMapRegion( box, iwcs, iwcs );

/* If no instrument was specified, we will determine the instrument from
   the contexts of the FITS extension. Copy the NDF FITS extension to a
   FitsChan. Annul the error if the NDF no FITS extension. */
   if( instrument == SMF__INST_NONE && *status == SAI__OK ) {
      kpgGtfts( indf, &fc, status );
      if( *status == KPG__NOFTS ) {
         errAnnul( status );
         fc = NULL;
      }
   } else {
      fc = NULL;
   }

/* Get the parameters of the required tiling scheme. */
   smf_jsainstrument( NULL, fc, instrument, &tiling, status );

/* Get a list of the JSA tiles touched by the supplied NDF. */
   tiles = smf_jsatiles_region( region, &tiling, &ntiles, status );
   if( ntiles == 0 && *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( "", "smf_jsadicer: No JSA tiles found touching supplied NDF "
              "(programming error).", status );
   }

/* Does the input NDF have a Variance component? */
   ndfState( indf, "Variance", &var, status );

/* Does the input NDF have a Quality component? */
   ndfState( indf, "Quality", &qual, status );

/* Decide on the data type to use: _REAL or _DOUBLE. */
   ndfMtype( "_REAL,_DOUBLE", indf, indf, "Data", type, sizeof(type), dtype,
             sizeof(dtype), status );

/* Tell the user what is happening. */
   msgBlank( status );
   msgOutf( "", "Dicing %s into JSA tiles:", status,
            ( nsig == 2 ) ? "map" : "cube" );

/* Loop round all tiles that overlap the supplied NDF. */
   for( itile = 0; itile < ntiles && *status == SAI__OK; itile++ ) {
      tile_index = tiles[ itile ];

/* Get the spatial pixel bounds of the current tile within the requested
   JSA all-sky projection. Also get the (2D) WCS FrameSet for the tile. */
      smf_jsatile( tile_index, &tiling, 0, proj, NULL, &tile_wcs, NULL,
                   tile_lbnd, tile_ubnd, status );

/* Extract the tile pixel->WCS mapping and WCS Frame. We know the indices
   of the required Frames because they are hard-wired in smf_jsatile. */
      tile_map = astGetMapping( tile_wcs, 3, 2 );
      tile_frm = astGetFrame( tile_wcs, 2 );

/* Find the indices of the grid and pixel frames in the input NDF. */
      ipixel = -1;
      igrid = astGetI( iwcs, "Base" );
      nfrm = astGetI( iwcs, "NFrame" );
      for( ifrm = 0; ifrm < nfrm; ifrm++ ) {
         dom = astGetC( astGetFrame( iwcs, ifrm + 1 ), "Domain" );
         if( astChrMatch( dom, "PIXEL" ) ) ipixel = ifrm + 1;
      }

/* If required, extract the pixel->spectral mapping and spectral frame in
   the input NDF, and add it in parallel with the above tile mapping. */
      if( ndim == 3 ) {
         astSetI( iwcs, "Base", ipixel );
         tfs = atlFrameSetSplit( iwcs, "DSBSPECTRUM SPECTRUM", NULL,
                                 NULL, status );
         astSetI( iwcs, "Base", igrid );
         if( tfs ) {
            specmap = astGetMapping( tfs, AST__BASE, AST__CURRENT );
            specfrm = astGetFrame( tfs, AST__CURRENT );
         } else if( *status == SAI__OK ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indf );
            errRep( "", "smf_jsadicer: Cannot find the spectral axis "
                    "in '^N'.", status );
         }

         tile_map = (AstMapping *) astCmpMap( tile_map, specmap, 0, " " );
         tile_frm = (AstFrame *) astCmpFrame( tile_frm, specfrm, " " );
      }

/* Ensure the Epoch is inherited form the input NDF. */
      astSetD( tile_frm, "Epoch", astGetD( iwcs, "Epoch" ) );

/* Currently tile axis 1 is RA, axis 2 is Dec and axis 3 (if present) is
   spectral. Append a PermMap that re-orders these tile WCS axes to match
   those of the NDF. */
      outperm[ axlon - 1 ] = 1;
      outperm[ axlat - 1 ] = 2;
      outperm[ axspec - 1 ] = 3;
      inperm[ 0 ] = axlon;
      inperm[ 1 ] = axlat;
      inperm[ 2 ] = axspec;
      tile_map = (AstMapping *) astCmpMap( tile_map, astPermMap( ndim, inperm,
                                                                 ndim, outperm,
                                                                 NULL, " " ),
                                           1, " " );
      tile_map = astSimplify( tile_map );

/* Also re-order the WCS axes in the tile frame. */
      astPermAxes( tile_frm, outperm );

/* We want the zero-based indicies of the input pixel axes corresponding
   to ra, dec and spectral. So find the indicies of the pixel axes in the
   supplied NDF that are most closely aligned with each WCS axis. */
      atlPairAxes( iwcs, NULL, gcen, NULL, inperm, status );
      if( inperm[ 0 ] == axlon ) {
         lonax = 0;
      } else if( inperm[ 1 ] == axlon ) {
         lonax = 1;
      } else {
         lonax = 2;
      }
      if( inperm[ 0 ] == axlat ) {
         latax = 0;
      } else if( inperm[ 1 ] == axlat ) {
         latax = 1;
      } else {
         latax = 2;
      }

/* To get the mapping from pixel coords in the input NDF to pixel coords
   in the output NDF, we invert the above mapping so that it goes from WCS
   to pixel, and append it to the end of the NDF pixel->WCS mapping. */
      ndf_map = astGetMapping( iwcs, ipixel, AST__CURRENT );
      astInvert( tile_map );
      p2pmap = (AstMapping *) astCmpMap( ndf_map, tile_map, 1, " " );
      p2pmap = astSimplify( p2pmap );
      astInvert( tile_map );

/* Show the bounds of the tile within the input NDF. */
      msgOutiff( MSG__DEBUG, "", "   tile %d has bounds (%d:%d,%d:%d) "
                 "within the output NDF.", status, tile_index,
                 tile_lbnd[ 0 ], tile_ubnd[ 0 ], tile_lbnd[ 1 ],
                 tile_ubnd[ 1 ] );

/* Next job is to find the pixel bounds of the output NDF to create
   which will hold data for the current tile. First map the pixel bounds
   of the whole tile from output to input. */
      lbnd_in[ 0 ] = tile_lbnd[ 0 ] - 0.5;
      lbnd_in[ 1 ] = tile_lbnd[ 1 ] - 0.5;
      lbnd_in[ 2 ] = lbnd[ 2 ] - 0.5;
      ubnd_in[ 0 ] = tile_ubnd[ 0 ] - 0.5;
      ubnd_in[ 1 ] = tile_ubnd[ 1 ] - 0.5;
      ubnd_in[ 2 ] = ubnd[ 2 ] - 0.5;

      astMapBox( p2pmap, lbnd_in, ubnd_in, 0, 1, lbnd_out + 0,
                 ubnd_out + 0, NULL, NULL );
      astMapBox( p2pmap, lbnd_in, ubnd_in, 0, 2, lbnd_out + 1,
                 ubnd_out + 1, NULL, NULL );
      if( ndim == 3 ) astMapBox( p2pmap, lbnd_in, ubnd_in, 0, 3,
                                 lbnd_out + 2, ubnd_out + 2, NULL,
                                 NULL );


      lbnd_tile[ 0 ] = floor( lbnd_out[ 0 ] ) + 1;
      lbnd_tile[ 1 ] = floor( lbnd_out[ 1 ] ) + 1;
      lbnd_tile[ 2 ] = floor( lbnd_out[ 2 ] ) + 1;
      ubnd_tile[ 0 ] = floor( ubnd_out[ 0 ] ) + 1;
      ubnd_tile[ 1 ] = floor( ubnd_out[ 1 ] ) + 1;
      ubnd_tile[ 2 ] = floor( ubnd_out[ 2 ] ) + 1;

/* Show the bounds of the tile within the input NDF. */
      msgOutiff( MSG__DEBUG, "", "   tile %d has bounds (%d:%d,%d:%d) "
                 "within the input NDF.", status, tile_index,
                 lbnd_tile[ 0 ], ubnd_tile[ 0 ], lbnd_tile[ 1 ],
                 ubnd_tile[ 1 ] );

/* If required, trim the bounds to the extent of the input NDF. */
      if( trim ) {
         if( lbnd_tile[ 0 ] < lbnd[ 0 ] ) lbnd_tile[ 0 ] = lbnd[ 0 ];
         if( lbnd_tile[ 1 ] < lbnd[ 1 ] ) lbnd_tile[ 1 ] = lbnd[ 1 ];
         if( lbnd_tile[ 2 ] < lbnd[ 2 ] ) lbnd_tile[ 2 ] = lbnd[ 2 ];
         if( ubnd_tile[ 0 ] > ubnd[ 0 ] ) ubnd_tile[ 0 ] = ubnd[ 0 ];
         if( ubnd_tile[ 1 ] > ubnd[ 1 ] ) ubnd_tile[ 1 ] = ubnd[ 1 ];
         if( ubnd_tile[ 2 ] > ubnd[ 2 ] ) ubnd_tile[ 2 ] = ubnd[ 2 ];
      }

/* Check there is some overlap. */
      if( lbnd_tile[ 0 ] <= ubnd_tile[ 0 ] &&
          lbnd_tile[ 1 ] <= ubnd_tile[ 1 ] &&
          lbnd_tile[ 2 ] <= ubnd_tile[ 2 ] ){

/* Now need to check if this section of the input NDF contains any good
   values. We also find the bounding box of the good values (within the
   input pixel coordinate system). So first obtain and map the required
   section of the input NDF. */
         ndfSect( indf, ndim, lbnd_tile, ubnd_tile, &indfs, status );
         ndfMap( indfs, "Data", type, "Read", &ipd, &junk, status );
         if( var ) ndfMap( indfs, "Variance", type, "Read", &ipv, &junk, status );
         if( qual ) ndfMap( indfs, "Quality", "_UBYTE", "Read", (void **) &ipq,
                            &junk, status );

/* Initialise the pixel bounds (within the input NDF) of the box holding
   good data values for the current tile. */
         bbox[ 0 ] = INT_MAX;
         bbox[ 1 ] = INT_MAX;
         bbox[ 2 ] = INT_MAX;
         bbox[ 3 ] = -INT_MAX;
         bbox[ 4 ] = -INT_MAX;
         bbox[ 5 ] = -INT_MAX;

/* Loop round all pixels in the section. */
         if( *status == SAI__OK ) {
            if( !strcmp( type, "_REAL" ) ) {
               pf = (float *) ipd;
               for( iz = lbnd_tile[ 2 ]; iz <= ubnd_tile[ 2 ]; iz++ ) {
                  for( iy = lbnd_tile[ 1 ]; iy <= ubnd_tile[ 1 ]; iy++ ) {
                     for( ix = lbnd_tile[ 0 ]; ix <= ubnd_tile[ 0 ]; ix++ ) {
                        if( *(pf++) != VAL__BADR ) {
                           if( ix < bbox[ 0 ] ) bbox[ 0 ] = ix;
                           if( iy < bbox[ 1 ] ) bbox[ 1 ] = iy;
                           if( iz < bbox[ 2 ] ) bbox[ 2 ] = iz;
                           if( ix > bbox[ 3 ] ) bbox[ 3 ] = ix;
                           if( iy > bbox[ 4 ] ) bbox[ 4 ] = iy;
                           if( iz > bbox[ 5 ] ) bbox[ 5 ] = iz;
                        }
                     }
                  }
               }
            } else {
               pd = (double *) ipd;
               for( iz = lbnd_tile[ 2 ]; iz <= ubnd_tile[ 2 ]; iz++ ) {
                  for( iy = lbnd_tile[ 1 ]; iy <= ubnd_tile[ 1 ]; iy++ ) {
                     for( ix = lbnd_tile[ 0 ]; ix <= ubnd_tile[ 0 ]; ix++ ) {
                        if( *(pd++) != VAL__BADD ) {
                           if( ix < bbox[ 0 ] ) bbox[ 0 ] = ix;
                           if( iy < bbox[ 1 ] ) bbox[ 1 ] = iy;
                           if( iz < bbox[ 2 ] ) bbox[ 2 ] = iz;
                           if( ix > bbox[ 3 ] ) bbox[ 3 ] = ix;
                           if( iy > bbox[ 4 ] ) bbox[ 4 ] = iy;
                           if( iz > bbox[ 5 ] ) bbox[ 5 ] = iz;
                        }
                     }
                  }
               }
            }

/* Skip empty tiles. */
            if( bbox[ 0 ] != INT_MAX ) {
               msgOutf( "", "   tile %d", status, tile_index );

/* If required, trim the bounds to the edges of the bounding box. */
               if( trim >= 2 ) {
                  olbnd[ 0 ] = bbox[ 0 ];
                  olbnd[ 1 ] = bbox[ 1 ];
                  olbnd[ 2 ] = bbox[ 2 ];
                  oubnd[ 0 ] = bbox[ 3 ];
                  oubnd[ 1 ] = bbox[ 4 ];
                  oubnd[ 2 ] = bbox[ 5 ];
               } else {
                  olbnd[ 0 ] = lbnd_tile[ 0 ];
                  olbnd[ 1 ] = lbnd_tile[ 1 ];
                  olbnd[ 2 ] = lbnd_tile[ 2 ];
                  oubnd[ 0 ] = ubnd_tile[ 0 ];
                  oubnd[ 1 ] = ubnd_tile[ 1 ];
                  oubnd[ 2 ] = ubnd_tile[ 2 ];
               }

/* Modify these pixel bounds so that they refer to the output NDF. */
               lbnd_in[ 0 ] = olbnd[ 0 ] - 0.5;
               lbnd_in[ 1 ] = olbnd[ 1 ] - 0.5;
               lbnd_in[ 2 ] = olbnd[ 2 ] - 0.5;
               ubnd_in[ 0 ] = oubnd[ 0 ] - 0.5;
               ubnd_in[ 1 ] = oubnd[ 1 ] - 0.5;
               ubnd_in[ 2 ] = oubnd[ 2 ] - 0.5;

               astMapBox( p2pmap, lbnd_in, ubnd_in, 1, 1, lbnd_out + 0,
                          ubnd_out + 0, NULL, NULL );
               astMapBox( p2pmap, lbnd_in, ubnd_in, 1, 2, lbnd_out + 1,
                          ubnd_out + 1, NULL, NULL );
               if( ndim == 3 ) astMapBox( p2pmap, lbnd_in, ubnd_in, 1, 3,
                                          lbnd_out + 2, ubnd_out + 2, NULL,
                                          NULL );

               olbnd[ 0 ] = floor( lbnd_out[ 0 ] ) + 1;
               olbnd[ 1 ] = floor( lbnd_out[ 1 ] ) + 1;
               olbnd[ 2 ] = floor( lbnd_out[ 2 ] ) + 1;
               oubnd[ 0 ] = floor( ubnd_out[ 0 ] ) + 1;
               oubnd[ 1 ] = floor( ubnd_out[ 1 ] ) + 1;
               oubnd[ 2 ] = floor( ubnd_out[ 2 ] ) + 1;

/* Get the full path to the output NDF for the current tile, and create an
   NDF placeholder for it. */
               sprintf( path, "%.*s_%d", nbase, base, tile_index );
               ndfPlace( NULL, path, &place, status );

/* Create a new output NDF by copying the meta-data from the input NDF
   section. */
               ndfScopy( indfs, "Units", &place, &indfo, status );

/* Set the pixel bounds of the output NDF to the values found above and copy
   the input data for the current tile into it. */
               smf1_jsadicer( indfo, olbnd, oubnd, tile_map, tile_frm, p2pmap,
                              ipd, ipv, ipq, status );

/* Add the name of this output NDF to the group holding the names of the
   output NDFs that have actually been created. */
               if( grp ) grpPut1( grp, path, 0, status );

/* Add a TILENUM header to the output FITS extension. */
               kpgGtfts( indfo, &fc, status );
               if( *status == KPG__NOFTS ) {
                  errAnnul( status );
                  fc = astFitsChan( NULL, NULL, " " );

/* If the last card is "END", remove it. */
               } else {
                  astSetI( fc, "Card", astGetI( fc, "NCARD" ) );
                  keyword = astGetC( fc, "CardName" );
                  if( keyword && !strcmp( keyword, "END" ) ) astDelFits( fc );
               }

               one_snprintf(jsatile_comment, 45, "JSA all-sky tile index (Nside=%i)",
                            status, tiling.ntpf);
               atlPtfti( fc, "TILENUM", tile_index, jsatile_comment, status );
               kpgPtfts( indfo, fc, status );
               fc = astAnnul( fc );

/* Now store an STC-S polygon that describes the shortest boundary
   enclosing the good data in the output NDF, and store it as an NDF extension. */
               kpgPutOutline( indfo, 0.5, 1, status );

/* We now reshape any extension NDFs contained within the output NDF to
   have the same spatial bounds as the main NDF (but only for extension
   NDFs that originally have the same spatial bounds as the supplied NDF).
   Get a group containing paths to all extension NDFs in the output NDF. */
               ndgMoreg( indfo, &grpt, &size, status );

/* Loop round each output extension NDF. */
               for( iext = 1; iext <= size && *status == SAI__OK; iext++ ) {
                  ndgNdfas( grpt, iext, "Update", &indfx, status );

/* Get its bounds. */
                  ndfBound( indfx, NDF__MXDIM, lbndx, ubndx, &ndimx, status );

/* See if this extension NDF has the same bounds on the spatial axes as
   the supplied NDF. */
                  if( ndimx > 1 && lbndx[ lonax ] == lbnd[ lonax ] &&
                                   lbndx[ latax ] == lbnd[ latax ] &&
                                   ubndx[ lonax ] == ubnd[ lonax ] &&
                                   ubndx[ latax ] == ubnd[ latax ] ) {

/* If so, change the bounds of the output extension NDF so that they are
   the same as the main NDF on the spatial axes, and map the original
   contents of the NDF onto the new pixel grid. */
                     smf1_jsadicer( indfx, olbnd, oubnd, tile_map, tile_frm, p2pmap,
                                    NULL, NULL, NULL, status );
                  }

/* Annul the extension NDF identifier. */
                  ndfAnnul( &indfx, status );
               }

/* Free resources associated with the current tile. */
               grpDelet( &grpt, status );
               ndfAnnul( &indfo, status );

/* Issue warnings about empty tiles. */
            } else {
               msgOutiff( MSG__VERB, "", "   tile %d is empty and so will not be "
                          "created", status, tile_index );
            }
         }

/* Free the section of the input NDF. */
         ndfAnnul( &indfs, status );

/* Append the index of this tile in the list of tiles to be created. */
         created_tiles = astGrow( created_tiles, ++(*ntile),
                                  sizeof( *created_tiles ) );
         if( *status == SAI__OK ) created_tiles[ *ntile - 1 ] = tile_index;

      } else {
         msgOutiff( MSG__DEBUG, "", "   Tile %d does not overlap the input "
                    "NDF after trimming.", status, tile_index );
      }
   }
   msgBlank( status );

/* Write the indicies of the created tiles out to a parameter. */
   if( *ntile ) parPut1i( "JSATILELIST", *ntile, created_tiles, status );

/* Free resources. */
   created_tiles = astFree( created_tiles );
   tiles = astFree( tiles );
   path = astFree( path );

/* End the NDF context. */
   ndfEnd( status );

/* End the AST context. */
   astEnd;

}
Пример #4
0
void smf_ext2km( int indf, const char *xname, AstKeyMap *keymap,
                 int mode, int *status ){

/* Local Variables */
   HDSLoc *cloc = NULL;
   HDSLoc *sloc = NULL;
   HDSLoc *xloc = NULL;
   const char *key = NULL;
   hdsdim diml[NDF__MXDIM];
   hdsdim dimu[NDF__MXDIM];
   int dim[ NDF__MXDIM ];
   int i;
   int idim;
   int lbnd[ NDF__MXDIM ];
   int ncomp;
   int ndim;
   int nentry;
   int ntime = 0;
   int prim;
   int there;
   int ubnd[ NDF__MXDIM ];

/* Check the inherited status */
   if( *status != SAI__OK ) return;

/* Get the shape of the NDF. */
   ndfBound( indf, 3, lbnd, ubnd, &ndim, status );

/* Get a locator to the named extension. */
   ndfXloc( indf, xname, "READ", &xloc, status );

/* Select the name of the prototype component that determines the length
   of the arrays to be copied. */
   if( !strcmp( xname, "JCMTSTATE" ) ) {
      key = "RTS_NUM";
   } else if( !strcmp( xname, "ACSIS" ) ) {
      key = "TSYS";
   } else {
      cloc = NULL;
      msgSetc( "X", xname );
      errRep( "", "smf_ext2km: Unknown extension specified - '^X'. "
              "Must be 'JCMTSTATE' or 'ACSIS'.", status );
   }

/* Check the prorotype component is present in the extension. Report an
   error if not. */
   datThere( xloc, key, &there, status );
   if( !there && *status == SAI__OK ) {
      msgSetc( "C", key );
      msgSetc( "X", xname );
      errRep( "", "smf_ext2km: Component '^C' not found in extension "
              "^X", status );

/* If it is present, get the length of its last pixel axis. This is the
   length of the arrays to be copied. */
   } else {
      datFind( xloc, key, &cloc, status );
      datShape( cloc, NDF__MXDIM, dim, &ndim, status );
      ntime = dim[ ndim - 1 ];
      datAnnul( &cloc, status );
   }

/* First deal with mode 1... */
/* ========================= */
   if( mode == 1 ) {

/* Loop round every component in the extension. */
      datNcomp( xloc, &ncomp, status );
      for( i = 1; i <= ncomp; i++ ) {
         datIndex( xloc, i, &cloc, status );

/* Check the component has primitive values. */
         datPrim( cloc, &prim, status );
         if( prim ) {

/* Get the shape of the component. */
            datShape( cloc, NDF__MXDIM, dim, &ndim, status );

/* Skip over this component if the length of its final axis is not equal
   to the expected number of time slices. */
            if( ndim > 0 && dim[ ndim - 1 ] == ntime ) {

/* Also skip if we are dealing with the ACSIS extension and the array has
   only 1 (or zero) axes. */
               if( ndim > 1 || strcmp( xname, "ACSIS" ) ) {

/* Cut a section from the HDS array so that it matches the pixel bounds of
   the NDF . */
                  for( idim = 0; idim < ndim - 1; idim++ ) {
                     diml[ idim ] = 1;
                     dimu[ idim ] = dim[ idim ];
                  }
                  diml[ idim ] = lbnd[ 2 ];
                  dimu[ idim ] = ubnd[ 2 ];
                  datSlice( cloc, ndim, diml, dimu, &sloc, status );

/* Store the values as a new entry in "keymap". */
                  kpg1Hdsky( sloc, keymap, 2, 1, status );

/* Annul the locator for the slice. */
                  datAnnul( &sloc, status );
               }
            }
         }
         datAnnul( &cloc, status );
      }

/* Now deal with mode 2... */
/* ========================= */
   } else if( mode == 2 ) {

/* Loop round every entry in the KeyMap. */
      nentry = astMapSize( keymap );
      for( i = 0; i < nentry; i++ ) {
         key = astMapKey( keymap, i );

/* See if the supplied extension has a component with the same name. */
         datThere( xloc, key, &there, status );

/* If it did, check the component is primitive. */
         if( there && *status == SAI__OK ) {
            datFind( xloc, key, &cloc, status );
            datPrim( cloc, &prim, status );
            if( prim ) {

/* Check the final axis of the primitive array has a length equal to the
   expected number of time slices. */
               datShape( cloc, NDF__MXDIM, dim, &ndim, status );
               if( ndim > 0 && dim[ ndim - 1 ] == ntime ) {

/* Also skip if we are dealing with the ACSIS extension and the array has
   only 1 (or zero) axes. */
                  if( ndim > 1 || strcmp( xname, "ACSIS" ) ) {

/* Cut a section from the HDS array so that it matches the pixel bounds of
   the NDF . */
                     for( idim = 0; idim < ndim - 1; idim++ ) {
                        diml[ idim ] = 1;
                        dimu[ idim ] = dim[ idim ];
                     }
                     diml[ idim ] = lbnd[ 2 ];
                     dimu[ idim ] = ubnd[ 2 ];
                     datSlice( cloc, ndim, diml, dimu, &sloc, status );

/* Append the values to the end of the existing KeyMap entry. */
                     kpg1Hdsky( sloc, keymap, 1, 3, status );

/* Annul the locator for the slice. */
                     datAnnul( &sloc, status );

                  }

               } else if( *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  msgSetc( "X", xname );
                  msgSetc( "K", key );
                  ndfMsg( "F", indf );
                  errRep( "", "The ^X.^K array has an unexpected shape in "
                          "\"^F\".", status );
               }

            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               msgSetc( "X", xname );
               msgSetc( "K", key );
               ndfMsg( "F", indf );
               errRep( "", "The ^X.^K array has an unexpected data type in "
                       "\"^F\".", status );
            }

            datAnnul( &cloc, status );

         } else if( *status == SAI__OK ) {
            *status = SAI__ERROR;
            msgSetc( "X", xname );
            msgSetc( "K", key );
            ndfMsg( "F", indf );
            errRep( "", "The ^X.^K array is missing in \"^F\".", status );
         }

      }

/* Now tidy up. */
/* ============ */

/* Report an error if the "mode" value was illegal. */
   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      msgSeti( "MODE", mode );
      errRep( "", "smf_ext2km: Illegal value (^MODE) supplied for "
              "argument MODE (programming error).", status );
   }

/* Free resources. */
   datAnnul( &xloc, status );
}
Пример #5
0
void findback( int *status ){
/*
*+
*  Name:
*     FINDBACK

*  Purpose:
*     Estimate the background in an NDF by removing small scale structure.

*  Language:
*     C

*  Type of Module:
*     ADAM A-task

*  Synopsis:
*     void findback( int *status );

*  Description:
*     This application uses spatial filtering to remove structure with a
*     scale size less than a specified size from a 1, 2, or 3 dimensional
*     NDF, thus producing an estimate of the local background within the NDF.
*
*     The algorithm proceeds as follows. A filtered form of the input data
*     is first produced by replacing every input pixel by the minimum of
*     the input values within a rectangular box centred on the pixel.
*     This filtered data is then filtered again, using a filter that
*     replaces every pixel value by the maximum value in a box centred on
*     the pixel. This produces an estimate of the lower envelope of the data,
*     but usually contains unacceptable sharp edges. In addition, this
*     filtered data has a tendency to hug the lower envelope of the
*     noise, thus under-estimating the true background of the noise-free
*     data. The first problem is minimised by smoothing the background
*     estimate using a filter that replaces every pixel value by the mean
*     of the values in a box centred on the pixel. The second problem
*     is minimised by estimating the difference between the input data
*     and the background estimate within regions well removed from any
*     bright areas. This difference is then extrapolated into the bright
*     source regions and used as a correction to the background estimate.
*     Specifically, the residuals between the input data and the initial
*     background estimate are first formed, and residuals which are more
*     than three times the RMS noise are set bad. The remaining residuals
*     are smoothed with a mean filter. This smoothing will replace a lot
*     of the bad values rejected above, but may not remove them all. Any
*     remaining bad values are estimated by linear interpolation between
*     the nearest good values along the first axis. The interpolated
*     residuals are then smoothed again using a mean filter, to get a
*     surface representing the bias in the initial background estimate.
*     This surface is finally added onto the initial background estimate
*     to obtain the output NDF.

*  Usage:
*     findback in out box

*  ADAM Parameters:
*     BOX() = _INTEGER (Read)
*        The dimensions of each of the filters, in pixels. Each value
*        should be odd (if an even value is supplied, the next higher odd
*        value will be used). The number of values supplied should not
*        exceed the number of significant (i.e. more than one element)
*        pixel axes in the input array. If any trailing values of 1 are
*        supplied, then each pixel value on the corresponding axes
*        will be fitted independently of its neighbours. For instance,
*        if the data array is 3-dimensional, and the third BOX value is 1,
*        then each x-y plane will be fitted independently of the neighbouring
*        planes. If the NDF has more than 1 pixel axis but only 1 value is
*        supplied, then the same value will be used for the both the first
*        and second pixel axes (a value of 1 will be assumed for the third
*        axis if the input array is 3-dimensional).
*     MSG_FILTER = _CHAR (Read)
*        Controls the amount of diagnostic information reported. This is the
*        standard messaging level. The default messaging level is NORM (2).
*        A value of NONE or 0 will suppress all screen output. VERB (3) will
*        indicate progress through the various stages of the algorithm. [NORM]
*     IN = NDF (Read)
*        The input NDF.
*     RMS = _DOUBLE (Read)
*        Specifies a value to use as the global RMS noise level in the
*        supplied data array. The suggested default value is the square root
*        of the mean of the values in the input NDF's Variance component.
*        If the NDF has no Variance component, the suggested default
*        is based on the differences between neighbouring pixel values,
*        measured over the entire input NDF. If multiple slices within the
*        NDF are to be processed independently (see parameter BOX), it
*        may be more appropriate for a separate default RMS to be calculated
*        for each slice. This will normally be the case if the noise could
*        be different in each of the slices. In such cases a null (!) can
*        be supplied for the RMS parameter, which forces a separate
*        default RMS value to be found and used for each slice. Any
*        pixel-to-pixel correlation in the noise can result in these
*        defaults being too low.
*     SUB = _LOGICAL (Read)
*        If a TRUE value is supplied, the output NDF will contain the
*        difference between the supplied input data and the estimated
*        background. If a FALSE value is supplied, the output NDF will
*        contain the estimated background itself. [FALSE]
*     OUT = NDF (Write)
*        The output NDF containing either the estimated background, or the
*        background-subtracted input data, as specified by parameter SUB.

*  Notes:
*     - Smoothing cubes in 3 dimensions can be very slow.

*  Copyright:
*     Copyright (C) 2009 Science and Technology Facilities Council.
*     Copyright (C) 2006, 2007 Particle Physics & Astronomy Research Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software; you can redistribute it and/or
*     modify it under the terms of the GNU General Public License as
*     published by the Free Software Foundation; either version 2 of
*     the License, or (at your option) any later version.
*
*     This program is distributed in the hope that it will be
*     useful, but WITHOUT ANY WARRANTY; without even the implied
*     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
*     PURPOSE. See the GNU General Public License for more details.
*
*     You should have received a copy of the GNU General Public License
*     along with this program; if not, write to the Free Software
*     Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA
*     02110-1301, USA

*  Authors:
*     DSB: David S. Berry
*     TIMJ: Tim Jenness (JAC, Hawaii)
*     {enter_new_authors_here}

*  History:
*     13-SEP-2006 (DSB):
*        Original version.
*     19-MAR-2007 (DSB):
*        - Added parameters SUB and RMS.
*        - Fix bug that left the output NDF uninitialised if ILEVEL is set
*        non-zero.
*        - Use generic data type handling as in FINDCLUMPS.
*     14-JAN-2009 (TIMJ):
*        Use MERS for message filtering.
*     29-JUL-2009 (TIMJ):
*        Rename ILEVEL to MSG_FILTER
*     17-MAY-2011 (DSB):
*        Use sqrt rather than sqrtf when calculating RMS.
*     12-SEP-2011 (DSB):
*        Process slices in separate threads.
*     {enter_further_changes_here}

*-
*/

/* Local Variables: */
   CupidFindback0Data *job_data; /* Pointer to data for all jobs */
   CupidFindback0Data *pdata; /* Pointer to data for current job */
   Grp *grp;                 /* GRP identifier for configuration settings */
   ThrWorkForce *wf = NULL;  /* Pool of persistent worker threads */
   char dtype[ 21 ];         /* HDS data type for output NDF */
   char itype[ 21 ];         /* HDS data type to use when processing */
   double *ipv;              /* Pointer to Variance array */
   double *pd1;              /* Pointer to double precision input data */
   double *pd2;              /* Pointer to double precision output data */
   double rms;               /* Global rms error in data */
   double sum;               /* Sum of variances */
   float *pf1;               /* Pointer to single precision input data */
   float *pf2;               /* Pointer to single precision output data */
   int *old_status;          /* Pointer to original status value */
   int box[ 3 ];             /* Dimensions of each cell in pixels */
   int dim[ NDF__MXDIM ];    /* Dimensions of each NDF pixel axis */
   int el;                   /* Number of elements mapped */
   int i;                    /* Loop count */
   int indf1;                /* Identifier for input NDF */
   int indf2;                /* Identifier for output NDF */
   int islice;               /* Slice index */
   int iystep;               /* Index of slice in ydirection */
   int izstep;               /* Index of slice in z direction */
   int lbnd[ NDF__MXDIM ];   /* Lower pixel bounds of slice */
   int n;                    /* Number of values summed in "sum" */
   int ndim;                 /* Total number of pixel axes in NDF */
   int newalg;               /* Use experimental algorithm variations? */
   int nsdim;                /* Number of significant pixel axes in NDF */
   int nslice;               /* Number of slices to process */
   int nval;                 /* Number of values supplied */
   int nystep;               /* Number of independent y slices */
   int nzstep;               /* Number of slices in z direction */
   int sdim[ 3 ];            /* Dimensions of each significant NDF axis */
   int slice_dim[ 3 ];       /* Dimensions of each significant slice axis */
   int slice_lbnd[ 3 ];      /* Lower bounds of each significant slice axis */
   int slice_size;           /* Number of pixels in each slice */
   int state;                /* Parameter state */
   int sub;                  /* Output the background-subtracted input data? */
   int type;                 /* Integer identifier for data type */
   int ubnd[ NDF__MXDIM ];   /* Upper pixel bounds of slice */
   int var;                  /* Does i/p NDF have a Variance component? */
   size_t size;              /* Size of GRP group */
   void *ipd1;               /* Pointer to input Data array */
   void *ipd2;               /* Pointer to output Data array */
   void *ipdin;              /* Pointer to input Data array */
   void *ipdout;             /* Pointer to output Data array */

/* Abort if an error has already occurred. */
   if( *status != SAI__OK ) return;

/* Start an NDF context */
   ndfBegin();

/* Record the existing AST status pointer, and ensure AST uses the supplied
   status pointer instead. */
   old_status = astWatch( status );

/* Get an identifier for the input NDF. We use NDG (via kpg1_Rgndf)
   instead of calling ndfAssoc directly since NDF/HDS has problems with
   file names containing spaces, which NDG does not have. */
   kpg1Rgndf( "IN", 1, 1, "", &grp, &size, status );
   ndgNdfas( grp, 1, "READ", &indf1, status );
   grpDelet( &grp, status );

/* Get the pixel index bounds of the input NDF. */
   ndfBound( indf1, NDF__MXDIM, lbnd, ubnd, &ndim, status );

/* Identify and count the number of significant axes (i.e. axes spanning
   more than 1 pixel). Also record their dimensions. */
   nsdim = 0;
   for( i = 0; i < ndim; i++ ) {
      dim[ i ] = ubnd[ i ] - lbnd[ i ] + 1;
      if( dim[ i ] > 1 ) sdim[ nsdim++ ] = dim[ i ];
   }

/* If there are too many significant axes, report an error. */
   if( nsdim > 3 && *status == SAI__OK ) {
       *status = SAI__ERROR;
       ndfMsg( "N", indf1 );
       msgSeti( "NS", nsdim );
       errRep( "", "The NDF '^N' has ^NS significant pixel axes, but this"
               "application requires 1, 2 or 3.", status );
   }

/* Ensure we have 3 values in sdim (pad with trailings 1's if required). */
   if( nsdim < 3 ) sdim[ 2 ] = 1;
   if( nsdim < 2 ) sdim[ 1 ] = 1;

/* See if the output is to contain the background-subtracted data, or the
   background estimate itself. */
   parGet0l( "SUB", &sub, status );

/* Create the output by propagating everything except the Data and
   (if we are outputting the background itself) Variance arrays. */
   if( sub ) {
      ndfProp( indf1, "UNITS,AXIS,WCS,QUALITY,VARIANCE", "OUT", &indf2,
               status );
   } else {
      ndfProp( indf1, "UNITS,AXIS,WCS,QUALITY", "OUT", &indf2, status );
   }

   msgBlankif( MSG__VERB, status );

/* Get the dimensions of each of the filters, in pixels. If only one
   value is supplied, duplicate it as the second value if the second axis
   is significant. If fewer than 3 values were supplied, use 1 for the 3rd
   value (whether or not it is significant). This results in each plane
   being fitted independently of the adjacent planes by default. */
   parGet1i( "BOX", nsdim, box, &nval, status );
   if( *status != SAI__OK ) goto L999;
   if( nval < 2 ) box[ 1 ] = ( nsdim > 1 ) ? box[ 0 ] : 1;
   if( nval < 3 ) box[ 2 ] = 1;

/* Ensure box sizes are odd. */
   box[ 0 ] = 2*( box[ 0 ] / 2 ) + 1;
   box[ 1 ] = 2*( box[ 1 ] / 2 ) + 1;
   box[ 2 ] = 2*( box[ 2 ] / 2 ) + 1;

   msgOutiff( MSG__VERB, "", "Using box sizes [%d,%d,%d].", status,
              box[0], box[1], box[2]);

/* If any trailing axes have a cell size of 1, then we apply the algorithm
   independently to every pixel index on the trailing axes. First of all
   set things up assuming that there are no trailing axes with cell size
   of 1. */
   nystep = 1;
   nzstep = 1;
   slice_dim[ 0 ] = sdim[ 0 ];
   slice_dim[ 1 ] = sdim[ 1 ];
   slice_dim[ 2 ] = sdim[ 2 ];
   slice_lbnd[ 0 ] = lbnd[ 0 ];
   slice_lbnd[ 1 ] = lbnd[ 1 ];
   slice_lbnd[ 2 ] = lbnd[ 2 ];

/* If the 3rd pixel axis has a cell size of 1, arrange that each slice
   contains a single plane. */
   if( box[ 2 ] == 1 ) {
      nzstep = sdim[ 2 ];
      slice_dim[ 2 ] = 1;

/* If the 2nd pixel axis also has a cell size of 1, arrange that each slice
   contains a single row. */
      if( box[ 1 ] == 1 ) {
         nystep = sdim[ 1 ];
         slice_dim[ 1 ] = 1;
      }
   }

/* Determine the number of pixels in each independent slice. */
   slice_size = slice_dim[ 0 ]*slice_dim[ 1 ]*slice_dim[ 2 ];

/* Decide what numeric data type to use, and set the output NDF data type. */
   ndfMtype( "_REAL,_DOUBLE", indf1, indf1, "Data,Variance", itype,
             20, dtype, 20, status );
   if( !strcmp( itype, "_DOUBLE" ) ) {
      type = CUPID__DOUBLE;
   } else {
      type = CUPID__FLOAT;
   }

   ndfStype( dtype, indf2, "Data,Variance", status );

/* Map the input and output arrays. */
   ndfMap( indf1, "Data", itype, "READ", &ipdin, &el, status );
   ndfMap( indf2, "Data", itype, "WRITE", &ipdout, &el, status );

/* If the rms value is supplied on the command, there is no need to
   calculate a default value. */
   parState( "RMS", &state, status );
   if( state == PAR__GROUND ) {

/* Calculate the default RMS value. If the NDF has a Variance component
   it is the square root of the mean Variance value. Otherwise, it is found
   by looking at differences between adjacent pixel values in the Data
   component. */
      ndfState( indf1, "VARIANCE", &var, status );
      if( *status == SAI__OK && var ) {
         ndfMap( indf1, "VARIANCE", "_DOUBLE", "READ", (void *) &ipv, &el, status );

         sum = 0.0;
         n = 0;
         for( i = 0; i < el; i++ ) {
            if( ipv[ i ] != VAL__BADD ) {
               sum += ipv[ i ];
               n++;
            }
         }

         if( n > 0 ) {
            rms = sqrt( sum/n );

         } else {
            *status = SAI__ERROR;
            errRep( "", "The supplied data contains insufficient "
                    "good Variance values to continue.", status );
         }

      } else {
         ipv = NULL;
         rms = cupidRms( type, ipdin, el, sdim[ 0 ], status );
      }

/* Set the default RMS noise level. */
      parDef0d( "RMS", rms, status );
   }

/* Abort if an error has occurred. */
   if( *status != SAI__OK ) goto L999;

/* Get the RMS noise level. */
   parGet0d( "RMS", &rms, status );

/* Annul the error and use an RMS value of VAL__BAD if a null parameter
   value was supplied. This causes an independent default noise estimate to
   be used for each slice of the base NDF. */
   if( *status == PAR__NULL ) {
      errAnnul( status );
      rms = VAL__BADD;
   }

/* See if any experimental algorithm variations are to be used. */
   parGet0l( "NEWALG", &newalg, status );

/* Create a pool of worker threads. */
   wf = thrCreateWorkforce( thrGetNThread( "CUPID_THREADS", status ), status );

/* Get memory to hold a description of each job passed to a worker. There
   is one job for each slice. */
   nslice = nystep*nzstep;
   job_data = astMalloc( nslice*sizeof( *job_data ) );
   if( *status == SAI__OK ) {

/* Loop round all slices to be processed. */
      ipd1 = ipdin;
      ipd2 = ipdout;
      islice = 0;
      pdata = job_data;

      for( izstep = 0; izstep < nzstep ; izstep++ ) {

         slice_lbnd[ 1 ] = lbnd[ 1 ];

         for( iystep = 0; iystep < nystep; iystep++, islice++,pdata++ ) {

/* Store the information needed by the function (cupidFindback0) that
   does the work in a thread. */
            pdata->islice = islice;
            pdata->nslice = nslice;
            pdata->type = type;
            pdata->ndim = ndim;
            pdata->box[ 0 ] = box[ 0 ];
            pdata->box[ 1 ] = box[ 1 ];
            pdata->box[ 2 ] = box[ 2 ];
            pdata->rms = rms;
            pdata->ipd1 = ipd1;
            pdata->ipd2 = ipd2;
            pdata->slice_dim[ 0 ] = slice_dim[ 0 ];
            pdata->slice_lbnd[ 0 ] = slice_lbnd[ 0 ];
            pdata->slice_dim[ 1 ] = slice_dim[ 1 ];
            pdata->slice_lbnd[ 1 ] = slice_lbnd[ 1 ];
            pdata->slice_dim[ 2 ] = slice_dim[ 2 ];
            pdata->slice_lbnd[ 2 ] = slice_lbnd[ 2 ];
            pdata->newalg = newalg;
            pdata->slice_size = slice_size;

/* Submit a job to the workforce to process the current slice. */
            thrAddJob( wf, 0, pdata, cupidFindback0, 0, NULL, status );

/* Update pointers to the start of the next slice in the input and output
   arrays. */
            if( type == CUPID__FLOAT ) {
               ipd1 = ( (float *) ipd1 ) + slice_size;
               ipd2 = ( (float *) ipd2 ) + slice_size;
            } else {
               ipd1 = ( (double *) ipd1 ) + slice_size;
               ipd2 = ( (double *) ipd2 ) + slice_size;
            }

/* Increment the lower bound on the 2nd pixel axis. */
            slice_lbnd[ 1 ]++;
         }

/* Increment the lower bound on the 3rd pixel axis. */
         slice_lbnd[ 2 ]++;
      }

/* Wait until all jobs have finished. */
      thrWait( wf, status );
   }

/* The output currently holds the background estimate. If the user has
   requested that the output should hold the background-subtracted input
   data, then do the arithmetic now. */
   if( sub && *status == SAI__OK ) {
      if( type == CUPID__FLOAT ) {
         pf1 = (float *) ipdin;
         pf2 = (float *) ipdout;
         for( i = 0; i < el; i++, pf1++, pf2++ ) {
            if( *pf1 != VAL__BADR && *pf2 != VAL__BADR ) {
               *pf2 = *pf1 - *pf2;
            } else {
               *pf2 = VAL__BADR;
            }
         }

      } else {
         pd1 = (double *) ipdin;
         pd2 = (double *) ipdout;
         for( i = 0; i < el; i++, pd1++, pd2++ ) {
            if( *pd1 != VAL__BADD && *pd2 != VAL__BADD ) {
               *pd2 = *pd1 - *pd2;
            } else {
               *pd2 = VAL__BADD;
            }
         }

      }
   }

/* Tidy up */
L999:;
   msgBlankif( MSG__VERB, status );

/* Free workspace. */
   job_data = astFree( job_data );
   wf = thrDestroyWorkforce( wf );

/* Reinstate the original AST inherited status value. */
   astWatch( old_status );

/* End the NDF context */
   ndfEnd( status );

/* If an error has occurred, issue another error report identifying the
   program which has failed (i.e. this one). */
   if( *status != SAI__OK ) {
      errRep( "FINDBACK_ERR", "FINDBACK: Failed to find the background "
              "of an NDF.", status );
   }
}
Пример #6
0
void smurf_unmakemap( int *status ) {

/* Local Variables */
   AstFrameSet *wcsin = NULL; /* WCS Frameset for input cube */
   AstMapping *skymap;        /* GRID->SkyFrame Mapping from input WCS */
   AstSkyFrame *abskyfrm;     /* Input SkyFrame (always absolute) */
   AstSkyFrame *skyfrm = NULL;/* SkyFrame from the input WCS Frameset */
   Grp *igrp1 = NULL;         /* Group of input sky files */
   Grp *igrp2 = NULL;         /* Group of input template files */
   Grp *igrpc = NULL;         /* Group of input COM files */
   Grp *igrpg = NULL;         /* Group of input GAI files */
   Grp *igrpq = NULL;         /* Group of input Q  sky files */
   Grp *igrpu = NULL;         /* Group of input U sky files */
   Grp *ogrp = NULL;          /* Group containing output file */
   HDSLoc *cloc = NULL;       /* HDS locator for component ipdata structure */
   HDSLoc *iploc = NULL;      /* HDS locator for top level ipdata structure */
   ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */
   char ipdata[ 200 ];        /* Text buffer for IPDATA value */
   char pabuf[ 10 ];          /* Text buffer for parameter value */
   char subarray[ 5 ];        /* Name of SCUBA-2 subarray (s8a,s8b,etc) */
   dim_t iel;                 /* Index of next element */
   dim_t ndata;               /* Number of elements in array */
   dim_t ntslice;             /* Number of time slices in array */
   double *ang_data = NULL;   /* Pointer to the FP orientation angles */
   double *angc_data = NULL;  /* Pointer to the instrumental ANGC data */
   double *c0_data = NULL;    /* Pointer to the instrumental C0 data */
   double *gai_data = NULL;   /* Pointer to the input GAI map */
   double *in_data = NULL;    /* Pointer to the input I sky map */
   double *inc_data = NULL;   /* Pointer to the input COM data */
   double *inq_data = NULL;   /* Pointer to the input Q sky map */
   double *inu_data = NULL;   /* Pointer to the input U sky map */
   double *outq_data = NULL;  /* Pointer to the Q time series data */
   double *outu_data = NULL;  /* Pointer to the U time series data */
   double *p0_data = NULL;    /* Pointer to the instrumental P0 data */
   double *p1_data = NULL;    /* Pointer to the instrumental P1 data */
   double *pd;                /* Pointer to next element */
   double *pq = NULL;         /* Pointer to next Q time series value */
   double *pu = NULL;         /* Pointer to next U time series value */
   double *qinst_data = NULL; /* Pointer to the instrumental Q data */
   double *uinst_data = NULL; /* Pointer to the instrumental U data */
   double amp16;              /* Amplitude of 16 Hz signal */
   double amp2;               /* Amplitude of 2 Hz signal */
   double amp4;               /* Amplitude of 4 Hz signal */
   double angrot;             /* Angle from focal plane X axis to fixed analyser */
   double paoff;              /* WPLATE value corresponding to POL_ANG=0.0 */
   double params[ 4 ];        /* astResample parameters */
   double phase16;            /* Phase of 16 Hz signal */
   double phase2;             /* Phase of 2 Hz signal */
   double phase4;             /* Phase of 4 Hz signal */
   double sigma;              /* Standard deviation of noise to add to output */
   int alignsys;              /* Align data in the map's system? */
   int cdims[ 3 ];            /* Common-mode NDF dimensions */
   int dims[ NDF__MXDIM ];    /* NDF dimensions */
   int flag;                  /* Was the group expression flagged? */
   int gdims[ 3 ];            /* GAI model NDF dimensions */
   int harmonic;              /* The requested harmonic */
   int ifile;                 /* Input file index */
   int indf;                  /* Input sky map NDF identifier */
   int indfangc;              /* IP ANGC values NDF identifier */
   int indfc0;                /* IP C0 values NDF identifier */
   int indfc;                 /* Input COM NDF identifier */
   int indfcs;                /* NDF identifier for matching section of COM */
   int indfg;                 /* Input GAI NDF identifier */
   int indfin;                /* Input template cube NDF identifier */
   int indfiq;                /* Input instrumental Q NDF */
   int indfiu;                /* Input instrumental U NDF */
   int indfout;               /* Output cube NDF identifier */
   int indfp0;                /* IP P0 values NDF identifier */
   int indfp1;                /* IP P1 values NDF identifier */
   int indfq;                 /* Input Q map NDF identifier */
   int indfu;                 /* Input U map NDF identifier */
   int interp = 0;            /* Pixel interpolation method */
   int lbndc[ 3 ];            /* Array of lower bounds of COM NDF */
   int moving;                /* Is the telescope base position changing? */
   int ndim;                  /* Number of pixel axes in NDF */
   int ndimc;                 /* Number of pixel axes in common-mode NDF */
   int ndimg;                 /* Number of pixel axes in GAI NDF */
   int nel;                   /* Number of elements in array */
   int nelc;                  /* Number of elements in COM array */
   int nelg;                  /* Number of elements in GAI array */
   int nelqu;                 /* Number of elements in Q or U array */
   int ngood;                 /* No. of good values in putput cube */
   int nparam = 0;            /* No. of parameters required for interpolation scheme */
   int pasign;                /* Indicates sense of POL_ANG value */
   int sdim[ 2 ];             /* Array of significant pixel axes */
   int slbnd[ 2 ];            /* Array of lower bounds of input map */
   int subnd[ 2 ];            /* Array of upper bounds of input map */
   int ubndc[ 3 ];            /* Array of upper bounds of COM NDF */
   size_t ncom;               /* Number of com files */
   size_t ngai;               /* Number of gai files */
   size_t nskymap;            /* Number of supplied sky cubes */
   size_t outsize;            /* Number of files in output group */
   size_t size;               /* Number of files in input group */
   smfData *odata = NULL;     /* Pointer to output data struct */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context */
   astBegin;

/* Begin an NDF context. */
   ndfBegin();

/* Find the number of cores/processors available and create a pool of
   threads of the same size. */
   wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

/* Get an identifier for the input NDF. We use NDG (via kpg1Rgndf)
   instead of calling ndfAssoc directly since NDF/HDS has problems with
   file names containing spaces, which NDG does not have. */
   kpg1Rgndf( "IN", 1, 1, "", &igrp1, &nskymap, status );
   ndgNdfas( igrp1, 1, "READ", &indf, status );

/* Map the data array in the input sky map. */
   ndfMap( indf, "DATA", "_DOUBLE", "READ", (void **) &in_data, &nel,
           status );

/* Get the WCS FrameSet from the sky map, together with its pixel index
   bounds. */
   kpg1Asget( indf, 2, 0, 1, 1, sdim, slbnd, subnd, &wcsin, status );

/* Check the current Frame is a SKY frame. */
   skyfrm = astGetFrame( wcsin, AST__CURRENT );
   if( !astIsASkyFrame( skyfrm ) && *status == SAI__OK ) {
      ndfMsg( "N", indf );
      *status = SAI__ERROR;
      errRep( " ", " Current Frame in ^N is not a SKY Frame.", status );
   }

/* Get a copy of the current frame that represents absolute coords rather
   than offsets. We assume the target is moving if the map represents
   offsets. */
   moving = ( *status == SAI__OK &&
              !strcmp( astGetC( skyfrm, "SkyRefIs" ), "Origin" ) ) ? 1 : 0;
   abskyfrm = astCopy( skyfrm );
   astClear( abskyfrm, "SkyRefIs" );

/* If the ALIGNSYS parameter is TRUE then we align the raw data with the
   map in the current system of the map, rather than the default ICRS. */
   parGet0l( "ALIGNSYS", &alignsys, status );
   if( alignsys ) astSetC( abskyfrm, "AlignSystem", astGetC( abskyfrm,
                                                             "System" ) );

/* Get the Mapping from the Sky Frame to grid axis in the iput map. */
   skymap = astGetMapping( wcsin, AST__CURRENT, AST__BASE );

/* Get the pixel interpolation scheme to use. */
   parChoic( "INTERP", "NEAREST", "NEAREST,LINEAR,SINC,"
             "SINCSINC,SINCCOS,SINCGAUSS,SOMB,SOMBCOS",
             1, pabuf, 10, status );

   if( !strcmp( pabuf, "NEAREST" ) ) {
      interp = AST__NEAREST;
      nparam = 0;

   } else if( !strcmp( pabuf, "LINEAR" ) ) {
      interp = AST__LINEAR;
      nparam = 0;

   } else if( !strcmp( pabuf, "SINC" ) ) {
      interp = AST__SINC;
      nparam = 1;

   } else if( !strcmp( pabuf, "SINCSINC" ) ) {
      interp = AST__SINCSINC;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCCOS" ) ) {
      interp = AST__SINCCOS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCGAUSS" ) ) {
      interp = AST__SINCGAUSS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SOMB" ) ) {
      interp = AST__SOMB;
      nparam = 1;

   } else if( !strcmp( pabuf, "SOMBCOS" ) ) {
      interp = AST__SOMBCOS;
      nparam = 2;

   } else if( *status == SAI__OK ) {
      nparam = 0;
      *status = SAI__ERROR;
      msgSetc( "V", pabuf );
      errRep( "", "Support not available for INTERP = ^V (programming "
              "error)", status );
   }

/* Get an additional parameter vector if required. */
   if( nparam > 0 ) parExacd( "PARAMS", nparam, params, status );

/* Get a group of reference time series files to use as templates for
   the output time series files.*/
   ndgAssoc( "REF", 1, &igrp2, &size, &flag, status );

/* Get output file(s) */
   kpg1Wgndf( "OUT", igrp2, size, size, "More output files required...",
              &ogrp, &outsize, status );

/* Get he noise level to add to the output data. */
   parGet0d( "SIGMA", &sigma, status );

/* Get any Q and U input maps. */
   if( *status == SAI__OK ) {

      kpg1Rgndf( "QIN", 1, 1, "", &igrpq, &nskymap, status );
      ndgNdfas( igrpq, 1, "READ", &indfq, status );
      ndfMap( indfq, "DATA", "_DOUBLE", "READ", (void **) &inq_data, &nelqu,
              status );
      if( nelqu != nel && *status == SAI__OK ) {
         ndfMsg( "Q", indfq );
         *status = SAI__ERROR;
         errRep( "", "Q image '^Q' is not the same size as the I image.",
                 status );
      }

      kpg1Rgndf( "UIN", 1, 1, "", &igrpu, &nskymap, status );
      ndgNdfas( igrpu, 1, "READ", &indfu, status );
      ndfMap( indfu, "DATA", "_DOUBLE", "READ", (void **) &inu_data, &nelqu,
              status );
      if( nelqu != nel && *status == SAI__OK ) {
         ndfMsg( "U", indfu );
         *status = SAI__ERROR;
         errRep( "", "U image '^U' is not the same size as the I image.",
                 status );
      }

      if( *status == PAR__NULL ) {
         ndfAnnul( &indfq, status );
         ndfAnnul( &indfu, status );
         inq_data = NULL;
         inu_data = NULL;
         errAnnul( status );
      } else {
         parGet0d( "ANGROT", &angrot, status );
         parGet0d( "PAOFF", &paoff, status );
         parGet0l( "PASIGN", &pasign, status );
      }
   }

/* Get any common-mode files. */
   if( *status == SAI__OK ) {
      kpg1Rgndf( "COM", size, size, "", &igrpc, &ncom, status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
         ncom = 0;
      }
   }

/* Get any GAI files. */
   if( *status == SAI__OK ) {
      kpg1Rgndf( "GAI", size, size, "", &igrpg, &ngai, status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
         ngai = 0;
      }
   }

/* Get any instrumental polarisation files. */
   if( *status == SAI__OK ) {

/* First see if the user wants to use the "INSTQ/INSTU" scheme for
   specifying instrumental polarisation. */
      ndfAssoc( "INSTQ", "Read", &indfiq, status );
      ndfAssoc( "INSTU", "Read", &indfiu, status );

      if( *status == PAR__NULL ) {
         ndfAnnul( &indfiq, status );
         ndfAnnul( &indfiu, status );
         errAnnul( status );

      } else {
         msgOut( " ", "Using user-defined IP model", status );

         ndfDim( indfiq, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfiq );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfiq, "DATA", "_DOUBLE", "READ", (void **) &qinst_data,
                    &nel, status );
         }

         ndfDim( indfiu, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfiu );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfiu, "DATA", "_DOUBLE", "READ", (void **) &uinst_data,
                    &nel, status );
         }
      }

/* If not, see if the user wants to use the Johnstone/Kennedy instrumental
   polarisation model. The IPDATA parameter gives the path to an HDS
   container file contining NDFs holding the required IP data for all
   subarrays. */
      if( !qinst_data ) {
         parGet0c( "IPDATA", ipdata, sizeof(ipdata), status );
         if( *status == PAR__NULL ) {
            errAnnul( status );
         } else {
            msgOutf( " ", "Using Johnstone/Kennedy IP model in %s",
                     status, ipdata );
            hdsOpen( ipdata, "READ", &iploc, status );
         }
      }
   }

/* Loop round all the template time series files. */
   for( ifile = 1; ifile <= (int) size && *status == SAI__OK; ifile++ ) {

/* Start a new NDF context. */
      ndfBegin();

/* Create the output NDF by propagating everything from the input, except
   for quality and variance. */
      ndgNdfas( igrp2, ifile, "READ", &indfin, status );

      ndfMsg( "FILE", indfin );
      msgSeti( "THISFILE", ifile );
      msgSeti( "NUMFILES", size );
      msgOutif( MSG__NORM, " ", "Simulating ^THISFILE/^NUMFILES ^FILE",
                status );

      ndgNdfpr( indfin, "DATA,HISTORY,LABEL,TITLE,WCS,UNITS,EXTENSION(*)",
                ogrp, ifile, &indfout, status );
      ndfAnnul( &indfin, status );
      ndfAnnul( &indfout, status );

/* We now re-open the output NDF and then modify its data values. */
      smf_open_file( wf, ogrp, ifile, "UPDATE", 0, &odata, status );

/* Issue a suitable message and abort if anything went wrong. */
      if( *status != SAI__OK ) {
         errRep( FUNC_NAME, "Could not open input template file.", status );
         break;

      } else {
         if( odata->file == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfFile associated with smfData.",
                    status );
            break;

         } else if( odata->hdr == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfHead associated with smfData.",
                    status );
            break;
         }
      }

/* Check the reference time series contains double precision values. */
      smf_dtype_check_fatal( odata, NULL, SMF__DOUBLE, status );

/* Get the total number of data elements, and the number of time slices. */
      smf_get_dims( odata, NULL, NULL, NULL, &ntslice, &ndata, NULL,
                    NULL, status );

/* Get the subarray name */
      smf_fits_getS( odata->hdr, "SUBARRAY", subarray, sizeof(subarray),
                     status );

/* If we are using the Johnstone/Kennedy IP model, open and map the
   relevant parameter NDFs within the IPDATA container file. */
      if( iploc ) {
         datFind( iploc, subarray, &cloc, status );

         ndfFind( cloc, "C0", &indfc0, status );
         ndfDim( indfc0, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfc0 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfc0, "DATA", "_DOUBLE", "READ", (void **) &c0_data,
                    &nel, status );
         }

         ndfFind( cloc, "P0", &indfp0, status );
         ndfDim( indfp0, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfp0 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfp0, "DATA", "_DOUBLE", "READ", (void **) &p0_data,
                    &nel, status );
         }

         ndfFind( cloc, "P1", &indfp1, status );
         ndfDim( indfp1, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfp1 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfp1, "DATA", "_DOUBLE", "READ", (void **) &p1_data,
                    &nel, status );
         }

         ndfFind( cloc, "ANGC", &indfangc, status );
         ndfDim( indfangc, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfangc );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfangc, "DATA", "_DOUBLE", "READ", (void **) &angc_data,
                    &nel, status );
         }
      }

/* Open any COM file. */
      if( ncom ) {
         ndgNdfas( igrpc, ifile, "READ", &indfc, status );
         ndfDim( indfc, 3, cdims, &ndimc, status );

/* Check its dimensions. */
         if( *status == SAI__OK ) {
            if( ndimc == 1 ) {
               if( cdims[ 0 ] < (int) ntslice ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  ndfMsg( "R", indfin );
                  msgSeti( "N", cdims[ 0 ] );
                  msgSeti( "M", ntslice );
                  errRep( " ", "Supplied COM file (^C) has ^N time-slices, but "
                          "the reference NDF (^R) has ^M time-slices.", status );
               } else {
                  ndfBound( indfc, 3, lbndc, ubndc, &ndimc, status );
                  ubndc[ 0 ] = lbndc[ 0 ] + ntslice - 1;
                  ndfSect( indfc, 1, lbndc, ubndc, &indfcs, status );
               }
            } else if( ndimc == 3 ) {
               if( cdims[ 0 ] != 1 || cdims[ 1 ] != 1 ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  errRep( " ", "Supplied 3D COM file (^C) has bad "
                          "dimensions for axis 1 and/or 2 (should "
                          "both be 1 pixel long).", status );
               } else if( cdims[ 2 ] < (int) ntslice ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  ndfMsg( "R", indfin );
                  msgSeti( "N", cdims[ 2 ] );
                  msgSeti( "M", ntslice );
                  errRep( " ", "Supplied COM file (^C) has ^N time-slices, but "
                          "the reference NDF (^R) has ^M time-slices.", status );
               } else {
                  ndfBound( indfc, 3, lbndc, ubndc, &ndimc, status );
                  ubndc[ 2 ] = lbndc[ 2 ] + ntslice - 1;
                  ndfSect( indfc, 3, lbndc, ubndc, &indfcs, status );
               }
            } else {
               *status = SAI__ERROR;
               ndfMsg( "C", indfc );
               msgSeti( "N", ndimc );
               errRep( " ", "Supplied COM file (^C) has ^N dimensions - "
                       "must be 3.", status );
            }
         }

         ndfMap( indfcs, "DATA", "_DOUBLE", "READ", (void **) &inc_data,
                 &nelc, status );

      } else {
         indfcs = NDF__NOID;
         inc_data = NULL;
      }

/* Open any GAI files. */
      if( ngai ) {
         ndgNdfas( igrpg, ifile, "READ", &indfg, status );
         ndfDim( indfg, 3, gdims, &ndimg, status );

/* Check its dimensions, and map it if OK. */
         if( *status == SAI__OK ) {
            if( ndimg != 2 ) {
               *status = SAI__ERROR;
               ndfMsg( "C", indfg );
               msgSeti( "N", ndimg );
               errRep( " ", "Supplied GAI file (^C) has ^N dimensions - "
                       "must be 2.", status );
            } else if( gdims[ 0 ] != 32 || gdims[ 1 ] != 40 ) {
               *status = SAI__ERROR;
               ndfMsg( "C", indfg );
               errRep( " ", "Supplied GAI file (^C) has has bad "
                       "dimensions - should be 32x40.", status );
            }
         }
         ndfMap( indfg, "DATA", "_DOUBLE", "READ", (void **) &gai_data,
                 &nelg, status );

      } else {
         indfg = NDF__NOID;
         gai_data = NULL;
      }

/* Fill the output with bad values. */
      if( *status == SAI__OK ) {
         pd = odata->pntr[ 0 ];
         for( iel = 0; iel < ndata; iel++ ) *(pd++) = VAL__BADD;
      }

/* Resample the sky map data into the output time series. */
      smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                     interp, params, sigma, in_data, odata->pntr[ 0 ],
                     NULL, &ngood, status );

/* Add on any COM data. */
      smf_addcom( wf, odata, inc_data, status );

/* Issue a wrning if there is no good data in the output cube. */
      if( ngood == 0 ) msgOutif( MSG__NORM, " ", "   Output contains no "
                                 "good data values.", status );

/* If Q and U maps have been given, allocate room to hold resampled Q and
   U values, and fill them with bad values. */
      if( inq_data && inu_data ) {
         pq = outq_data = astMalloc( ndata*sizeof( *outq_data ) );
         pu = outu_data = astMalloc( ndata*sizeof( *outu_data ) );
         if( *status == SAI__OK ) {
            for( iel = 0; iel < ndata; iel++ ) {
               *(pu++) = VAL__BADD;
               *(pq++) = VAL__BADD;
            }
         }

/* Determine the harmonic to use. */
         parGet0i( "HARMONIC", &harmonic, status );

/* If producing the normal 8 Hz harmonic, get the amplitude and phase of a
   other signals to add onto the 8 Hz signal. */
         if( harmonic == 4 ) {
            parGet0d( "AMP2", &amp2, status );
            parGet0d( "PHASE2", &phase2, status );
            parGet0d( "AMP4", &amp4, status );
            parGet0d( "PHASE4", &phase4, status );
            parGet0d( "AMP16", &amp16, status );
            parGet0d( "PHASE16", &phase16, status );
         } else {
            amp2 = 0.0;
            phase2 = 0.0;
            amp4 = 0.0;
            phase4 = 0.0;
            amp16 = 0.0;
            phase16 = 0.0;
         }

/* Allocate room for an array to hold the angle from the Y pixel axis
   in the sky map to the focal plane Y axis, in radians, at each time
   slice. Positive rotation is in the same sense as rotation from
   focal plane X to focal plane Y. */
         ang_data = astMalloc( ntslice*sizeof( *ang_data ) );

/* Resample them both into 3D time series. These Q/U values arw with
  respect to the sky image Y axis. */
         smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                        interp, params, sigma, inq_data, outq_data,
                        ang_data, &ngood, status );
         smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                        interp, params, sigma, inu_data, outu_data,
                        NULL, &ngood, status );

/* Combine these time series with the main output time series so that the
   main output is analysed intensity. */
         smf_uncalc_iqu( wf, odata, odata->pntr[ 0 ], outq_data, outu_data,
                         ang_data, pasign, AST__DD2R*paoff, AST__DD2R*angrot,
                         amp2, AST__DD2R*phase2, amp4, AST__DD2R*phase4,
                         amp16, AST__DD2R*phase16, qinst_data, uinst_data,
                         c0_data, p0_data, p1_data, angc_data, harmonic,
                         status );

/* Release work space. */
         outq_data = astFree( outq_data );
         outu_data = astFree( outu_data );
         ang_data = astFree( ang_data );
      }

/* Factor in any GAI data. */
      smf_addgai( wf, odata, gai_data, status );

/* Close the output time series file. */
      smf_close_file( wf, &odata, status );

/* Close the IP data container for the current subarray, if it is open. */
      if( cloc ) datAnnul( &cloc, status );

/* End the NDF context. */
      ndfEnd( status );
   }

/* Close any input data file that is still open due to an early exit from
   the above loop. */
   if( odata != NULL ) {
      smf_close_file( wf, &odata, status );
      odata = NULL;
   }

/* Free remaining resources. */
   if( igrp1 != NULL) grpDelet( &igrp1, status);
   if( igrp2 != NULL) grpDelet( &igrp2, status);
   if( igrpq != NULL) grpDelet( &igrpq, status);
   if( igrpu != NULL) grpDelet( &igrpu, status);
   if( igrpc != NULL) grpDelet( &igrpc, status);
   if( igrpg != NULL) grpDelet( &igrpg, status);
   if( ogrp != NULL) grpDelet( &ogrp, status);
   if( iploc ) datAnnul( &iploc, status );

/* End the NDF context. */
   ndfEnd( status );

/* End the tile's AST context. */
   astEnd;

/* Issue a status indication.*/
   if( *status == SAI__OK ) {
      msgOutif(MSG__VERB," ",TASK_NAME " succeeded, time series written.", status);
   } else {
      msgOutif(MSG__VERB," ",TASK_NAME " failed.", status);
   }
}
Пример #7
0
void smf_add_spectral_axis( int indf, AstFitsChan *fc, int *status ){

/* Local Variables */
   AstFrame *cfrm;         /* Pointer to the current WCS Frame in the NDF */
   AstFrameSet *wcs;       /* Pointer to the WCS FrameSet for the NDF */
   AstSpecFrame *specfrm;  /* Pointer to the new SpecFrame */
   AstWinMap *specmap;     /* Pointer to Mapping from GRID to wavelength */
   char attrib[ 10 ];      /* Buffer for attribute name */
   double bandwid;         /* Bandwidth, in metres */
   double grid_hi;         /* GRID coord at upper edge of spectral pixel */
   double grid_lo;         /* GRID coord at lower edge of spectral pixel */
   double ref_lat;         /* Celestial latitude at reference point */
   double ref_lon;         /* Celestial longitude at reference point */
   double spec_hi;         /* Wavelength at upper edge of spectral pixel */
   double spec_lo;         /* Wavelength at lower edge of spectral pixel */
   double wavelen;         /* Central wavelength, in metres */
   int lbnd[ NDF__MXDIM ]; /* Original lower pixel bounds of the NDF */
   int ndim;               /* Original number of pixel axis in the the NDF */
   int ubnd[ NDF__MXDIM ]; /* Original lower pixel bounds of the NDF */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST Object context so that we do not need to annul explicitly
   the AST Objects created in this function. */
   astBegin;

/* Get the pixel bounds of the NDF. */
   ndfBound( indf, NDF__MXDIM, lbnd, ubnd, &ndim, status );

/* Get the required FITS header. Return without further action if either
   is not present in the supplied FitsChan, or if the NDF is not
   2-dimensional. */
   if( astGetFitsF( fc, "WAVELEN", &wavelen ) &&
       astGetFitsF( fc, "BANDWID", &bandwid ) && ndim == 2 ) {

/* Get the current WCS FrameSet from the supplied NDF, and get a pointer
   to its current Frame. */
      ndfGtwcs( indf, &wcs, status );
      cfrm = astGetFrame( wcs, AST__CURRENT );

/* Return without action if this is not a SkyFrame. */
      if( astIsASkyFrame( cfrm ) ) {

/* Construct a topocentric wavelength SpecFrame to describe the new spectral
   WCS axis. */
         specfrm = astSpecFrame( "System=wavelen,StdOfRest=topo,Unit=m" );

/* We set the RefRA and RefDec attributes for the SpecFrame to the FK5
   J2000 equivalent of the SkyRef attribute in the current Frame. */
         sprintf( attrib, "SkyRef(%d)", astGetI( cfrm, "LonAxis" ) );
         ref_lon = astGetD( cfrm, attrib );

         sprintf( attrib, "SkyRef(%d)", astGetI( cfrm, "LatAxis" ) );
         ref_lat = astGetD( cfrm, attrib );

         astSetRefPos( specfrm, cfrm, ref_lon, ref_lat );

/* Inherit other relevant Frame attributes from the SkyFrame. */
#define OVERLAY(attr) \
         if( astTest( cfrm, attr ) ) { \
            astSetC( specfrm, attr, astGetC( cfrm, attr ) ); \
         }

         OVERLAY( "Dut1" );
         OVERLAY( "Epoch" );
         OVERLAY( "ObsAlt" );
         OVERLAY( "ObsLat" );
         OVERLAY( "ObsLon" );

#undef OVERLAY

/* Create a WinMap that gives wavelength as a function of spectral GRID
   position. Assume the pixel centre maps onto WAVELEN and the pixel
   width is BANDWID. */
         grid_lo= 0.5;
         grid_hi = 1.5;
         spec_lo = wavelen - 0.5*bandwid;
         spec_hi = spec_lo + bandwid;
         specmap = astWinMap( 1, &grid_lo, &grid_hi, &spec_lo, &spec_hi, " " );

/* Modify the WCS FrameSet so that the base and current Frames are
   3-dimensional. The current Frame is expanded by adding in the
   SpecFrame, and the base Frame is expanded by adding in a 3rd GRID
   axis. Other Frames are left unchanged. The SpecFrame and the new GRID
   axis are connected using the WinMap created above. */
         atlAddWcsAxis( wcs, (AstMapping *) specmap, (AstFrame *) specfrm,
                        NULL, NULL, status );

/* Change the NDF bounds to include a 3rd axis with pixel bounds "1:1". */
         lbnd[ 2 ] = 1;
         ubnd[ 2 ] = 1;
         ndfSbnd( 3, lbnd, ubnd, indf, status );

/* Store the modified WCS FrameSet in the NDF. */
         ndfPtwcs( wcs, indf, status );
      }
   }

/* End the AST Object context. This will annull annull the AST Objects
   created in this function. */
   astEnd;
}