Пример #1
0
static PyObject*
pyndf_xloc(NDF *self, PyObject *args)
{
    const char *xname, *mode;
    if(!PyArg_ParseTuple(args, "ss:pyndf_xloc", &xname, &mode))
	return NULL;
    HDSLoc* loc = NULL;
    int status = SAI__OK;
    errBegin(&status);
    ndfXloc(self->_ndfid, xname, mode, &loc, &status);
    if (raiseNDFException(&status)) return NULL;

    // PyCObject to pass pointer along to other wrappers
    PyObject *pobj = NpyCapsule_FromVoidPtr(loc, PyDelLoc);
    return Py_BuildValue("O", pobj);
};
Пример #2
0
void smf_ext2km( int indf, const char *xname, AstKeyMap *keymap,
                 int mode, int *status ){

/* Local Variables */
   HDSLoc *cloc = NULL;
   HDSLoc *sloc = NULL;
   HDSLoc *xloc = NULL;
   const char *key = NULL;
   hdsdim diml[NDF__MXDIM];
   hdsdim dimu[NDF__MXDIM];
   int dim[ NDF__MXDIM ];
   int i;
   int idim;
   int lbnd[ NDF__MXDIM ];
   int ncomp;
   int ndim;
   int nentry;
   int ntime = 0;
   int prim;
   int there;
   int ubnd[ NDF__MXDIM ];

/* Check the inherited status */
   if( *status != SAI__OK ) return;

/* Get the shape of the NDF. */
   ndfBound( indf, 3, lbnd, ubnd, &ndim, status );

/* Get a locator to the named extension. */
   ndfXloc( indf, xname, "READ", &xloc, status );

/* Select the name of the prototype component that determines the length
   of the arrays to be copied. */
   if( !strcmp( xname, "JCMTSTATE" ) ) {
      key = "RTS_NUM";
   } else if( !strcmp( xname, "ACSIS" ) ) {
      key = "TSYS";
   } else {
      cloc = NULL;
      msgSetc( "X", xname );
      errRep( "", "smf_ext2km: Unknown extension specified - '^X'. "
              "Must be 'JCMTSTATE' or 'ACSIS'.", status );
   }

/* Check the prorotype component is present in the extension. Report an
   error if not. */
   datThere( xloc, key, &there, status );
   if( !there && *status == SAI__OK ) {
      msgSetc( "C", key );
      msgSetc( "X", xname );
      errRep( "", "smf_ext2km: Component '^C' not found in extension "
              "^X", status );

/* If it is present, get the length of its last pixel axis. This is the
   length of the arrays to be copied. */
   } else {
      datFind( xloc, key, &cloc, status );
      datShape( cloc, NDF__MXDIM, dim, &ndim, status );
      ntime = dim[ ndim - 1 ];
      datAnnul( &cloc, status );
   }

/* First deal with mode 1... */
/* ========================= */
   if( mode == 1 ) {

/* Loop round every component in the extension. */
      datNcomp( xloc, &ncomp, status );
      for( i = 1; i <= ncomp; i++ ) {
         datIndex( xloc, i, &cloc, status );

/* Check the component has primitive values. */
         datPrim( cloc, &prim, status );
         if( prim ) {

/* Get the shape of the component. */
            datShape( cloc, NDF__MXDIM, dim, &ndim, status );

/* Skip over this component if the length of its final axis is not equal
   to the expected number of time slices. */
            if( ndim > 0 && dim[ ndim - 1 ] == ntime ) {

/* Also skip if we are dealing with the ACSIS extension and the array has
   only 1 (or zero) axes. */
               if( ndim > 1 || strcmp( xname, "ACSIS" ) ) {

/* Cut a section from the HDS array so that it matches the pixel bounds of
   the NDF . */
                  for( idim = 0; idim < ndim - 1; idim++ ) {
                     diml[ idim ] = 1;
                     dimu[ idim ] = dim[ idim ];
                  }
                  diml[ idim ] = lbnd[ 2 ];
                  dimu[ idim ] = ubnd[ 2 ];
                  datSlice( cloc, ndim, diml, dimu, &sloc, status );

/* Store the values as a new entry in "keymap". */
                  kpg1Hdsky( sloc, keymap, 2, 1, status );

/* Annul the locator for the slice. */
                  datAnnul( &sloc, status );
               }
            }
         }
         datAnnul( &cloc, status );
      }

/* Now deal with mode 2... */
/* ========================= */
   } else if( mode == 2 ) {

/* Loop round every entry in the KeyMap. */
      nentry = astMapSize( keymap );
      for( i = 0; i < nentry; i++ ) {
         key = astMapKey( keymap, i );

/* See if the supplied extension has a component with the same name. */
         datThere( xloc, key, &there, status );

/* If it did, check the component is primitive. */
         if( there && *status == SAI__OK ) {
            datFind( xloc, key, &cloc, status );
            datPrim( cloc, &prim, status );
            if( prim ) {

/* Check the final axis of the primitive array has a length equal to the
   expected number of time slices. */
               datShape( cloc, NDF__MXDIM, dim, &ndim, status );
               if( ndim > 0 && dim[ ndim - 1 ] == ntime ) {

/* Also skip if we are dealing with the ACSIS extension and the array has
   only 1 (or zero) axes. */
                  if( ndim > 1 || strcmp( xname, "ACSIS" ) ) {

/* Cut a section from the HDS array so that it matches the pixel bounds of
   the NDF . */
                     for( idim = 0; idim < ndim - 1; idim++ ) {
                        diml[ idim ] = 1;
                        dimu[ idim ] = dim[ idim ];
                     }
                     diml[ idim ] = lbnd[ 2 ];
                     dimu[ idim ] = ubnd[ 2 ];
                     datSlice( cloc, ndim, diml, dimu, &sloc, status );

/* Append the values to the end of the existing KeyMap entry. */
                     kpg1Hdsky( sloc, keymap, 1, 3, status );

/* Annul the locator for the slice. */
                     datAnnul( &sloc, status );

                  }

               } else if( *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  msgSetc( "X", xname );
                  msgSetc( "K", key );
                  ndfMsg( "F", indf );
                  errRep( "", "The ^X.^K array has an unexpected shape in "
                          "\"^F\".", status );
               }

            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               msgSetc( "X", xname );
               msgSetc( "K", key );
               ndfMsg( "F", indf );
               errRep( "", "The ^X.^K array has an unexpected data type in "
                       "\"^F\".", status );
            }

            datAnnul( &cloc, status );

         } else if( *status == SAI__OK ) {
            *status = SAI__ERROR;
            msgSetc( "X", xname );
            msgSetc( "K", key );
            ndfMsg( "F", indf );
            errRep( "", "The ^X.^K array is missing in \"^F\".", status );
         }

      }

/* Now tidy up. */
/* ============ */

/* Report an error if the "mode" value was illegal. */
   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      msgSeti( "MODE", mode );
      errRep( "", "smf_ext2km: Illegal value (^MODE) supplied for "
              "argument MODE (programming error).", status );
   }

/* Free resources. */
   datAnnul( &xloc, status );
}
Пример #3
0
void smurf_fts2_transcorr(int* status)
{
  if( *status != SAI__OK ) { return; }

  char filename[GRP__SZNAM+1]; /* Filename */
  char *pname        = NULL; /* Pointer to filename */
  int bolCount       = 0;    /* Number of bolometers */
  int bolIndex       = 0;    /* Bolometer index */
  int count;
  int dims[NDF__MXDIM];
  int debug          = 0;    /* If not debug, include dry component */
  int ftsExists      = 0;
  int index          = 0;
  int indf;                  /* NDF identifier for TAU file */
  int KERNELLENGTH   = 101;
  int nbolX          = 0;    /* Width of the source subarray */
  int nbolY          = 0;    /* Height of the source subarray */
  int ndfTau;
  int ndim;
  int nPWV           = 0;
  int nWN            = 0;
  int N              = 0;    /* Sample count */
  int i              = 0;    /* Index */
  int j              = 0;    /* Index */
  int k              = 0;    /* Index */
  int place;
  double AM          = 0.0;  /* Airmass at ZPD */
  double DELTAPWV    = 0.0;
  double PWV0        = 0.0;
  double PWV         = 0.0;  /* PWV at ZPD */
  double wnFact      = 0.0;  /* Wave number factor */
  double* inPntr     = NULL; /* Pointer to the input data */
  double* outPntr    = NULL; /* Pointer to the output data */
  double* wnScan     = NULL;
  double* wnTau      = NULL;
  double* TAtm       = NULL;
  double* TAtmNew    = NULL;
  double* GAUSSIANKERNEL = NULL;
  double* PWVARR     = NULL;
  double* PWVNEW     = NULL;
  double* TAUNEW     = NULL;
  double* TAUWET     = NULL;
  double* TMPARR     = NULL;
  Grp* inGrp         = NULL; /* Input group */
  Grp* outGrp        = NULL; /* Output group */
  Grp* tauGrp        = NULL; /* TAU WET group */
  HDSLoc* loc        = NULL; /* HDS location */
  size_t fIndex      = 0;    /* File loop counter */
  size_t inSize      = 0;    /* Size of the input group */
  size_t outSize     = 0;    /* Size of the output group */
  size_t tauSize     = 0;    /* Size of the tau group */
  smfData* inData    = NULL; /* Pointer to input data */
  smfData* outData   = NULL; /* Pointer to output data */
  smfData* tauData   = NULL; /* Pointer to tau dry data */
  void* TAU[]        = {NULL, NULL}; /* {dry, wet} */

  const double SQRT2PI  = 2.50662827463100050242;
  const double SQRT2LN2 = 1.17741002251547469101;

  // GET INPUT GROUP
  kpg1Rgndf("IN", 0, 1, "", &inGrp, &inSize, status);
  // GET OUTPUT GROUP
  kpg1Wgndf("OUT", outGrp, inSize, inSize,
            "Equal number of input and output files expected!",
            &outGrp, &outSize, status);
  // GET TAU GROUP
  kpg1Gtgrp("TAU", &tauGrp, &tauSize, status);

  parGet0l("DEBUG", &debug, status);

  ndfBegin();

  // ===========================================================================
  // GET TAU INFORMATION
  // ===========================================================================
  int dryOK = 0;
  int wetOK = 0;
  pname = filename;
  grpGet(tauGrp, 1, 1, &pname, sizeof(filename), status);
  ndgNdfas(tauGrp, 1, "READ", &indf, status );
  if (indf == NDF__NOID) {
    *status = SAI__ERROR;
    msgSetc("FILE", filename);
    errRep("", FUNC_NAME ": Could not locate file ^FILE", status);
    return;
  }
  ndfXstat(indf, "FTS2", &ftsExists, status);
  if(*status == SAI__OK && ftsExists) {
    ndfXloc(indf, "FTS2", "READ", &loc, status);
    if(*status == SAI__OK && loc != NULL) {
      // DRY COMPONENT
      ndfOpen(loc, "DRY", "READ", "UNKNOWN", &ndfTau, &place, status);
      if(*status == SAI__OK && ndfTau != NDF__NOID) {
        ndfDim(ndfTau, NDF__MXDIM, dims, &ndim, status);
        if(*status == SAI__OK && ndim == 1) {
          ndfMap(ndfTau, "DATA", "_DOUBLE", "READ", &TAU[0], &count, status);
          dryOK = 1;
        }
      }
      // WET COMPONENT
      ndfOpen(loc, "WET", "READ", "UNKNOWN", &ndfTau, &place, status);
      if(*status == SAI__OK && ndfTau != NDF__NOID) {
        ndfDim(ndfTau, NDF__MXDIM, dims, &ndim, status);
        if(*status == SAI__OK && ndim == 2) {
          ndfMap(ndfTau, "DATA", "_DOUBLE", "READ", &TAU[1], &count, status);
          wetOK = 1;
        }
      }
    }
  }
  if(loc) { datAnnul(&loc, status); }
  if(!(dryOK && wetOK)) {
    *status = SAI__ERROR;
    errRep("", FUNC_NAME ": Unable to obtain TAU values!", status);
    return;
  }

  smf_open_file(NULL, tauGrp, 1, "READ", 0, &tauData, status);
  smf_fits_getD(tauData->hdr, "PWV0", &PWV0, status);
  smf_fits_getD(tauData->hdr, "DELTAPWV", &DELTAPWV, status);
  if(*status != SAI__OK) {
    *status = SAI__ERROR;
    errRep("", FUNC_NAME ": Unable to obtain PWV value(s)!", status);
    return;
  }

  nWN  = dims[0];
  nPWV = dims[1];
  PWVARR = astMalloc(nPWV * sizeof(*PWVARR));
  for(i = 0; i < nPWV; i++) {
    PWVARR[i] = PWV0 + i * DELTAPWV;
  }
  PWVNEW = astMalloc(1 * sizeof(*PWVNEW));
  TAUNEW = astMalloc(1 * sizeof(*TAUNEW));

  // ===========================================================================
  // LOOP THROUGH EACH NDF FILE IN THE INPUT GROUP
  // ===========================================================================
  for(fIndex = 1; fIndex <= inSize; fIndex++) {
    // OPEN INPUT FILE
    smf_open_file(NULL, inGrp, fIndex, "READ", 0, &inData, status);
    if(*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep(FUNC_NAME, "Unable to open source file!", status);
      break;
    }

    outData = smf_deepcopy_smfData(NULL, inData, 0, SMF__NOCREATE_DATA, 0, 0, status);
    if(*status == SAI__OK) {
      inPntr   = inData->pntr[0];
      nbolX    = inData->dims[0];
      nbolY    = inData->dims[1];
      N        = inData->dims[2];
      bolCount = nbolX * nbolY;

      outData->dtype   = SMF__DOUBLE;
      outData->ndims   = 3;
      outData->dims[0] = inData->dims[0];
      outData->dims[1] = inData->dims[1];
      outData->dims[2] = inData->dims[2];
      outData->lbnd[0] = outData->lbnd[0];
      outData->lbnd[1] = outData->lbnd[1];
      outData->lbnd[2] = outData->lbnd[2];
      outData->pntr[0] = (double*) astMalloc( (N * bolCount)*sizeof(double) );
      outPntr          = outData->pntr[0];

      // DETERMINE WAVENUMBER FACTOR FROM FITS
      smf_fits_getD(inData->hdr, "WNFACT", &wnFact, status);
      if(*status != SAI__OK) {
        errRep(FUNC_NAME, "Unable to find wave number factor!", status);
        smf_close_file( NULL,&inData, status);
        break;
      }

      // TODO
      // DETERMINE AIRMASS AT ZPD

      // TODO
      // DETERMINE PWV AT ZPD
      PWVNEW[0] = PWV;

      // GET TAU WET FOR CORRESPONDING PWV
      TAUWET = astMalloc(nWN * sizeof(*TAUWET));
      TMPARR = astMalloc(nWN * sizeof(*TMPARR));
      for(k = 0; k < nWN; k++) {
        for(j = 0; j < nPWV; j++) {
          TMPARR[j] = *((double*) TAU[1] + j);
        }
        fts2_naturalcubicsplineinterpolator(PWVARR, TMPARR, nPWV, PWVNEW, TAUNEW, 1);
        TAUWET[k] = TAUNEW[0];
      }
      astFree(TMPARR);

      // COMPUTE ATMOSPHERIC TRANSMISSION
      // TATM = EXP(-AIRMASS * (PWV * TAUWET + TAUDRY))
      TAtm = astMalloc(nWN * sizeof(*TAtm));
      if(!debug) {
        for(i = 0; i < nWN; i++) {
          TAtm[i] = exp(-AM * (PWV * TAUWET[i] + (*((double*) TAU[0] + i))));
        }
      } else {
        for(i = 0; i < nWN; i++) {
          TAtm[i] = exp(-AM * PWV * TAUWET[i]);
        }
      }

      // SMOOTH ATMOSPHERIC TRANSMISSION VIA GAUSSIAN CONVOLUTION
      // NEED TO TRIM FROM BOTH ENDS BY HALF OF (KERNELLENGTH - 1)
      double OPDMAX = 1.0;
      double FWHM   = 1.0 / (2.0 * OPDMAX);   // FWHM = 1 / (2 x OPDMAX)
      double SDEV   = 0.5 * FWHM / SQRT2LN2;  // FWHM = 2 x SQRT(2ln2) x SDEV
      double VAR    = SDEV * SDEV;
      double VAR2   = 2.0 * VAR;
      double NORM   = 1.0 / (SDEV * SQRT2PI);
      double XMIN   = -6 * SDEV;
      double XMAX   =  6 * SDEV;
      double DX = (XMAX - XMIN) / (KERNELLENGTH - 1);
      double X = XMIN;
      for(i = 0; i < KERNELLENGTH; i++) {
        X = XMIN + i * DX;
        GAUSSIANKERNEL[i] = NORM * exp(-(X * X) / VAR2);
      }
      int M = nWN + KERNELLENGTH - 1;
      TMPARR = astMalloc(M * sizeof(*TMPARR));
      for(i = 0; i < nWN; i++) {
        for(j = 0; j < KERNELLENGTH; j++) {
          TMPARR[i + j] += (TAtm[i] * GAUSSIANKERNEL[j]);
        }
      }
      int OFFSET = (KERNELLENGTH - 1) >> 1;
      for(i = 0; i < nWN; i++) {
        TAtm[i] = TMPARR[i + OFFSET];
      }
      astFree(TMPARR);

      // INTERPOLATE ATMOSPHERIC TRANSMISSION ONTO SCAN RESOLUTION
      wnTau = astMalloc(nWN * sizeof(*wnTau));
      wnScan = astMalloc(N * sizeof(*wnScan));
      TAtmNew = astMalloc(N * sizeof(*TAtmNew));
      for(i = 0; i < N; i++) {
        wnScan[i] = i * wnFact;
      }
      for(i = 0; i < nWN; i++) {
        wnTau[i] = i;
      }
      fts2_naturalcubicsplineinterpolator(wnTau, TAtm, nWN, wnScan, TAtmNew, N);

      // TSOURCE = TOBS / TATM
      for(i = 0; i < nbolY; i++) {
        for(j = 0; j < nbolX; j++) {
          bolIndex = i + j * nbolY;
          for(k = 0; k < N; k++) {
            index = bolIndex + bolCount * k;
            outPntr[index] = inPntr[index] / TAtmNew[k];
          }
        }
      }
      astFree(wnTau);
      astFree(wnScan);
      astFree(TAtm);
      astFree(TAtmNew);

      smf_write_smfData(NULL, outData, NULL, NULL, outGrp, fIndex, 0, MSG__VERB,
                        0, status);
      smf_close_file( NULL,&outData, status);
      smf_close_file( NULL,&inData, status);
    } else {
Пример #4
0
void clumpinfo( int *status ) {
    /*
    *+
    *  Name:
    *     CLUMPINFO

    *  Purpose:
    *     Obtain information about one or more previously identified clumps.

    *  Language:
    *     C

    *  Type of Module:
    *     ADAM A-task

    *  Description:
    *     This application returns various items of information about a
    *     single clump, or a collection of clumps, previously identified
    *     using FINDCLUMPS or EXTRACTCLUMPS.

    *  Usage:
    *     clumpinfo ndf clumps quiet

    *  ADAM Parameters:
    *     CLUMPS = LITERAL (Read)
    *        Specifies the indices of the clumps to be included in the
    *        returned information. It can take any of the following values:
    *
    *        - "ALL" or "*" --  All clumps.
    *
    *        - "xx,yy,zz" -- A list of clump indices.
    *
    *        - "xx:yy" --  Clump indices between xx and yy inclusively.  When
    *        xx is omitted the range begins from one; when yy is omitted the
    *        range ends with the final clump index.
    *
    *        - Any reasonable combination of above values separated by
    *        commas.
    *     FLBND( ) = _DOUBLE (Write)
    *          The lower bounds of the bounding box enclosing the selected
    *          clumps in the current WCS Frame of the input NDF. Celestial axis
    *          values are always in units of radians, but spectral axis units
    *          will be in the spectral units used by the current WCS Frame.
    *     FUBND( ) = _DOUBLE (Write)
    *          The upper bounds of the bounding box enclosing the selected
    *          clumps. See parameter FLBND for more details.
    *     LBOUND( ) = _INTEGER (Write)
    *          The lower pixel bounds of bounding box enclosing the selected
    *          clumps.
    *     NCLUMPS = _INTEGER (Write)
    *        The total number of clumps descrriptions stored within the supplied
    *        NDF.
    *     NDF = NDF (Read)
    *        The NDF defining the previously identified clumps. This
    *        should contain a CUPID extension describing all the identified
    *        clumps, in the format produced by FINDCLUMPS or EXTRACTCLUMPS.
    *     QUIET = _LOGICAL (Read)
    *        If TRUE, then no information is written out to the screen,
    *        although the output parameters are still assigned values. [FALSE]
    *     UBOUND( ) = _INTEGER (Write)
    *          The upper pixel bounds of bounding box enclosing the selected
    *          clumps.

    *  Notes:
    *     - It is hoped to extend the range of information reported by this
    *     application as new requirements arise.

    *  Synopsis:
    *     void clumpinfo( int *status );

    *  Copyright:
    *     Copyright (C) 2007 Particle Physics & Astronomy Research Council.
    *     All Rights Reserved.

    *  Licence:
    *     This program is free software; you can redistribute it and/or
    *     modify it under the terms of the GNU General Public License as
    *     published by the Free Software Foundation; either version 2 of
    *     the License, or (at your option) any later version.
    *
    *     This program is distributed in the hope that it will be
    *     useful, but WITHOUT ANY WARRANTY; without even the implied
    *     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
    *     PURPOSE. See the GNU General Public License for more details.
    *
    *     You should have received a copy of the GNU General Public License
    *     along with this program; if not, write to the Free Software
    *     Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA
    *     02110-1301, USA

    *  Authors:
    *     DSB: David S. Berry
    *     {enter_new_authors_here}

    *  History:
    *     22-MAR-2007 (DSB):
    *        Original version.
    *     {enter_further_changes_here}

    *  Bugs:
    *     {note_any_bugs_here}

    *-
    */

    /* Local Variables: */
    AstFrame *cfrm;      /* Pointer to current WCS Frame */
    AstMapping *cmap;    /* Pointer to PIXEL->current Frame Mapping */
    CupidClumpInfo info; /* Structure holding returned information */
    Grp *grp = NULL;     /* GRP group holding input NDF name */
    HDSLoc *aloc = NULL; /* Locator for CLUMPS array in CUPID extension */
    HDSLoc *cloc = NULL; /* Locator for a single CLUMP structure */
    HDSLoc *xloc = NULL; /* Locator for CUPID extension */
    char *p;             /* Pointer into tmpstr string */
    char tmpstr[ 100 ];  /* Buffer for temporary strings */
    const char *dom;     /* Pointer to axis Domain name */
    double flbnd[ NDF__MXDIM ]; /* Lower bounds of WCS bounding box */
    double fubnd[ NDF__MXDIM ]; /* Upper bounds of WCS bounding box */
    double plbnd[ NDF__MXDIM ]; /* Lower bounds of PIXEL bounding box */
    double pubnd[ NDF__MXDIM ]; /* Upper bounds of PIXEL bounding box */
    int *clump_flags = NULL;  /* Flags indicating if each clump is to be used */
    int *clump_indices = NULL;/* List of indices of clumps to be used */
    int i;               /* Loop count */
    int iclump;          /* One-based clump index */
    int indf;            /* NDF identifier for input NDF */
    int ipix;            /* Index of PIXEL Frame */
    size_t nclumps;      /* No. of clump descriptions within the supplied NDF */
    int nuse;            /* Number of clumps to be used */
    int primary;         /* Value for locator primary flag */
    int quiet;           /* Supress screen output? */
    size_t size;         /* Number of values in group "*grp" */
    int there;           /* Does the enquired object exist? */

    /* Abort if an error has already occurred. */
    if( *status != SAI__OK ) return;

    /* Begin an AST context */
    astBegin;

    /* Start an NDF context */
    ndfBegin();



    /* Obtain the input NDF and get a locator for the array of clump
       descriptions within it.
       -----------------------------------------------------------------  */

    /* Get an identifier for the input NDF. We use NDG (via kpg1_Rgndf)
       instead of calling ndfAssoc directly since NDF/HDS has problems with
       file names containing spaces, which NDG does not have. */
    kpg1Rgndf( "NDF", 1, 1, "", &grp, &size, status );
    ndgNdfas( grp, 1, "READ", &indf, status );
    grpDelet( &grp, status );

    /* Check the NDF has a suitable CUPID extension containing an array of
       clump cut-outs. Get an HDS locator for the array. */
    ndfXstat( indf, "CUPID", &there, status );
    if( !there ) {
        if( *status == SAI__OK ) {
            *status = SAI__ERROR;
            ndfMsg( "NDF", indf );
            errRep( "", "The NDF \"^NDF\" does not contain a CUPID extension "
                    "such as created by FINDCLUMPS or EXTRACTCLUMPS.", status );
        }

    } else {
        ndfXloc( indf, "CUPID", "READ", &xloc, status );
        datThere( xloc, "CLUMPS", &there, status );
        if( !there ) {
            if( *status == SAI__OK ) {
                *status = SAI__ERROR;
                ndfMsg( "NDF", indf );
                errRep( "", "The CUPID extension within NDF \"^NDF\" does not "
                        "contain an array of clumps such as created by "
                        "FINDCLUMPS or EXTRACTCLUMPS.", status );
            }

        } else {
            datFind( xloc, "CLUMPS", &aloc, status );
            primary = 1;
            datPrmry( 1, &aloc, &primary, status );

        }
        datAnnul( &xloc, status );
    }

    /* Abort if we have no clumps array locator, or if an error occurred. */
    if( !aloc || *status != SAI__OK ) goto L999;



    /* Calculate the required clump information, and store it in the "info"
       structure.
       -----------------------------------------------------------------  */

    /* Indicate that the structure holding the returned information has not
       yet been initialised. */
    info.init = 0;

    /* Get the WCS FrameSet from the input NDF, and store a pointer to it in
       the "info" structure. */
    kpg1Gtwcs( indf, &(info.iwcs), status );

    /* Get the number of clumps defined within the input NDF. */
    datSize( aloc, &nclumps, status );

    /* Get the list of clump indices to iclude in the returned information. */
    clump_flags = astMalloc( sizeof( int )*nclumps );
    clump_indices = astMalloc( sizeof( int )*nclumps );
    kpg1Gilst( 1, (int) nclumps, (int) nclumps, "CLUMPS", clump_flags, clump_indices,
               &nuse, status );

    /* Loop round all clumps that are to be used. */
    for( i = 0; i < nuse && *status == SAI__OK; i++ ) {
        iclump = clump_indices[ i ];

        /* Get a locator for this clump. */
        datCell( aloc, 1, &iclump, &cloc, status );

        /* Update the returned information to include this clump. */
        cupidClumpInfo1( cloc, &info, status );

        /* Annul the clump structure locator. */
        datAnnul( &cloc, status );

    }



    /* Write out the information to the screen and to appropriate output
       parameters.
       -----------------------------------------------------------------  */

    /* See if screen output is required. */
    parGet0l( "QUIET", &quiet, status );
    if( !quiet ) msgBlank( status );

    /* The number of clumps defined within the input NDF... */
    parPut0i( "NCLUMPS", (int) nclumps, status );
    if( ! quiet ) {
        msgSeti( "NCLUMPS", (int) nclumps );
        msgOut( "", "   Total no. of clumps: ^NCLUMPS", status );
    }

    /* Pixel index bounding box... */
    parPut1i( "LBOUND", info.npix, info.lbnd, status );
    parPut1i( "UBOUND", info.npix, info.ubnd, status );

    if( !quiet ) {
        p = tmpstr + sprintf( tmpstr, "( " );
        for( i = 0; i < info.npix; i++) {
            p += sprintf( p, "%d:%d", info.lbnd[ i ], info.ubnd[ i ] );
            if( i < info.npix - 1 ) p += sprintf( p, ", " );
        }
        p += sprintf( p, " )" );

        msgSetc( "SECTION", tmpstr );
        msgOut( "", "   Pixel index bounding box: ^SECTION", status );
    }

    /* WCS bounding box (first convert the pixel index bounding box into WCS
       coords)... */
    cfrm = astGetFrame( info.iwcs, AST__CURRENT );

    kpg1Asffr( info.iwcs, "PIXEL", &ipix, status );
    cmap = astGetMapping( info.iwcs, ipix, AST__CURRENT );

    for( i = 0; i < info.npix; i++ ) {
        plbnd[ i ] = info.lbnd[ i ] - 1.0;
        pubnd[ i ] = info.ubnd[ i ];
    }

    for( i = 0; i < info.nwcs; i++ ) {
        astMapBox( cmap, plbnd, pubnd, 1, i + 1, flbnd + i, fubnd + i,
                   NULL, NULL);
    }

    astNorm( cfrm, flbnd );
    astNorm( cfrm, fubnd );

    parPut1d( "FLBND", info.nwcs,  flbnd, status );
    parPut1d( "FUBND", info.nwcs,  fubnd, status );

    if( !quiet ) {
        msgOut( "", "   WCS bounding box:", status );

        for( i = 0; i < info.nwcs; i++) {
            msgSetc( "L", astFormat( cfrm, i + 1, flbnd[ i ] ) );
            msgSetc( "U", astFormat( cfrm, i + 1, fubnd[ i ] ) );

            sprintf( tmpstr, "Domain(%d)", i + 1 );
            dom = astGetC( cfrm, tmpstr );
            if( dom && strcmp( dom, "SKY" ) ) {
                sprintf( tmpstr, "Unit(%d)", i + 1 );
                msgSetc( "UNT", astGetC( cfrm, tmpstr ) );
            } else {
                msgSetc( "UNT", "" );
            }

            sprintf( tmpstr, "Label(%d)", i + 1 );
            msgSetc( "LAB", astGetC( cfrm, tmpstr ) );

            msgOut( "", "        ^LAB: ^L -> ^U ^UNT", status );
        }
    }

    if( !quiet ) msgBlank( status );



    /* Tidy up.
       --------      */
L999:
    ;

    /* Free resources. */
    clump_flags = astFree( clump_flags );
    clump_indices = astFree( clump_indices );
    if( aloc ) datAnnul( &aloc, status );

    /* End the NDF context */
    ndfEnd( status );

    /* End the AST context */
    astEnd;

    /* If an error has occurred, issue another error report identifying the
       program which has failed (i.e. this one). */
    if( *status != SAI__OK ) {
        errRep( "CLUMPINFO_ERR", "CLUMPINFO: Failed to obtain information "
                "about one or more previously identified clumps.", status );
    }

}