Пример #1
0
void ProcessPanel::doConnections()
{
	ActionPanel::doConnections();
	for (int i = 0; i != m_panels.size(); ++i)
		if (m_panels[i] != 0)
			connect(m_panels[i], SIGNAL(newProcess(SharedProcess)), 
				this, SIGNAL(newProcess(SharedProcess)));
}
Пример #2
0
static void initBaseCPUParams( DerivO3CPUParams& cpu, const Params& sstParams,
                               System* system, SST::Component *comp )
{
    cpu.dtb                   = newTLB<ISA::TLB>( cpu.name + ".dtb",
                                sstParams.find_prefix_params("dtb.") );
    cpu.itb                   = newTLB<ISA::TLB>( cpu.name + ".itb",
                                sstParams.find_prefix_params("itb.") );

    cpu.checker               = NULL;

    INIT_INT( cpu, sstParams, max_insts_all_threads );
    INIT_INT( cpu, sstParams, max_insts_any_thread );
    INIT_INT( cpu, sstParams, max_loads_all_threads );
    INIT_INT( cpu, sstParams, max_loads_any_thread );

    cpu.system                = system;

    INIT_CLOCK( cpu, sstParams, clock );
    INIT_INT( cpu, sstParams, function_trace_start );
    INIT_INT( cpu, sstParams, phase );
    INIT_INT( cpu, sstParams, progress_interval );

    cpu.tracer                = newTracer( cpu.name + ".tracer" );

    INIT_INT( cpu, sstParams, defer_registration );
    INIT_INT( cpu, sstParams, do_checkpoint_insts );
    INIT_INT( cpu, sstParams, do_statistics_insts );
    INIT_INT( cpu, sstParams, function_trace );
    INIT_INT( cpu, sstParams, cpu_id );

    cpu.workload.resize(1);
    cpu.numThreads            = 1;

    std::string processName = sstParams.find_string( "process" );
    if ( ! processName.empty() ) {
        SST::M5::M5* m5comp = static_cast<SST::M5::M5*>(comp);
        printf("process `%s`\n", processName.c_str());
        objectMap_t::iterator it = m5comp->objectMap().find( processName );
        if ( it == m5comp->objectMap().end() ) {
            // this is a hack
            m5comp->objectMap()[processName] = new Gem5Object;
            m5comp->objectMap()[processName]->memObject =
                newProcess( cpu.name + ".workload",
                            sstParams.find_prefix_params( "process." ),
                            system, comp );
        }
        cpu.workload[0] = static_cast<Process*>(
                              m5comp->objectMap()[processName]->memObject );
    } else {
        printf("default process\n");
        cpu.workload[0] = newProcess( cpu.name + ".workload",
                                      sstParams.find_prefix_params( "process." ),
                                      system, comp );
    }

}
Пример #3
0
// Inicializa los writers, recibe cantidad de writers, tiempo de escritura,
// tiempo de descanso, la llave del segmento al que va a escribir y el tipo
// de proceso
void initProcesos(int cantidadProcesos,int tiempoEscritura,int tiempoDescanso,int llave,int tipo){
	int i,segmentoDatosID;
	char *segmentoDatos;
	// Monitor
	switch(tipo){
		case TIPO_WRITER:
			segmentoDatosID = getMemID(LLAVE_SEGMENTO_WRITERS,cantidadProcesos*TAMANIO_LINEAS);
			break;
		case TIPO_READER:
			segmentoDatosID = getMemID(LLAVE_SEGMENTO_READERS,cantidadProcesos*TAMANIO_LINEAS);
			break;
		case TIPO_READER_EGOISTA:
			segmentoDatosID = getMemID(LLAVE_SEGMENTO_READERS_EGOISTAS,cantidadProcesos*TAMANIO_LINEAS);
			break;
		default:
			break;
		}
	segmentoDatos = getMem(segmentoDatosID);
	crearMemoria(llave,cantidadProcesos);
	pthread_t processThread[cantidadProcesos];
	for(i=1;i<=cantidadProcesos;i++){
		proceso *nProcess = newProcess(i,tiempoEscritura,tiempoDescanso,tipo,segmentoDatos);
		pthread_create(&processThread[i-1], NULL, ejecutarProceso, nProcess);
	}
	for(i=0;i<cantidadProcesos;i++){
		pthread_join(processThread[i], NULL);
	}
}
Пример #4
0
void test_1_creates_new_process(){
    Process *process = newProcess("Process1",8,3);
    ASSERT(process->priority == 3);
    ASSERT(process->time == 8);
    ASSERT(strcmp(process->name,"Process1") == 0);
    ASSERT(process->nextProcess == NULL);
    free(process);
};
Пример #5
0
void test_2_creates_another_process_with_highest_priority_more_time_span(){
    Process *process = newProcess("Process2",10,1);
    ASSERT(process->priority == 1);
    ASSERT(process->time == 10);
    ASSERT(strcmp(process->name,"Process2") == 0);
    ASSERT(process->nextProcess == NULL);
    free(process);
};
Пример #6
0
void main( ){

	int opt= 0;
	int p;
	process *proc;
	list *l;

	l= (list * ) malloc (sizeof(list));


	make_list(l);
	printf("\n\n\n");
	printf("\tTrabalho ED1 - Marcos Oleiro - Listas Simplesmente Encadeadas\n");
	printf("\n\n\n");
	while (opt != 3) {

		printf("1 - Adcionar Processos.\n");
		printf("2 - Listar Processos.\n");
		printf("3 - Sair.\n\n\n");

		printf("Digite sua opcao: ");
		scanf ("%d", &opt);
		printf("\n");
		switch (opt) {

			case 1:
				// process *proc= NULL ;
				printf("\n");
				proc = newProcess();
				printf("\n\n");
				add_process(l,proc);
				printf("ID: %d, Prioridade: %d, Horario: %d:%d:%d\n",proc->id, proc->priority,
					proc->h->hour,proc->h->minute,proc->h->second);
				proc = NULL;
				printf("\n\n");



			break;

			case 2:
				// printf("Opção 2.\n");
				// sort_priority(l);
				sort_list(l);
				print_list(l);

			break;

			case 3:
				// printf("Opção 3.\n");

			break;

		}
	}
}
Пример #7
0
bool TransmissionClient::addTorrent(QString filePath) {
    if (command.isNull()) {
        return false;
    }
    if (!process || process->state() == QProcess::Running) {
        newProcess();
    }

    process->start(command, QStringList() << filePath);
    process->waitForStarted();
    //process.waitForFinished();
    return true;
}
Пример #8
0
process  * readFile( FILE * fp ) {
	char * inStr = malloc(sizeof(char)*100);
	char * tempName;
	int tempSize;
	process * newPr = NULL;
	process * newList = NULL;

	while( !feof(fp) ) {
		fgets(inStr, 100, fp );
		tempName = strtok( inStr, " " );
		tempSize = atoi(strtok( NULL, " "));
		newPr = newProcess( tempName, tempSize );
		newList  = addToQueue( newList, newPr );
	}
	return newList;
}
Пример #9
0
void loadMemory( string name, ::PhysicalMemory* memory, 
                                    const SST::Params& params )
{
    int num = 0;
    DBGC(1,"%s\n",name.c_str());
    while ( 1 ) {
        Addr start,end;
        std::stringstream numSS;
        std::string tmp;

        numSS << num; 

        tmp = numSS.str() + ".process.executable";

        std::string exe = params.find_string( tmp );
        if ( exe.size() == 0 ) {
            break;
        }
        DBGC(1,"%s%s %s\n",name.c_str(), tmp.c_str(), exe.c_str() );

        tmp = numSS.str() + ".physicalMemory.start";
        start = params.find_integer( tmp );
        DBGC(1,"%s%s %#lx\n", name.c_str(), tmp.c_str(), start);

        tmp = numSS.str() + ".physicalMemory.end";
        end = params.find_integer( tmp, 0 );
        DBGC(1,"%s%s %#lx\n", name.c_str(), tmp.c_str(), end);

        tmp = name + numSS.str() + ".dummySystem";
        DummySystem* system = create_DummySystem( tmp, memory,
                                    Enums::timing, start, end);

        SST::Params mergedParams = mergeParams(  
                params.find_prefix_params( numSS.str() + ".process."),
                params.find_prefix_params( "process." ) );

        tmp = name + numSS.str();

        Process* process = newProcess( tmp, mergedParams, system );
        process->assignThreadContext(num);

        // NOTE: system and process are not needed after
        // startup, how do we free them? 

        ++num;
    }
}
Пример #10
0
int _tmain(int argc, _TCHAR* argv[])
{
	Manager newProcess(5);
	ProcessesHistory *history;

	for (int i = 0; i < 5; i++)
	{
		int stepsNumber = rand() % 15, processTime= rand() % 5;
		newProcess.addProcess(stepsNumber, processTime);
	}
	int counter=0;
	while (newProcess.getEnd() == false)
	{
		newProcess.makeHistory();
		newProcess.processExecution();
		counter++;
	}
	history = newProcess.getHistory();
	for (int i = 0; i < 5; i++)
		cout << history->showHistory(i, newProcess.getExecutions()) << endl;

	cout << endl << endl;
	delete history;
	Manager newProcess2(10);

	for (int i = 0; i < 10; i++)
	{
		int stepsNumber = rand() % 10, processTime = rand() % 5;
		newProcess2.addProcess(stepsNumber, processTime);
	}
	counter = 0;
	
	while (newProcess2.getEnd() == false)
	{
		newProcess2.makeHistory();
		newProcess2.processExecution();
		counter++;
	}
	history = newProcess.getHistory();
	for (int i = 0; i < 10; i++)
		cout << history->showHistory(i, newProcess2.getExecutions()) << endl;

	system("pause");
	return 0;
}
Пример #11
0
/**
 * system_launchApplication
 * Launches target application using system commands.
 *
 * @param c - Application to launch.
 * @returns -1 on error.
 */
int system_launchApplication(char* c, struct processes *processList) {
    printf("Launching VLC\n");
    //strcpy(command, "open -a VLC \"/Users/oskarmendel/Music/Red Hot Chilli Peppers - Greatest Hits [Bubanee]\" --args --intf macosx");
    char *const parmList[] = {"/Applications/VLC.app/Contents/MacOS/VLC", "/Users/oskarmendel/Music/Red Hot Chilli Peppers - Greatest Hits [Bubanee]", NULL};
    
    pid_t a = newProcess();
    
    if (a == -1) {
        //Error
        printf("Error occurr\n");
    }
    
    if (a == 0) {
        //Child process
        execv("/Applications/VLC.app/Contents/MacOS/VLC", parmList);
        int errcode = errno;
        exit(errcode); // Should not get here.
    } else {
        // Parent
        
        pushProcess(&processList, "VLC", a);
        showActiveProcesses(processList);
        
        //Trying to set window to fullscreen:
        printf("Setting fullscreen: %i\n", setFullscreen(a));
        
       // printf("After systemcall\n");
       // int r;
       // waitpid(a, &r, 0);
        
        //if (r == 0) {
            //printf("Child application terminated successfully\n");
        //} else {
            //printf("Child application terminated with error\n");
        //}
    }

    return 0;
}
Пример #12
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

 delFiles=0; /* switch to save/delete RGE input/output */
 ForceUG=0;  /* to Force Unitary Gauge assign 1 */
#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  }  
  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
    
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);

                
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E\n", bsgnlo());
  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
    
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV); 

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
  }

  if(SpE)
  { 

    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(SpE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;

   pname = "h";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "~o2";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
   pname = "~g";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
    
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}

#endif
   
  killPlots();

  return 0;
}
Пример #13
0
int main(int argc,char** argv)
{  int err;
   char wimpName[10];
   
/* to save RGE input/output files uncomment the next line */
/*delFiles(0);*/

  if(argc==1)
  { 
      printf(" Correct usage:  ./omg <file with parameters> \n");
      exit(1);
  }
                               

  err=readVar(argv[1]);
/*   err=readVarRHNM(argv[1]);*/
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}


  err=sortOddParticles(wimpName);
  if(err) { printf("Can't calculate %s\n",wimpName); return 1;}

/*to print input parameters or model in SLHA format uncomment correspondingly*/
/* 
  printVar(stdout);  
  writeLesH("slha.out"); 
*/

#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF PARTICLES OF ODD SECTOR: ===\n");
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
  printf("\n================= CONSTRAINTS =================\n");
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-2, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  

  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ /* See  hep-ph/0607059 pages 10, 11 for complete explanation  */

  int err,outP;
  double Mwimp,Emin,Ntot,Etot,sigmaV,v=0.001,fi,tab[250];
  char txt[100];

printf("\n==== Indirect detection =======\n");  

  outP=0;    /* 0 for gamma rays  
                1-positron; 2-antiproton; 3,4,5 neutrinos 
                (electron, muon and tau correspondinly)
             */
  Emin=0.1;  /* Energy cut  in GeV   */
  fi=0;      /* angle of sight in radians */                                                                                                                                                                         

  sigmaV=calcSpectrum(v,outP,tab,&err);  
             /* Returns sigma*v in cm^3/sec.  
                tab could be substituted in zInterp(z,tab) to get particle distribution 
                in one collision  dN/dz, where  z=log (E/Mwinp) */  
  printf("sigma*v=%.2E [cm^3/sec]\n", sigmaV);
  Mwimp=lopmass_();

  spectrInfo(Emin/Mwimp,tab, &Ntot,&Etot);
  printf("%.2E %s with E > %.2E are generated at one collision\n",Ntot,outNames[outP],Emin); 

#ifdef SHOWPLOTS 
/*  Spectrum of photons produced in DM annihilation.  */ 
  sprintf(txt,"%s: N=%.2e,<E/2M>=%.2f,vsc=%.2e cm^3/sec,M(%s)=%.2e", 
  outNames[outP],Ntot,Etot,sigmaV,wimpName,Mwimp); 

  displaySpectrum(tab, txt ,Emin/Mwimp);  
#endif
  if(outP==0)
  {
    printf("gamma flux for fi=%.2E[rad] is %.2E[ph/cm^2/s/sr]\n",
       fi, HaloFactor(fi,rhoQisotermic)*sigmaV*Ntot/Mwimp/Mwimp);
  }
/*  Test of energy conservation  */     
/*        
{ double e[6];
  int i;
  printf("Check of energy conservation:\n"); 
  for(i=0;i<6;i++)
  {    
     sigmaV=calcSpectrum(v,i,tab,&err);
     spectrInfo(Emin/Mwimp,tab, NULL,e+i);
  } 
  printf("1 = %.2f\n",e[0]+2*(e[1]+e[2]+e[3]+e[4]+e[5]) );
}     
*/

}
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The default nucleon form factors can be completely or partially modified 
   by setProtonFF and setNeutronFF. For scalar form factors, one can first call
   getScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV], protonFF,neutronFF)  
   or set the new coefficients by directly assigning numerical values.
*/
{ double   ffS0P[3]={0.033,0.023,0.26},
           ffS0N[3]={0.042,0.018,0.26},
           ffV5P[3]={-0.427, 0.842,-0.085},
           ffV5N[3]={ 0.842,-0.427,-0.085}; 

  printf("\n=========== Redefinition of form factors  =========\n");         
      
  getScalarFF(0.553,18.9,55.,35.,ffS0P, ffS0N);
  printf("protonFF  d %E, u %E, s %E\n",ffS0P[0],ffS0P[1],ffS0P[2]);                               
  printf("neutronFF d %E, u %E, s %E\n",ffS0N[0],ffS0N[1],ffS0N[2]);

/* Use NULL argument if there is no need for reassignment */
  setProtonFF(ffS0P,ffV5P, NULL);
  setNeutronFF(ffS0N,ffV5N,NULL);
}

/* Option to change parameters of DM velocity  distribution 
*/   
   SetfMaxwell(220.,244.4,600.);
     /* arg1- defines DM velocity distribution in Galaxy rest frame:
            ~exp(-v^2/arg1^2)d^3v
        arg2- Earth velocity with respect to Galaxy
        arg3- Maximal DM velocity in Sun orbit with respect to Galaxy.
        All parameters are  in [km/s] units.
     */
/* In case DM has velocity distribution close to delta-function 
   the DM velocity V[km/s] can be defined by
*/          
   SetfDelta(350.);

/* To reset parameters of Fermi nucleus distribution  */
   SetFermi(1.23,-0.6,0.52);
/*  with half-density radius for Fermi distribution: 
          c=arg1*A^(1/3) + arg2
    and arg3 is the surface thickness.
    All parameter in [fm].      
*/
}
#endif


#ifdef WIMP_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        
  double dpA0[2],dnA0[2];
 
printf("\n==== Calculation of WIMP-nucleons amplitudes  =====\n");   

  nucleonAmplitudes(NULL, dpA0,pA5,dnA0,nA5);
printf("====OFF/On======\n");  
  nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
  dpA0[0]-=pA0[0];
  dnA0[0]-=nA0[0];  
   
    printf("%s -nucleon amplitudes:\n",wimpName);
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*lopmass_()/(Nmass+ lopmass_()),2.);
    printf("%s-nucleon cross sections:\n",wimpName);
    
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);

 printf(" twist-2 CS proton   %.3E   neutron %.3E \n",
 SCcoeff*dpA0[0]*dpA0[0], SCcoeff*dnA0[0]*dnA0[0]);
 
    printf("anti-%s -nucleon amplitudes:\n",wimpName);
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[1],pA5[1]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[1],nA5[1]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*lopmass_()/(Nmass+ lopmass_()),2.);
    printf("anti-%s-nucleon cross sections:\n",wimpName);
    
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[1]*nA5[1]);

}
#endif
  
#ifdef WIMP_NUCLEUS
{ double dNdE[200];
  double nEvents;
  double rho=0.3; /* DM density GeV/sm^3 */
printf("\n=========== Direct Detection ===============\n");


  nEvents=nucleusRecoil(rho,fDvMaxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,NULL,dNdE);
      /* See '../sources/micromegas.h' for description of arguments 
     
        Instead of Maxwell (DvMaxwell) one can use 'fDvDelta' Delta-function 
        velocity distribution.
      */

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(rho,fDvMaxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,NULL,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

/*  If SD form factors are not known or for spin=0 nucleus one can use */
  nEvents=nucleusRecoil0(rho,fDvMaxwell,3,Z_He,J_He3,Sp_He3,Sn_He3,NULL,dNdE);
  printf("\n 3^He: Total number of events=%.2E /day/kg\n",nEvents);
#ifdef SHOWPLOTS
  displayRecoilPlot(dNdE,"Distribution of recoil energy of 3He",0,50);
#endif

}
#endif 

#ifdef CROSS_SECTIONS
{
  double Pcm=500;
  numout* cc;
  double cosmin=-0.99, cosmax=0.99;
  double v=0.002;

printf("\n====== Calculation of widths and cross sections ====\n");  
  decay2Info("Z",stdout);
  decay2Info("H",stdout);

/*  Helicity[0]=0.45;
  Helicity[1]=-0.45;
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      procInfo2(cc,l,name,NULL);
      printf("%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("Error\n");
      else if(cs==0.) printf("Zero\n");
      else printf("%.2E [pb]\n",cs); 
    }
  } 
*/
  printf("\n WIMP annihilation at V_rel=%.2E\n",v);
 
  cc=newProcess("",wimpAnnLib());
  assignValW("Q",2*lopmass_());
  if(cc)
  { int ntot,l;
    char * name[4];
    double mass[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      procInfo2(cc,l,name,mass);
      if(l==1) { Pcm=mass[0]*v/2; printf("(Pcm=%.2E)\n",Pcm);}
      printf("%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,-1.,1.,&err);
      if(err) printf("Error\n");
      else if(cs==0.) printf("Zero\n");
      else printf("%.2E [pb] ( sigma*v=%.2E [cm^3/sec] )  \n",cs,cs*v*2.9979E-26); 
    }
  }
}

#endif
                          
  return 0;
}
Пример #14
0
int main(int argc,char** argv)
{  int err,nw;
   char cdmName[10];
   int spin2, charge3,cdim;
   double laMax;   

  delFiles=0; /* switch to save/delete NMSSMTools input/output */
  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
   
#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double Lambda, aLambda,aKappa,sgn;

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n"
           "   Lambda   Lambda parameter at SUSY\n"
           "   aKappa  aKappa parameter at GUT\n"
           );
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n" 
           "   aLambda at GUT (default aLambda=a0)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
    printf("Example:  ./main 320 600 -1300 2 0.5 -1400\n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&Lambda);
     sscanf(argv[6],"%lf",&aKappa);
     if(argc>7)  sscanf(argv[7],"%lf",&sgn); else sgn=1;
     if(argc>8)  sscanf(argv[8],"%lf",&aLambda); else aLambda=a0;

     if(argc>9){ sscanf(argv[9],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>10){ sscanf(argv[10],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>11){ sscanf(argv[11],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err=nmssmSUGRA( m0,mhf, a0,tb, sgn,  Lambda, aLambda, aKappa);
}
#elif defined(EWSB)
{
  if(argc!=2)
  { 
      printf(" Correct usage:  ./main <file with NMSSM parameters> \n");
      printf(" Example      :  ./main  data1.par \n");
      exit(1);
  }

  err=readVarNMSSM(argv[1]);
  
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}          
  err=nmssmEWSB();  
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main spectr.dat \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readSLHA(argv[1]);
   
   if(err) exit(2);
}

#endif

  slhaWarnings(stdout);

  if(err) exit(1);

//assignValW("Ms2GeV",0.14);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  laMax=findValW("laMax");
  printf("Largest coupling of Higgs self interaction %.1E\n",laMax);

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2\n",
  cdmName,       spin2); 
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                    else o1Contents(stdout);

/*  printVar(stdout);  */


#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double constr0,constrM, constrP;

  printf("\n\n==== Physical Constraints: =====\n");

  constr0=bsgnlo(&constrM,&constrP);
  printf("B->s,gamma = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0= bsmumu(&constrM,&constrP);
  printf("Bs->mu,mu  = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );
  
  constr0=btaunu(&constrM,&constrP);
  printf("B+->tau+,nu= %.2E (%.2E ,  %.2E  ) \n",constr0, constrM, constrP );
  
  constr0=deltaMd(&constrM,&constrP);
  printf("deltaMd    = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0=deltaMs(&constrM,&constrP);
  printf("deltaMs    = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0=gmuon(&constrM,&constrP);
  printf("(g-2)/BSM = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );
     
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=0.1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
double SpNe[NZ],SpNm[NZ],SpNl[NZ];
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV);  

  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
     
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, SpA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP, FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);

}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;
   
   printf("\nParticle decays\n"); 
   pname = "h1";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "~o2";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}
#endif

  killPlots();
  return 0;
}
Пример #15
0
//-------------------------------------------------------------------------
void BackgroundProcesses::addProcess (QString const& name, int max)
{
    emit newProcess (name, max);
}
Пример #16
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

   ForceUG=0;  /* to Force Unitary Gauge assign 1 */
// sysTimeLim=1000; 
/*
   if you would like to work with superIso
    setenv("superIso","./superiso_v3.1",1);  
*/

#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(SUGRANUH)
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
  printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
  PRINTRGE(RGE);

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n" 
           "   mu      mu(EWSB)\n"
           "   MA      mass of pseudoscalar Higgs\n");     
    printf(" Auxiliary parameters are:\n"
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 680 760  \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&mu);
     sscanf(argv[6],"%lf",&MA); 
     if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
          
    if(err==-1)     { printf("Can not open the file\n"); exit(2);}
    else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  } 

  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);
                             
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double SMbsg,dmunu;
  printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg);

  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());

  printf("dtaunu=%.2E  ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu);   
  printf("Rl23=%.3E\n", Rl23());
  
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef SUPERISO
    slhaWrite("slha.in");
    system( SUPERISO "/slha.x slha.in >/dev/null");
    slhaRead("output.flha",1);
    unlink("slha.in");
    printf("superIsoBSG=%.3E\n", slhaValFormat("FOBS",0., " 5 1  %lf 0 2 3 22"));    
#endif 

#ifdef HIGGSBOUNDS
   if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
   slhaWrite("slha.in");
   system("cp slha.in HB.slha");
   HBblocks("HB.slha");
   System("%s/HiggsBounds  LandH SLHA 3 1 HB.slha",HIGGSBOUNDS);
   slhaRead("HB.slha",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
   { char hbInfo[100];
    if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
   }  
   slhaRead("slha.in",0);
   unlink("slha.in");
#endif


#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf; 
  
// to exclude processes with virtual W/Z in DM   annihilation      
   VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 
    
  printf("\n==== Calculation of relic density =====\n");  

  sortOddParticles(cdmName);
  Omega=darkOmega(&Xf,fast,Beps);
  
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
// direct access for annihilation channels 
/*
if(omegaCh){
  int i; 
  for(i=0; omegaCh[i].weight>0  ;i++)
  printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0],
  omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); 
}  
*/  
// to restore VZdecay and VWdecay switches 

   VZdecay=1; VWdecay=1; cleanDecayTable();   

}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
#ifdef LoopGAMMA
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
#endif     
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

 
  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=0.01;
  
 printf("\n===============Neutrino Telescope=======  for  "); 
 if(forSun) printf("Sun\n"); else printf("Earth\n");  

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
  displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
#endif
{ double Ntot;
  double Emin=1; //GeV
  spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
    printf(" E>%.1E GeV neutrino flux       %.2E [1/Year/km^2] \n",Emin,Ntot);
  spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
    printf(" E>%.1E GeV anti-neutrino flux  %.2E [1/Year/km^2]\n",Emin,Ntot);  
} 
  
/* Upward events */
  
  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2,1);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,Ntot);
  } 
  
/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm,1); 
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,Ntot);
  }  
}        
#endif 


#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~o2";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);
}
#endif


#ifdef CROSS_SECTIONS
{
  double Pcm=250, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=250.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
/*
 { double stot=0;
      int i,j;
   char * sq[25]=
   {"~dL","~dR","~uL","~uR","~sL","~sR","~cL","~cR","~b1","~b2","~t1","~t2",
    "~DL","~DR","~UL","~UR","~SL","~SR","~CL","~CR","~B1","~B2","~T1","~T2",
    "~g"};

    Pcm=4000;

    for(i=0;i<25;i++) for(j=0;j<25;j++)
    {double dcs=hCollider(Pcm,1,0,sq[i],sq[j]);
        stot+=dcs;
        printf("p,p -> %s %s %E\n", sq[i],sq[j],dcs);
    }
    printf("total cross section =%E (without K-factor)\n",stot);
 }
*/
}
#endif

#ifdef CLEAN

  killPlots();
  system("rm -f suspect2_lha.in suspect2_lha.out  suspect2.out HB.slha Key.dat  nngg.in nngg.out output.flha ");

#endif 

return 0;
}
Пример #17
0
Job* Parser::parseLine (void) {
	job = new Job();
	currState = PARSCMD;
	int i, length, curr;
	int rflag;
	
	// Limpa o buffer de entrada para evitar loop infinito
	strcpy(line, "\0");
	std::cin.clear();
	
	std::cin.getline (line, MAX_LENGTH);
	
	i = 0;
	while (i < length && line[i] == ' ')	i++;
	length = strlen(line+i);
	// Checa se a linha nao estava em branco
	if (length == 0) {
		job->addFlag (shooSH_NOP);
		return job;
	} else {
		while (line[--length] == ' '); // pega os espacos do fim
		length++;
		if (strcmp (line+i, "exit") == 0) { //builtin
			job->addFlag (shooSH_EXIT);
			return job;
		}
	}
	if ((line+i)[length-1] == '&')
		job->setCommand (std::string (line+i, length-1));
	else
		job->setCommand (std::string (line+i, length));
		
	while (currState != PARSSUCCESS && currState != PARSFAIL) {
		if (currState == PARSCMD) {
			newProcess();
			newWord();
			rflag = 0;
			// pega espacos
			while (i < length && line[i] == ' ')	i++;
			// esperava um comando, mas nao veio nada (usado para pipe)
			if (i == length) {
				currState = PARSFAIL;
			} else {
				// le ate encontrar um espaco
				while (i < length && line[i] != ' ')	cmdList[cmdListSize][currChar++] = line[i++];
				currState = PARSNEXT;
			}
			endWord();
		} else if (currState == PARSNEXT) {
			// le espaco
			while (i < length && line[i] == ' ')	i++;
	
			if (i == length) { //chegou ao fim da linha
				currState = PARSSUCCESS;
				endProcess();
			} else {
				// procura token
				switch (line[i]) {
					case '<':
						i++;
						currState = PARSRIN;
						break;
					case '>':
						i++;
						currState = PARSROUT;
						break;
					case '2': //pode ser argumento ou redirecionamento de erro
						i++;
						currState = PARSTWO;
						break;
					case '|':
						i++;
						job->addFlag (shooSH_PIPE);
						endProcess();
						currState = PARSCMD;
						break;
					case '&':
						i++;
						job->addFlag (shooSH_BG);
						endProcess();
						currState = PARSSUCCESS;
						break;
					default:
						currState = PARSPARAM;
				}
			}
		} else if (currState == PARSPARAM) {
			newWord();
			while (i < length && line[i] != ' ' && line[i] != '\"' && line[i] != '\'')	cmdList[cmdListSize][currChar++] = line[i++];
			if (line[i] == '\"') {
				i++;
				while (i < length && line[i] != '\"')	cmdList[cmdListSize][currChar++] = line[i++];
				if (i == length) {
					endWord();
					currState = PARSFAIL;
				} else {
					i++;
					endWord();
					currState = PARSNEXT;
				}
			} else if (line[i] == '\'') {
				i++;
				while (i < length && line[i] != '\'')	cmdList[cmdListSize][currChar++] = line[i++];
				if (i == length) {
					endWord();
					currState = PARSFAIL;
				} else {
					i++;
					endWord();
					currState = PARSNEXT;
				}
			} else {
				endWord();
				currState = PARSNEXT;
			}
		} else if (currState == PARSTWO) {
			if (line[i] == '>') {
				i++;
				endWord();
				currState = PARSRERR;
			} else {
				i--;
				currState = PARSPARAM;
			}
			endWord();
		} else if (currState == PARSRERR) {
			if (line[i] == '>') { // append
				i++;
				rflag = REDERRA;
			} else { // trunc
				rflag = REDERRT;
			}
			currState = PARSFILENAME;
		} else if (currState == PARSRIN) {
			rflag = REDIN;
			currState = PARSFILENAME;
		} else if (currState == PARSROUT) {
			if (line[i] == '>') { // append
				i++;
				rflag = REDOUTA;
			} else { // trunc
				rflag = REDOUTT;
			}
			currState = PARSFILENAME;
		} else if (currState == PARSFILENAME) {
			while (i < length && line[i] == ' ')	i++;
			if (i == length)	currState = PARSFAIL;
			else {
				curr = 0;
				if (line[i] == '"') { // le nomes como "file name"
					i++;
					while (i < length && line[i] != '"')	filename[curr++] = line[i++];
					if (i == length)	currState = PARSFAIL;
					else	i++;
				} else if (line[i] == '\'') { // le nomes do tipo 'file name'
					i++;
					while (i < length && line[i] != '\'')	filename[curr++] = line[i++];
					if (i == length)	currState = PARSFAIL;
					else	i++;
				} else { // le nomes do tipo filename
					while (i < length && line[i] != ' ')	filename[curr++] = line[i++];
				}
				filename[curr] = '\0';
				job->setProcessFile (filename, rflag);
				currState = PARSNEXT;
			}
		}
	}
	if (currState == PARSFAIL)	job->addFlag (shooSH_FAIL);
	return job;
}
Пример #18
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
  
  if(argc==1)
  { 
      printf(" Correct usage:  ./main <file with parameters> \n");
      exit(1);
  }
                               

/*  err=readVar(argv[1]);*/
   err=readVarRHNM(argv[1]);
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}


  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  qNumbers(cdmName, &spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2 \n",cdmName,spin2); 
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~n4")) printf(" ~n4 is not CDM\n"); 
                               
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF PARTICLES OF ODD SECTOR: ===\n");
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  



  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV);  


  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);     
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP, FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] ); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;
 
   printf("\n Calculation of particle decays\n");
   pname = "H";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "Zp";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}

#endif
  killPlots();
  return 0;
}
Пример #19
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
  
  if(argc< 2)
  { 
      printf(" Correct usage:  ./main  <file with parameters>    \n");
      printf("Example: ./main data1.par \n");
      exit(1);
  }
                               
  err=readVar(argv[1]);
  
   
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}
           
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  
   qNumbers(cdmName, &spin2, &charge3, &cdim);
   printf("\nDark matter candidate is '%s' with spin=%d/2\n",
    cdmName,       spin2); 
   if(charge3) { printf("Dark Matter has electric charge %d*3\n",charge3); exit(1);}
   if(cdim!=1) { printf("Dark Matter ia a color particle\n"); exit(1);}
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGG AND ODD PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.0001;
  double Omega,Xf;   
//  deltaY=4.4E-13;

// to exclude processes with virtual W/Z in DM   annihilation      
     VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 

  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);   
  
  VZdecay=1; VWdecay=1; cleanDecayTable();  // restore default
}
#endif

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s] = %.2E[pb] \n", sigmaV, sigmaV/2.9979E-26);  


  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);     
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin, Mcdm);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/
  printf("\n======== RESET_FORMFACTORS ======\n");
 
  printf("protonFF (default) d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);
 
  printf("protonFF (new)     d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] ); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);

}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,NULL,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,NULL,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,NULL,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,NULL,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=0.01;

  printf("\n===============Neutrino Telescope=======  for  ");
  if(forSun) printf("Sun\n"); else printf("Earth\n");
  
  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
  displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
#endif
{ double Ntot;
  double Emin=10; //GeV
  spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
    printf(" E>%.1E GeV neutrino flux       %.3E [1/Year/km^2] \n",Emin,Ntot);
  spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
    printf(" E>%.1E GeV anti-neutrino flux  %.3E [1/Year/km^2]\n",Emin,Ntot);
}

/* Upward events */

  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Upward muon flux    %.3E [1/Year/km^2]\n",Emin,Ntot);
  }

/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Contained muon flux %.3E [1/Year/km^3]\n",Emin,Ntot);
  }
}
#endif

#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;   
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.3E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~L";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.3E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);
}
#endif


#ifdef CROSS_SECTIONS
{ double v0=0.001, Pcm=Mcdm*v0/2,cs;
  int err;
  numout*cc;

  cc=newProcess("~n,~N->W+,W-");
  passParameters(cc);
  cs=v0*cs22(cc,1,0.001*Mcdm/2,-1.,1.,&err);
  printf("cs=%e\n",cs);
}
#endif
  killPlots();
  return 0;
}
Пример #20
0
int main() {
  int inputPipe;
  char buffer[BUFFER_LEN];
  char mktemp_filename[PATH_MAX];
  char mktemp_dir[PATH_MAX];
  int ret;
  int terminalPid;
  TerminalList * termlist = lst_new();
  pthread_t threadMonitor;
  char *args[N_ARGS];
  if (signal(SIGINT, handleSIGINT)) {
    fprintf(stderr, "Could not set sigint handler!\n");
    exit(EXIT_FAILURE);
  }
  if (pthread_mutex_init(&mutexRunningProcesses, NULL)) {
    fprintf(stderr, "Could not create runningProcesses mutex\n");
    exit(EXIT_FAILURE);
  }
  if (pthread_cond_init(&condRunningProcesses, NULL)) {
    fprintf(stderr, "Could not create runningProcesses cond\n");
    exit(EXIT_FAILURE);
  }
  if (pthread_cond_init(&condFreeSlots, NULL)) {
    fprintf(stderr, "Could not create FreeSlots cond\n");
    exit(EXIT_FAILURE);
  }

  strcpy(mktemp_dir, MKTEMP_TEMPLATE);
  TESTTRUE(mkdtemp(mktemp_dir)!=NULL, "Erro na criação do diretorio temporário (" _AT_ ")\n");
  strncpy(mktemp_filename, mktemp_dir, PATH_MAX);
  strncpy(mktemp_filename+strlen(mktemp_filename), "/" INPUT_FILE, PATH_MAX-strlen(mktemp_filename));
  fprintf(stdin, "Ficheiro de input: '%s'\n", mktemp_filename);
  if (mkfifo(mktemp_filename, 0660) <0) {
    fprintf(stderr, "Could not create fifo %s\n", mktemp_filename);
    exit(EXIT_FAILURE);
  }
  printf("A abrir o pipe %s para leitura...\n", mktemp_filename);
  if ((inputPipe = open(mktemp_filename, O_RDONLY)) < 0) {
    fprintf(stderr, "Could not create fifo " INPUT_FILE "\n");
    exit(EXIT_FAILURE);
  }
  printf("A abrir o pipe %s para escrita...\n", mktemp_filename);
  if ((outPipe = open(mktemp_filename, O_WRONLY|O_NONBLOCK)) < 0) {
    fprintf(stderr, "Erro ao abrir o ficheiro de output" INPUT_FILE "\n");
    exit(EXIT_FAILURE);
  }
  initProcessList();
  if(pthread_create(&threadMonitor, 0,processMonitor, NULL)!= 0) {
    printf("Erro na criação da tarefa\n");
    exit(EXIT_FAILURE);
  }

  while(1) {
    if (exitCalled) break;
    if (readFromPipe(inputPipe, buffer, &terminalPid, termlist)!=0) continue;
    printf("Comando: %s\n", buffer);
    ret = readLineArguments(args, N_ARGS, buffer, BUFFER_LEN);
    if (!ret) continue;
    processesWaitingToRun++;
    newProcess(args, terminalPid);
  }

  //Mata todos os processos de terminal
  lst_destroy(termlist);

  C_SIGNAL(&condRunningProcesses);

  pthread_join(threadMonitor, NULL);



  //The following function is called after all threads have joined, therefore there aren't used any mutexes
  exitParShell();
  endProcessList();

  pthread_mutex_destroy(&mutexRunningProcesses);
  pthread_cond_destroy(&condRunningProcesses);
  pthread_cond_destroy(&condFreeSlots);
  close(inputPipe); //aqui nao faz sentido testar o return destas funcoes
  close(outPipe); //aqui nao faz sentido testar o return destas funcoes
  unlink(INPUT_FILE); //aqui nao faz sentido testar o return destas funcoes

  return EXIT_SUCCESS;
}