static int nfs_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_CREATE], }; umode_t mode; int status = -ENOMEM; dprintk("NFS call mknod %s\n", dentry->d_name.name); mode = sattr->ia_mode; if (S_ISFIFO(mode)) { sattr->ia_mode = (mode & ~S_IFMT) | S_IFCHR; sattr->ia_valid &= ~ATTR_SIZE; } else if (S_ISCHR(mode) || S_ISBLK(mode)) { sattr->ia_valid |= ATTR_SIZE; sattr->ia_size = new_encode_dev(rdev);/* */ } data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == -EINVAL && S_ISFIFO(mode)) { sattr->ia_mode = mode; nfs_fattr_init(data->res.fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); } if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); nfs_free_createdata(data); out: dprintk("NFS reply mknod: %d\n", status); return status; }
static int nfs_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs_fattr *fattr = info->fattr; struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_GETATTR], .rpc_argp = fhandle, .rpc_resp = fattr, }; int status; dprintk("%s: call getattr\n", __func__); nfs_fattr_init(fattr); status = rpc_call_sync(server->client, &msg, 0); /* */ if (status && server->nfs_client->cl_rpcclient != server->client) status = rpc_call_sync(server->nfs_client->cl_rpcclient, &msg, 0); dprintk("%s: reply getattr: %d\n", __func__, status); if (status) return status; dprintk("%s: call statfs\n", __func__); msg.rpc_proc = &nfs_procedures[NFSPROC_STATFS]; msg.rpc_resp = &fsinfo; status = rpc_call_sync(server->client, &msg, 0); /* */ if (status && server->nfs_client->cl_rpcclient != server->client) status = rpc_call_sync(server->nfs_client->cl_rpcclient, &msg, 0); dprintk("%s: reply statfs: %d\n", __func__, status); if (status) return status; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; return 0; }
int migrate_nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *mntfh, struct nfs_fattr *fattr) { struct nfs_fsinfo fsinfo; //struct nfs_client *clp = server->nfs_client; int error; dprintk("--> migrate_nfs_probe_fsinfo()\n"); /*if (clp->rpc_ops->set_capabilities != NULL) { error = clp->rpc_ops->set_capabilities(server, mntfh); if (error < 0) goto out_error; }*/ fsinfo.fattr = fattr; fsinfo.layouttype = 0; error = migrate_nfs3_proc_fsinfo(server, mntfh, &fsinfo); if (error < 0) goto out_error; migrate_nfs_server_set_fsinfo(server, mntfh, &fsinfo); /* Get some general file system info */ if (server->namelen == 0) { struct nfs_pathconf pathinfo; pathinfo.fattr = fattr; nfs_fattr_init(fattr); if (migrate_nfs3_proc_pathconf(server, mntfh, &pathinfo) >= 0) server->namelen = pathinfo.max_namelen; } dprintk("<-- migrate_nfs_probe_fsinfo() = 0\n"); return 0; out_error: dprintk("migrate_nfs_probe_fsinfo: error = %d\n", -error); return error; }
static int do_proc_get_root(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; ; nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); ; if (!(info->fattr->valid & NFS_ATTR_FATTR)) { msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR]; msg.rpc_resp = info->fattr; status = rpc_call_sync(client, &msg, 0); ; } return status; }
static int do_proc_get_root(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("%s: call fsinfo\n", __func__); nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); dprintk("%s: reply fsinfo: %d\n", __func__, status); if (status == 0 && !(info->fattr->valid & NFS_ATTR_FATTR)) { msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR]; msg.rpc_resp = info->fattr; status = rpc_call_sync(client, &msg, 0); dprintk("%s: reply getattr: %d\n", __func__, status); } return status; }
static int nfs3_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, struct iattr *sattr) { struct inode *inode = dentry->d_inode; struct nfs3_sattrargs arg = { .fh = NFS_FH(inode), .sattr = sattr, }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_SETATTR], .rpc_argp = &arg, .rpc_resp = fattr, }; int status; dprintk("NFS call setattr\n"); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); if (status == 0) nfs_setattr_update_inode(inode, sattr); dprintk("NFS reply setattr: %d\n", status); return status; }
static int nfs3_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_fattr dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct nfs3_diropres res = { .dir_attr = &dir_attr, .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LOOKUP], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call lookup %s\n", name->name); nfs_fattr_init(&dir_attr); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (status >= 0 && !(fattr->valid & NFS_ATTR_FATTR)) { msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR]; msg.rpc_argp = fhandle; msg.rpc_resp = fattr; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); } dprintk("NFS reply lookup: %d\n", status); if (status >= 0) status = nfs_refresh_inode(dir, &dir_attr); return status; } static int nfs3_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs_fattr fattr; struct nfs3_accessargs arg = { .fh = NFS_FH(inode), }; struct nfs3_accessres res = { .fattr = &fattr, }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_ACCESS], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status; dprintk("NFS call access\n"); if (mode & MAY_READ) arg.access |= NFS3_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_EXECUTE; } nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, &fattr); if (status == 0) { entry->mask = 0; if (res.access & NFS3_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS3_ACCESS_LOOKUP|NFS3_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; } dprintk("NFS reply access: %d\n", status); return status; } static int nfs3_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs_fattr fattr; struct nfs3_readlinkargs args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READLINK], .rpc_argp = &args, .rpc_resp = &fattr, }; int status; dprintk("NFS call readlink\n"); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, &fattr); dprintk("NFS reply readlink: %d\n", status); return status; } static int nfs3_proc_read(struct nfs_read_data *rdata) { int flags = rdata->flags; struct inode * inode = rdata->inode; struct nfs_fattr * fattr = rdata->res.fattr; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READ], .rpc_argp = &rdata->args, .rpc_resp = &rdata->res, .rpc_cred = rdata->cred, }; int status; dprintk("NFS call read %d @ %Ld\n", rdata->args.count, (long long) rdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags); if (status >= 0) nfs_refresh_inode(inode, fattr); dprintk("NFS reply read: %d\n", status); return status; } static int nfs3_proc_write(struct nfs_write_data *wdata) { int rpcflags = wdata->flags; struct inode * inode = wdata->inode; struct nfs_fattr * fattr = wdata->res.fattr; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_WRITE], .rpc_argp = &wdata->args, .rpc_resp = &wdata->res, .rpc_cred = wdata->cred, }; int status; dprintk("NFS call write %d @ %Ld\n", wdata->args.count, (long long) wdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, rpcflags); if (status >= 0) nfs_post_op_update_inode(inode, fattr); dprintk("NFS reply write: %d\n", status); return status < 0? status : wdata->res.count; } static int nfs3_proc_commit(struct nfs_write_data *cdata) { struct inode * inode = cdata->inode; struct nfs_fattr * fattr = cdata->res.fattr; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_COMMIT], .rpc_argp = &cdata->args, .rpc_resp = &cdata->res, .rpc_cred = cdata->cred, }; int status; dprintk("NFS call commit %d @ %Ld\n", cdata->args.count, (long long) cdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); if (status >= 0) nfs_post_op_update_inode(inode, fattr); dprintk("NFS reply commit: %d\n", status); return status; } /* * Create a regular file. * For now, we don't implement O_EXCL. */ static int nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nameidata *nd) { struct nfs_fh fhandle; struct nfs_fattr fattr; struct nfs_fattr dir_attr; struct nfs3_createargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr, }; struct nfs3_diropres res = { .dir_attr = &dir_attr, .fh = &fhandle, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_CREATE], .rpc_argp = &arg, .rpc_resp = &res, }; mode_t mode = sattr->ia_mode; int status; dprintk("NFS call create %s\n", dentry->d_name.name); arg.createmode = NFS3_CREATE_UNCHECKED; if (flags & O_EXCL) { arg.createmode = NFS3_CREATE_EXCLUSIVE; arg.verifier[0] = jiffies; arg.verifier[1] = current->pid; } sattr->ia_mode &= ~current->fs->umask; again: nfs_fattr_init(&dir_attr); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_refresh_inode(dir, &dir_attr); /* If the server doesn't support the exclusive creation semantics, * try again with simple 'guarded' mode. */ if (status == NFSERR_NOTSUPP) { switch (arg.createmode) { case NFS3_CREATE_EXCLUSIVE: arg.createmode = NFS3_CREATE_GUARDED; break; case NFS3_CREATE_GUARDED: arg.createmode = NFS3_CREATE_UNCHECKED; break; case NFS3_CREATE_UNCHECKED: goto out; } goto again; } if (status == 0) status = nfs_instantiate(dentry, &fhandle, &fattr); if (status != 0) goto out; /* When we created the file with exclusive semantics, make * sure we set the attributes afterwards. */ if (arg.createmode == NFS3_CREATE_EXCLUSIVE) { dprintk("NFS call setattr (post-create)\n"); if (!(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if (!(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; /* Note: we could use a guarded setattr here, but I'm * not sure this buys us anything (and I'd have * to revamp the NFSv3 XDR code) */ status = nfs3_proc_setattr(dentry, &fattr, sattr); if (status == 0) nfs_setattr_update_inode(dentry->d_inode, sattr); nfs_refresh_inode(dentry->d_inode, &fattr); dprintk("NFS reply setattr (post-create): %d\n", status); } if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: dprintk("NFS reply create: %d\n", status); return status; } static int nfs3_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_fattr dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE], .rpc_argp = &arg, .rpc_resp = &dir_attr, }; int status; dprintk("NFS call remove %s\n", name->name); nfs_fattr_init(&dir_attr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); dprintk("NFS reply remove: %d\n", status); return status; } static int nfs3_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, struct qstr *name) { struct unlinkxdr { struct nfs3_diropargs arg; struct nfs_fattr res; } *ptr; ptr = (struct unlinkxdr *)kmalloc(sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ptr->arg.fh = NFS_FH(dir->d_inode); ptr->arg.name = name->name; ptr->arg.len = name->len; nfs_fattr_init(&ptr->res); msg->rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE]; msg->rpc_argp = &ptr->arg; msg->rpc_resp = &ptr->res; return 0; } static int nfs3_proc_unlink_done(struct dentry *dir, struct rpc_task *task) { struct rpc_message *msg = &task->tk_msg; struct nfs_fattr *dir_attr; if (nfs3_async_handle_jukebox(task, dir->d_inode)) return 1; if (msg->rpc_argp) { dir_attr = (struct nfs_fattr*)msg->rpc_resp; nfs_post_op_update_inode(dir->d_inode, dir_attr); kfree(msg->rpc_argp); } return 0; } static int nfs3_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_fattr old_dir_attr, new_dir_attr; struct nfs3_renameargs arg = { .fromfh = NFS_FH(old_dir), .fromname = old_name->name, .fromlen = old_name->len, .tofh = NFS_FH(new_dir), .toname = new_name->name, .tolen = new_name->len }; struct nfs3_renameres res = { .fromattr = &old_dir_attr, .toattr = &new_dir_attr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); nfs_fattr_init(&old_dir_attr); nfs_fattr_init(&new_dir_attr); status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_post_op_update_inode(old_dir, &old_dir_attr); nfs_post_op_update_inode(new_dir, &new_dir_attr); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_fattr dir_attr, fattr; struct nfs3_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct nfs3_linkres res = { .dir_attr = &dir_attr, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call link %s\n", name->name); nfs_fattr_init(&dir_attr); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); nfs_post_op_update_inode(inode, &fattr); dprintk("NFS reply link: %d\n", status); return status; } static int nfs3_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_fattr dir_attr; struct nfs3_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = name->name, .fromlen = name->len, .topath = path->name, .tolen = path->len, .sattr = sattr }; struct nfs3_diropres res = { .dir_attr = &dir_attr, .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status; if (path->len > NFS3_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %s -> %s\n", name->name, path->name); nfs_fattr_init(&dir_attr); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_fh fhandle; struct nfs_fattr fattr, dir_attr; struct nfs3_mkdirargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr }; struct nfs3_diropres res = { .dir_attr = &dir_attr, .fh = &fhandle, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR], .rpc_argp = &arg, .rpc_resp = &res, }; int mode = sattr->ia_mode; int status; dprintk("NFS call mkdir %s\n", dentry->d_name.name); sattr->ia_mode &= ~current->fs->umask; nfs_fattr_init(&dir_attr); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); if (status != 0) goto out; status = nfs_instantiate(dentry, &fhandle, &fattr); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs3_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_fattr dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RMDIR], .rpc_argp = &arg, .rpc_resp = &dir_attr, }; int status; dprintk("NFS call rmdir %s\n", name->name); nfs_fattr_init(&dir_attr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass the user buffer * to the encode function, which installs it in the receive iovec. * The decode function itself doesn't perform any decoding, it just makes * sure the reply is syntactically correct. * * Also note that this implementation handles both plain readdir and * readdirplus. */ static int nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page *page, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_fattr dir_attr; u32 *verf = NFS_COOKIEVERF(dir); struct nfs3_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .verf = {verf[0], verf[1]}, .plus = plus, .count = count, .pages = &page }; struct nfs3_readdirres res = { .dir_attr = &dir_attr, .verf = verf, .plus = plus }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READDIR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred }; int status; lock_kernel(); if (plus) msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS]; dprintk("NFS call readdir%s %d\n", plus? "plus" : "", (unsigned int) cookie); nfs_fattr_init(&dir_attr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_refresh_inode(dir, &dir_attr); dprintk("NFS reply readdir: %d\n", status); unlock_kernel(); return status; } static int nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs_fh fh; struct nfs_fattr fattr, dir_attr; struct nfs3_mknodargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr, .rdev = rdev }; struct nfs3_diropres res = { .dir_attr = &dir_attr, .fh = &fh, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD], .rpc_argp = &arg, .rpc_resp = &res, }; mode_t mode = sattr->ia_mode; int status; switch (sattr->ia_mode & S_IFMT) { case S_IFBLK: arg.type = NF3BLK; break; case S_IFCHR: arg.type = NF3CHR; break; case S_IFIFO: arg.type = NF3FIFO; break; case S_IFSOCK: arg.type = NF3SOCK; break; default: return -EINVAL; } dprintk("NFS call mknod %s %u:%u\n", dentry->d_name.name, MAJOR(rdev), MINOR(rdev)); sattr->ia_mode &= ~current->fs->umask; nfs_fattr_init(&dir_attr); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, &dir_attr); if (status != 0) goto out; status = nfs_instantiate(dentry, &fh, &fattr); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSSTAT], .rpc_argp = fhandle, .rpc_resp = stat, }; int status; dprintk("NFS call fsstat\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); return status; } static int nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client_sys, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); return status; } static int nfs3_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_PATHCONF], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call pathconf\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply pathconf: %d\n", status); return status; } static int nfs3_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; /* Call back common NFS readpage processing */ if (task->tk_status >= 0) nfs_refresh_inode(data->inode, &data->fattr); return 0; } static void nfs3_proc_read_setup(struct nfs_read_data *data) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READ], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; rpc_call_setup(&data->task, &msg, 0); } static int nfs3_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode(data->inode, data->res.fattr); return 0; } static void nfs3_proc_write_setup(struct nfs_write_data *data, int how) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_WRITE], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; data->args.stable = NFS_UNSTABLE; if (how & FLUSH_STABLE) { data->args.stable = NFS_FILE_SYNC; if (NFS_I(data->inode)->ncommit) data->args.stable = NFS_DATA_SYNC; } /* Finalize the task. */ rpc_call_setup(&data->task, &msg, 0); } static int nfs3_commit_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode(data->inode, data->res.fattr); return 0; } static void nfs3_proc_commit_setup(struct nfs_write_data *data, int how) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_COMMIT], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; rpc_call_setup(&data->task, &msg, 0); } static int nfs3_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { return nlmclnt_proc(filp->f_dentry->d_inode, cmd, fl); } struct nfs_rpc_ops nfs_v3_clientops = { .version = 3, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs3_dir_inode_operations, .file_inode_ops = &nfs3_file_inode_operations, .getroot = nfs3_proc_get_root, .getattr = nfs3_proc_getattr, .setattr = nfs3_proc_setattr, .lookup = nfs3_proc_lookup, .access = nfs3_proc_access, .readlink = nfs3_proc_readlink, .read = nfs3_proc_read, .write = nfs3_proc_write, .commit = nfs3_proc_commit, .create = nfs3_proc_create, .remove = nfs3_proc_remove, .unlink_setup = nfs3_proc_unlink_setup, .unlink_done = nfs3_proc_unlink_done, .rename = nfs3_proc_rename, .link = nfs3_proc_link, .symlink = nfs3_proc_symlink, .mkdir = nfs3_proc_mkdir, .rmdir = nfs3_proc_rmdir, .readdir = nfs3_proc_readdir, .mknod = nfs3_proc_mknod, .statfs = nfs3_proc_statfs, .fsinfo = nfs3_proc_fsinfo, .pathconf = nfs3_proc_pathconf, .decode_dirent = nfs3_decode_dirent, .read_setup = nfs3_proc_read_setup, .read_done = nfs3_read_done, .write_setup = nfs3_proc_write_setup, .write_done = nfs3_write_done, .commit_setup = nfs3_proc_commit_setup, .commit_done = nfs3_commit_done, .file_open = nfs_open, .file_release = nfs_release, .lock = nfs3_proc_lock, .clear_acl_cache = nfs3_forget_cached_acls, };
static int nfs_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_removeargs arg = { .fh = NFS_FH(dir), .name.len = name->len, .name.name = name->name, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_REMOVE], .rpc_argp = &arg, }; int status; dprintk("NFS call remove %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply remove: %d\n", status); return status; } static void nfs_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs_procedures[NFSPROC_REMOVE]; } static int nfs_proc_unlink_done(struct rpc_task *task, struct inode *dir) { if (nfs_async_handle_expired_key(task)) return 0; nfs_mark_for_revalidate(dir); return 1; } static void nfs_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs_procedures[NFSPROC_RENAME]; } static int nfs_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { if (nfs_async_handle_expired_key(task)) return 0; nfs_mark_for_revalidate(old_dir); nfs_mark_for_revalidate(new_dir); return 1; } static int nfs_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .old_name = old_name, .new_dir = NFS_FH(new_dir), .new_name = new_name, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RENAME], .rpc_argp = &arg, }; int status; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_mark_for_revalidate(old_dir); nfs_mark_for_revalidate(new_dir); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* * V2 SYMLINK requests don't return any attributes. Setting the * filehandle size to zero indicates to nfs_instantiate that it * should fill in the data with a LOOKUP call on the wire. */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass a temporary * buffer to the encode function, which installs it in the receive * the receive iovec. The decode function just parses the reply to make * sure it is syntactically correct; the entries itself are decoded * from nfs_readdir by calling the decode_entry function directly. */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; nfs_invalidate_atime(data->inode); if (task->tk_status >= 0) { nfs_refresh_inode(data->inode, data->res.fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (data->args.offset + data->args.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; } static void nfs_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) { BUG(); } static int nfs_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_path.dentry->d_inode; return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl); } /* Helper functions for NFS lock bounds checking */ #define NFS_LOCK32_OFFSET_MAX ((__s32)0x7fffffffUL) static int nfs_lock_check_bounds(const struct file_lock *fl) { __s32 start, end; start = (__s32)fl->fl_start; if ((loff_t)start != fl->fl_start) goto out_einval; if (fl->fl_end != OFFSET_MAX) { end = (__s32)fl->fl_end; if ((loff_t)end != fl->fl_end) goto out_einval; } else end = NFS_LOCK32_OFFSET_MAX; if (start < 0 || start > end) goto out_einval; return 0; out_einval: return -EINVAL; } const struct nfs_rpc_ops nfs_v2_clientops = { .version = 2, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs_dir_inode_operations, .file_inode_ops = &nfs_file_inode_operations, .getroot = nfs_proc_get_root, .getattr = nfs_proc_getattr, .setattr = nfs_proc_setattr, .lookup = nfs_proc_lookup, .access = NULL, /* access */ .readlink = nfs_proc_readlink, .create = nfs_proc_create, .remove = nfs_proc_remove, .unlink_setup = nfs_proc_unlink_setup, .unlink_done = nfs_proc_unlink_done, .rename = nfs_proc_rename, .rename_setup = nfs_proc_rename_setup, .rename_done = nfs_proc_rename_done, .link = nfs_proc_link, .symlink = nfs_proc_symlink, .mkdir = nfs_proc_mkdir, .rmdir = nfs_proc_rmdir, .readdir = nfs_proc_readdir, .mknod = nfs_proc_mknod, .statfs = nfs_proc_statfs, .fsinfo = nfs_proc_fsinfo, .pathconf = nfs_proc_pathconf, .decode_dirent = nfs2_decode_dirent, .read_setup = nfs_proc_read_setup, .read_done = nfs_read_done, .write_setup = nfs_proc_write_setup, .write_done = nfs_write_done, .commit_setup = nfs_proc_commit_setup, .lock = nfs_proc_lock, .lock_check_bounds = nfs_lock_check_bounds, .close_context = nfs_close_context, .init_client = nfs_init_client, };
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data) { struct rpc_message msg = { .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct rpc_task_setup task_setup_data = { .rpc_message = &msg, .callback_ops = &nfs_unlink_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; struct dentry *alias; alias = d_lookup(parent, &data->args.name); if (alias != NULL) { int ret; void *devname_garbage = NULL; /* * Hey, we raced with lookup... See if we need to transfer * the sillyrename information to the aliased dentry. */ nfs_free_dname(data); ret = nfs_copy_dname(alias, data); spin_lock(&alias->d_lock); if (ret == 0 && alias->d_inode != NULL && !(alias->d_flags & DCACHE_NFSFS_RENAMED)) { devname_garbage = alias->d_fsdata; alias->d_fsdata = data; alias->d_flags |= DCACHE_NFSFS_RENAMED; ret = 1; } else ret = 0; spin_unlock(&alias->d_lock); nfs_dec_sillycount(dir); dput(alias); /* * If we'd displaced old cached devname, free it. At that * point dentry is definitely not a root, so we won't need * that anymore. */ kfree(devname_garbage); return ret; } data->dir = igrab(dir); if (!data->dir) { nfs_dec_sillycount(dir); return 0; } nfs_sb_active(dir->i_sb); data->args.fh = NFS_FH(dir); nfs_fattr_init(data->res.dir_attr); NFS_PROTO(dir)->unlink_setup(&msg, dir); task_setup_data.rpc_client = NFS_CLIENT(dir); task = rpc_run_task(&task_setup_data); if (!IS_ERR(task)) rpc_put_task_async(task); return 1; } static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data) { struct dentry *parent; struct inode *dir; int ret = 0; parent = dget_parent(dentry); if (parent == NULL) goto out_free; dir = parent->d_inode; /* Non-exclusive lock protects against concurrent lookup() calls */ spin_lock(&dir->i_lock); if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) { /* Deferred delete */ hlist_add_head(&data->list, &NFS_I(dir)->silly_list); spin_unlock(&dir->i_lock); ret = 1; goto out_dput; } spin_unlock(&dir->i_lock); ret = nfs_do_call_unlink(parent, dir, data); out_dput: dput(parent); out_free: return ret; } void nfs_block_sillyrename(struct dentry *dentry) { struct nfs_inode *nfsi = NFS_I(dentry->d_inode); wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1); } void nfs_unblock_sillyrename(struct dentry *dentry) { struct inode *dir = dentry->d_inode; struct nfs_inode *nfsi = NFS_I(dir); struct nfs_unlinkdata *data; atomic_inc(&nfsi->silly_count); spin_lock(&dir->i_lock); while (!hlist_empty(&nfsi->silly_list)) { if (!atomic_inc_not_zero(&nfsi->silly_count)) break; data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list); hlist_del(&data->list); spin_unlock(&dir->i_lock); if (nfs_do_call_unlink(dentry, dir, data) == 0) nfs_free_unlinkdata(data); spin_lock(&dir->i_lock); } spin_unlock(&dir->i_lock); } /** * nfs_async_unlink - asynchronous unlinking of a file * @dir: parent directory of dentry * @dentry: dentry to unlink */ static int nfs_async_unlink(struct inode *dir, struct dentry *dentry) { struct nfs_unlinkdata *data; int status = -ENOMEM; void *devname_garbage = NULL; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data == NULL) goto out; data->cred = rpc_lookup_cred(); if (IS_ERR(data->cred)) { status = PTR_ERR(data->cred); goto out_free; } data->res.dir_attr = &data->dir_attr; status = -EBUSY; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) goto out_unlock; dentry->d_flags |= DCACHE_NFSFS_RENAMED; devname_garbage = dentry->d_fsdata; dentry->d_fsdata = data; spin_unlock(&dentry->d_lock); /* * If we'd displaced old cached devname, free it. At that * point dentry is definitely not a root, so we won't need * that anymore. */ if (devname_garbage) kfree(devname_garbage); return 0; out_unlock: spin_unlock(&dentry->d_lock); put_rpccred(data->cred); out_free: kfree(data); out: return status; } /** * nfs_complete_unlink - Initialize completion of the sillydelete * @dentry: dentry to delete * @inode: inode * * Since we're most likely to be called by dentry_iput(), we * only use the dentry to find the sillydelete. We then copy the name * into the qstr. */ void nfs_complete_unlink(struct dentry *dentry, struct inode *inode) { struct nfs_unlinkdata *data = NULL; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { dentry->d_flags &= ~DCACHE_NFSFS_RENAMED; data = dentry->d_fsdata; dentry->d_fsdata = NULL; } spin_unlock(&dentry->d_lock); if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data))) nfs_free_unlinkdata(data); } /* Cancel a queued async unlink. Called when a sillyrename run fails. */ static void nfs_cancel_async_unlink(struct dentry *dentry) { spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { struct nfs_unlinkdata *data = dentry->d_fsdata; dentry->d_flags &= ~DCACHE_NFSFS_RENAMED; dentry->d_fsdata = NULL; spin_unlock(&dentry->d_lock); nfs_free_unlinkdata(data); return; } spin_unlock(&dentry->d_lock); }
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data) { struct rpc_message msg = { .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct rpc_task_setup task_setup_data = { .rpc_message = &msg, .callback_ops = &nfs_unlink_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; struct dentry *alias; alias = d_lookup(parent, &data->args.name); if (alias != NULL) { int ret = 0; /* * Hey, we raced with lookup... See if we need to transfer * the sillyrename information to the aliased dentry. */ nfs_free_dname(data); spin_lock(&alias->d_lock); if (alias->d_inode != NULL && !(alias->d_flags & DCACHE_NFSFS_RENAMED)) { alias->d_fsdata = data; alias->d_flags |= DCACHE_NFSFS_RENAMED; ret = 1; } spin_unlock(&alias->d_lock); nfs_dec_sillycount(dir); dput(alias); return ret; } data->dir = igrab(dir); if (!data->dir) { nfs_dec_sillycount(dir); return 0; } nfs_sb_active(dir->i_sb); data->args.fh = NFS_FH(dir); nfs_fattr_init(data->res.dir_attr); NFS_PROTO(dir)->unlink_setup(&msg, dir); task_setup_data.rpc_client = NFS_CLIENT(dir); task = rpc_run_task(&task_setup_data); if (!IS_ERR(task)) rpc_put_task(task); return 1; } static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data) { struct dentry *parent; struct inode *dir; int ret = 0; parent = dget_parent(dentry); if (parent == NULL) goto out_free; dir = parent->d_inode; if (nfs_copy_dname(dentry, data) != 0) goto out_dput; /* Non-exclusive lock protects against concurrent lookup() calls */ spin_lock(&dir->i_lock); if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) { /* Deferred delete */ hlist_add_head(&data->list, &NFS_I(dir)->silly_list); spin_unlock(&dir->i_lock); ret = 1; goto out_dput; } spin_unlock(&dir->i_lock); ret = nfs_do_call_unlink(parent, dir, data); out_dput: dput(parent); out_free: return ret; } void nfs_block_sillyrename(struct dentry *dentry) { struct nfs_inode *nfsi = NFS_I(dentry->d_inode); wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1); } void nfs_unblock_sillyrename(struct dentry *dentry) { struct inode *dir = dentry->d_inode; struct nfs_inode *nfsi = NFS_I(dir); struct nfs_unlinkdata *data; atomic_inc(&nfsi->silly_count); spin_lock(&dir->i_lock); while (!hlist_empty(&nfsi->silly_list)) { if (!atomic_inc_not_zero(&nfsi->silly_count)) break; data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list); hlist_del(&data->list); spin_unlock(&dir->i_lock); if (nfs_do_call_unlink(dentry, dir, data) == 0) nfs_free_unlinkdata(data); spin_lock(&dir->i_lock); } spin_unlock(&dir->i_lock); } int nfs_async_unlink(struct inode *dir, struct dentry *dentry) { struct nfs_unlinkdata *data; int status = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data == NULL) goto out; data->cred = rpc_lookup_cred(); if (IS_ERR(data->cred)) { status = PTR_ERR(data->cred); goto out_free; } data->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; data->res.dir_attr = &data->dir_attr; status = -EBUSY; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) goto out_unlock; dentry->d_flags |= DCACHE_NFSFS_RENAMED; dentry->d_fsdata = data; spin_unlock(&dentry->d_lock); return 0; out_unlock: spin_unlock(&dentry->d_lock); put_rpccred(data->cred); out_free: kfree(data); out: return status; } void nfs_complete_unlink(struct dentry *dentry, struct inode *inode) { struct nfs_unlinkdata *data = NULL; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { dentry->d_flags &= ~DCACHE_NFSFS_RENAMED; data = dentry->d_fsdata; } spin_unlock(&dentry->d_lock); if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data))) nfs_free_unlinkdata(data); }
static int nfs3_proc_setacls(struct inode *inode, struct posix_acl *acl, struct posix_acl *dfacl) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_fattr fattr; struct page *pages[NFSACL_MAXPAGES] = { }; struct nfs3_setaclargs args = { .inode = inode, .mask = NFS_ACL, .acl_access = acl, .pages = pages, }; struct rpc_message msg = { .rpc_argp = &args, .rpc_resp = &fattr, }; int status, count; status = -EOPNOTSUPP; if (!nfs_server_capable(inode, NFS_CAP_ACLS)) goto out; /* We are doing this here, because XDR marshalling can only return -ENOMEM. */ status = -ENOSPC; if (acl != NULL && acl->a_count > NFS_ACL_MAX_ENTRIES) goto out; if (dfacl != NULL && dfacl->a_count > NFS_ACL_MAX_ENTRIES) goto out; if (S_ISDIR(inode->i_mode)) { args.mask |= NFS_DFACL; args.acl_default = dfacl; } dprintk("NFS call setacl\n"); msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_SETACL]; nfs_fattr_init(&fattr); status = rpc_call_sync(server->client_acl, &msg, 0); nfs_access_zap_cache(inode); nfs_zap_acl_cache(inode); dprintk("NFS reply setacl: %d\n", status); /* pages may have been allocated at the xdr layer. */ for (count = 0; count < NFSACL_MAXPAGES && args.pages[count]; count++) __free_page(args.pages[count]); switch (status) { case 0: status = nfs_refresh_inode(inode, &fattr); nfs3_cache_acls(inode, acl, dfacl); break; case -EPFNOSUPPORT: case -EPROTONOSUPPORT: dprintk("NFS_V3_ACL SETACL RPC not supported" "(will not retry)\n"); server->caps &= ~NFS_CAP_ACLS; case -ENOTSUPP: status = -EOPNOTSUPP; } out: return status; }
static int nfs3_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct nfs3_diropres res = { .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LOOKUP], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call lookup %s\n", name->name); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) return -ENOMEM; nfs_fattr_init(fattr); zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_refresh_inode(dir, res.dir_attr); if (status >= 0 && !(fattr->valid & NFS_ATTR_FATTR)) { msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR]; msg.rpc_argp = fhandle; msg.rpc_resp = fattr; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); } nfs_free_fattr(res.dir_attr); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs3_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs3_accessargs arg = { .fh = NFS_FH(inode), }; struct nfs3_accessres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_ACCESS], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status = -ENOMEM; dprintk("NFS call access\n"); if (mode & MAY_READ) arg.access |= NFS3_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_EXECUTE; } res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) goto out; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, res.fattr); if (status == 0) { entry->mask = 0; if (res.access & NFS3_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS3_ACCESS_LOOKUP|NFS3_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; } nfs_free_fattr(res.fattr); out: dprintk("NFS reply access: %d\n", status); return status; } static int nfs3_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs_fattr *fattr; struct nfs3_readlinkargs args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READLINK], .rpc_argp = &args, }; int status = -ENOMEM; dprintk("NFS call readlink\n"); fattr = nfs_alloc_fattr(); if (fattr == NULL) goto out; msg.rpc_resp = fattr; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, fattr); nfs_free_fattr(fattr); out: dprintk("NFS reply readlink: %d\n", status); return status; } struct nfs3_createdata { struct rpc_message msg; union { struct nfs3_createargs create; struct nfs3_mkdirargs mkdir; struct nfs3_symlinkargs symlink; struct nfs3_mknodargs mknod; } arg; struct nfs3_diropres res; struct nfs_fh fh; struct nfs_fattr fattr; struct nfs_fattr dir_attr; }; static struct nfs3_createdata *nfs3_alloc_createdata(void) { struct nfs3_createdata *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { data->msg.rpc_argp = &data->arg; data->msg.rpc_resp = &data->res; data->res.fh = &data->fh; data->res.fattr = &data->fattr; data->res.dir_attr = &data->dir_attr; nfs_fattr_init(data->res.fattr); nfs_fattr_init(data->res.dir_attr); } return data; } static int nfs3_do_create(struct inode *dir, struct dentry *dentry, struct nfs3_createdata *data) { int status; status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0); nfs_post_op_update_inode(dir, data->res.dir_attr); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL); return status; } static void nfs3_free_createdata(struct nfs3_createdata *data) { kfree(data); }
/* * Set up the argument/result storage required for the RPC call. */ static int nfs_write_rpcsetup(struct nfs_page *req, struct nfs_write_data *data, const struct rpc_call_ops *call_ops, unsigned int count, unsigned int offset, int how) { struct inode *inode = req->wb_context->path.dentry->d_inode; int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; int priority = flush_task_priority(how); struct rpc_task *task; struct rpc_message msg = { .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = req->wb_context->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(inode), .task = &data->task, .rpc_message = &msg, .callback_ops = call_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = flags, .priority = priority, }; /* Set up the RPC argument and reply structs * NB: take care not to mess about with data->commit et al. */ data->req = req; data->inode = inode = req->wb_context->path.dentry->d_inode; data->cred = msg.rpc_cred; data->args.fh = NFS_FH(inode); data->args.offset = req_offset(req) + offset; data->args.pgbase = req->wb_pgbase + offset; data->args.pages = data->pagevec; data->args.count = count; data->args.context = get_nfs_open_context(req->wb_context); data->args.stable = NFS_UNSTABLE; if (how & FLUSH_STABLE) { data->args.stable = NFS_DATA_SYNC; if (!nfs_need_commit(NFS_I(inode))) data->args.stable = NFS_FILE_SYNC; } data->res.fattr = &data->fattr; data->res.count = count; data->res.verf = &data->verf; nfs_fattr_init(&data->fattr); /* Set up the initial task struct. */ NFS_PROTO(inode)->write_setup(data, &msg); dprintk("NFS: %5u initiated write call " "(req %s/%lld, %u bytes @ offset %llu)\n", data->task.tk_pid, inode->i_sb->s_id, (long long)NFS_FILEID(inode), count, (unsigned long long)data->args.offset); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); rpc_put_task(task); return 0; } /* If a nfs_flush_* function fails, it should remove reqs from @head and * call this on each, which will prepare them to be retried on next * writeback using standard nfs. */ static void nfs_redirty_request(struct nfs_page *req) { nfs_mark_request_dirty(req); nfs_end_page_writeback(req->wb_page); nfs_clear_page_tag_locked(req); } /* * Generate multiple small requests to write out a single * contiguous dirty area on one page. */ static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) { struct nfs_page *req = nfs_list_entry(head->next); struct page *page = req->wb_page; struct nfs_write_data *data; size_t wsize = NFS_SERVER(inode)->wsize, nbytes; unsigned int offset; int requests = 0; int ret = 0; LIST_HEAD(list); nfs_list_remove_request(req); nbytes = count; do { size_t len = min(nbytes, wsize); data = nfs_writedata_alloc(1); if (!data) goto out_bad; list_add(&data->pages, &list); requests++; nbytes -= len; } while (nbytes != 0); atomic_set(&req->wb_complete, requests); ClearPageError(page); offset = 0; nbytes = count; do { int ret2; data = list_entry(list.next, struct nfs_write_data, pages); list_del_init(&data->pages); data->pagevec[0] = page; if (nbytes < wsize) wsize = nbytes; ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, wsize, offset, how); if (ret == 0) ret = ret2; offset += wsize; nbytes -= wsize; } while (nbytes != 0); return ret; out_bad: while (!list_empty(&list)) { data = list_entry(list.next, struct nfs_write_data, pages); list_del(&data->pages); nfs_writedata_release(data); } nfs_redirty_request(req); return -ENOMEM; } /* * Create an RPC task for the given write request and kick it. * The page must have been locked by the caller. * * It may happen that the page we're passed is not marked dirty. * This is the case if nfs_updatepage detects a conflicting request * that has been written but not committed. */ static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) { struct nfs_page *req; struct page **pages; struct nfs_write_data *data; data = nfs_writedata_alloc(npages); if (!data) goto out_bad; pages = data->pagevec; while (!list_empty(head)) { req = nfs_list_entry(head->next); nfs_list_remove_request(req); nfs_list_add_request(req, &data->pages); ClearPageError(req->wb_page); *pages++ = req->wb_page; } req = nfs_list_entry(data->pages.next); /* Set up the argument struct */ return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); out_bad: while (!list_empty(head)) { req = nfs_list_entry(head->next); nfs_list_remove_request(req); nfs_redirty_request(req); } return -ENOMEM; } static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags) { size_t wsize = NFS_SERVER(inode)->wsize; if (wsize < PAGE_CACHE_SIZE) nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); else nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); }
/* * Set up the argument/result storage required for the RPC call. */ static int nfs_commit_rpcsetup(struct list_head *head, struct nfs_write_data *data, int how) { struct nfs_page *first = nfs_list_entry(head->next); struct inode *inode = first->wb_context->path.dentry->d_inode; int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; int priority = flush_task_priority(how); struct rpc_task *task; struct rpc_message msg = { .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = first->wb_context->cred, }; struct rpc_task_setup task_setup_data = { .task = &data->task, .rpc_client = NFS_CLIENT(inode), .rpc_message = &msg, .callback_ops = &nfs_commit_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = flags, .priority = priority, }; /* Set up the RPC argument and reply structs * NB: take care not to mess about with data->commit et al. */ list_splice_init(head, &data->pages); data->inode = inode; data->cred = msg.rpc_cred; data->args.fh = NFS_FH(data->inode); /* Note: we always request a commit of the entire inode */ data->args.offset = 0; data->args.count = 0; data->args.context = get_nfs_open_context(first->wb_context); data->res.count = 0; data->res.fattr = &data->fattr; data->res.verf = &data->verf; nfs_fattr_init(&data->fattr); /* Set up the initial task struct. */ NFS_PROTO(inode)->commit_setup(data, &msg); dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); rpc_put_task(task); return 0; } /* * Commit dirty pages */ static int nfs_commit_list(struct inode *inode, struct list_head *head, int how) { struct nfs_write_data *data; struct nfs_page *req; data = nfs_commitdata_alloc(); if (!data) goto out_bad; /* Set up the argument struct */ return nfs_commit_rpcsetup(head, data, how); out_bad: while (!list_empty(head)) { req = nfs_list_entry(head->next); nfs_list_remove_request(req); nfs_mark_request_commit(req); dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); dec_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); nfs_clear_page_tag_locked(req); } return -ENOMEM; } /* * COMMIT call returned */ static void nfs_commit_done(struct rpc_task *task, void *calldata) { struct nfs_write_data *data = calldata; dprintk("NFS: %5u nfs_commit_done (status %d)\n", task->tk_pid, task->tk_status); /* Call the NFS version-specific code */ if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) return; } static void nfs_commit_release(void *calldata) { struct nfs_write_data *data = calldata; struct nfs_page *req; int status = data->task.tk_status; while (!list_empty(&data->pages)) { req = nfs_list_entry(data->pages.next); nfs_list_remove_request(req); nfs_clear_request_commit(req); dprintk("NFS: commit (%s/%lld %d@%lld)", req->wb_context->path.dentry->d_inode->i_sb->s_id, (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), req->wb_bytes, (long long)req_offset(req)); if (status < 0) { nfs_context_set_write_error(req->wb_context, status); nfs_inode_remove_request(req); dprintk(", error = %d\n", status); goto next; } /* Okay, COMMIT succeeded, apparently. Check the verifier * returned by the server against all stored verfs. */ if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { /* We have a match */ nfs_inode_remove_request(req); dprintk(" OK\n"); goto next; } /* We have a mismatch. Write the page again */ dprintk(" mismatch\n"); nfs_mark_request_dirty(req); next: nfs_clear_page_tag_locked(req); } nfs_commitdata_release(calldata); } static const struct rpc_call_ops nfs_commit_ops = { #if defined(CONFIG_NFS_V4_1) .rpc_call_prepare = nfs_write_prepare, #endif /* CONFIG_NFS_V4_1 */ .rpc_call_done = nfs_commit_done, .rpc_release = nfs_commit_release, }; int nfs_commit_inode(struct inode *inode, int how) { LIST_HEAD(head); int res; spin_lock(&inode->i_lock); res = nfs_scan_commit(inode, &head, 0, 0); spin_unlock(&inode->i_lock); if (res) { int error = nfs_commit_list(inode, &head, how); if (error < 0) return error; } return res; } #else static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) { return 0; } #endif long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) { struct inode *inode = mapping->host; pgoff_t idx_start, idx_end; unsigned int npages = 0; LIST_HEAD(head); int nocommit = how & FLUSH_NOCOMMIT; long pages, ret; /* FIXME */ if (wbc->range_cyclic) idx_start = 0; else { idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; if (idx_end > idx_start) { pgoff_t l_npages = 1 + idx_end - idx_start; npages = l_npages; if (sizeof(npages) != sizeof(l_npages) && (pgoff_t)npages != l_npages) npages = 0; } } how &= ~FLUSH_NOCOMMIT; spin_lock(&inode->i_lock); do { ret = nfs_wait_on_requests_locked(inode, idx_start, npages); if (ret != 0) continue; if (nocommit) break; pages = nfs_scan_commit(inode, &head, idx_start, npages); if (pages == 0) break; if (how & FLUSH_INVALIDATE) { spin_unlock(&inode->i_lock); nfs_cancel_commit_list(&head); ret = pages; spin_lock(&inode->i_lock); continue; } pages += nfs_scan_commit(inode, &head, 0, 0); spin_unlock(&inode->i_lock); ret = nfs_commit_list(inode, &head, how); spin_lock(&inode->i_lock); } while (ret >= 0); spin_unlock(&inode->i_lock); return ret; } static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) { int ret; ret = nfs_writepages(mapping, wbc); if (ret < 0) goto out; ret = nfs_sync_mapping_wait(mapping, wbc, how); if (ret < 0) goto out; return 0; out: __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); return ret; }
/* * get an NFS2/NFS3 root dentry from the root filehandle */ struct dentry *nfs_get_root(struct super_block *sb, struct nfs_fh *mntfh) { struct nfs_server *server = NFS_SB(sb); struct nfs_fsinfo fsinfo; struct nfs_fattr fattr; struct dentry *mntroot; struct inode *inode; int error; /* create a dummy root dentry with dummy inode for this superblock */ if (!sb->s_root) { struct nfs_fh dummyfh; struct dentry *root; struct inode *iroot; memset(&dummyfh, 0, sizeof(dummyfh)); memset(&fattr, 0, sizeof(fattr)); nfs_fattr_init(&fattr); fattr.valid = NFS_ATTR_FATTR; fattr.type = NFDIR; fattr.mode = S_IFDIR | S_IRUSR | S_IWUSR; fattr.nlink = 2; iroot = nfs_fhget(sb, &dummyfh, &fattr); if (IS_ERR(iroot)) return ERR_PTR(PTR_ERR(iroot)); root = d_alloc_root(iroot); if (!root) { iput(iroot); return ERR_PTR(-ENOMEM); } sb->s_root = root; } /* get the actual root for this mount */ fsinfo.fattr = &fattr; error = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo); if (error < 0) { dprintk("nfs_get_root: getattr error = %d\n", -error); return ERR_PTR(error); } inode = nfs_fhget(sb, mntfh, fsinfo.fattr); if (IS_ERR(inode)) { dprintk("nfs_get_root: get root inode failed\n"); return ERR_PTR(PTR_ERR(inode)); } /* root dentries normally start off anonymous and get spliced in later * if the dentry tree reaches them; however if the dentry already * exists, we'll pick it up at this point and use it as the root */ mntroot = d_alloc_anon(inode); if (!mntroot) { iput(inode); dprintk("nfs_get_root: get root dentry failed\n"); return ERR_PTR(-ENOMEM); } security_d_instantiate(mntroot, inode); if (!mntroot->d_op) mntroot->d_op = server->nfs_client->rpc_ops->dentry_ops; return mntroot; }
/* * Do a simple pathwalk from the root FH of the server to the nominated target * of the mountpoint * - give error on symlinks * - give error on ".." occurring in the path * - follow traversals */ int nfs4_path_walk(struct nfs_server *server, struct nfs_fh *mntfh, const char *path) { struct nfs_fsinfo fsinfo; struct nfs_fattr fattr; struct nfs_fh lastfh; struct qstr name; int ret; dprintk("--> nfs4_path_walk(,,%s)\n", path); fsinfo.fattr = &fattr; nfs_fattr_init(&fattr); /* Eat leading slashes */ while (*path == '/') path++; /* Start by getting the root filehandle from the server */ ret = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo); if (ret < 0) { dprintk("nfs4_get_root: getroot error = %d\n", -ret); return ret; } if (fattr.type != NFDIR) { printk(KERN_ERR "nfs4_get_root:" " getroot encountered non-directory\n"); return -ENOTDIR; } /* FIXME: It is quite valid for the server to return a referral here */ if (fattr.valid & NFS_ATTR_FATTR_V4_REFERRAL) { printk(KERN_ERR "nfs4_get_root:" " getroot obtained referral\n"); return -EREMOTE; } next_component: dprintk("Next: %s\n", path); /* extract the next bit of the path */ if (!*path) goto path_walk_complete; name.name = path; while (*path && *path != '/') path++; name.len = path - (const char *) name.name; eat_dot_dir: while (*path == '/') path++; if (path[0] == '.' && (path[1] == '/' || !path[1])) { path += 2; goto eat_dot_dir; } /* FIXME: Why shouldn't the user be able to use ".." in the path? */ if (path[0] == '.' && path[1] == '.' && (path[2] == '/' || !path[2]) ) { printk(KERN_ERR "nfs4_get_root:" " Mount path contains reference to \"..\"\n"); return -EINVAL; } /* lookup the next FH in the sequence */ memcpy(&lastfh, mntfh, sizeof(lastfh)); dprintk("LookupFH: %*.*s [%s]\n", name.len, name.len, name.name, path); ret = server->nfs_client->rpc_ops->lookupfh(server, &lastfh, &name, mntfh, &fattr); if (ret < 0) { dprintk("nfs4_get_root: getroot error = %d\n", -ret); return ret; } if (fattr.type != NFDIR) { printk(KERN_ERR "nfs4_get_root:" " lookupfh encountered non-directory\n"); return -ENOTDIR; } /* FIXME: Referrals are quite valid here too */ if (fattr.valid & NFS_ATTR_FATTR_V4_REFERRAL) { printk(KERN_ERR "nfs4_get_root:" " lookupfh obtained referral\n"); return -EREMOTE; } goto next_component; path_walk_complete: memcpy(&server->fsid, &fattr.fsid, sizeof(server->fsid)); dprintk("<-- nfs4_path_walk() = 0\n"); return 0; }
static int nfs3_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_removeargs arg = { .fh = NFS_FH(dir), .name.len = name->len, .name.name = name->name, }; struct nfs_removeres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call remove %s\n", name->name); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply remove: %d\n", status); return status; } static void nfs3_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE]; } static int nfs3_proc_unlink_done(struct rpc_task *task, struct inode *dir) { struct nfs_removeres *res; if (nfs3_async_handle_jukebox(task, dir)) return 0; res = task->tk_msg.rpc_resp; nfs_post_op_update_inode(dir, res->dir_attr); return 1; } static void nfs3_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_RENAME]; } static int nfs3_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { struct nfs_renameres *res; if (nfs3_async_handle_jukebox(task, old_dir)) return 0; res = task->tk_msg.rpc_resp; nfs_post_op_update_inode(old_dir, res->old_fattr); nfs_post_op_update_inode(new_dir, res->new_fattr); return 1; } static int nfs3_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .old_name = old_name, .new_dir = NFS_FH(new_dir), .new_name = new_name, }; struct nfs_renameres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); res.old_fattr = nfs_alloc_fattr(); res.new_fattr = nfs_alloc_fattr(); if (res.old_fattr == NULL || res.new_fattr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_post_op_update_inode(old_dir, res.old_fattr); nfs_post_op_update_inode(new_dir, res.new_fattr); out: nfs_free_fattr(res.old_fattr); nfs_free_fattr(res.new_fattr); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs3_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct nfs3_linkres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call link %s\n", name->name); res.fattr = nfs_alloc_fattr(); res.dir_attr = nfs_alloc_fattr(); if (res.fattr == NULL || res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_post_op_update_inode(inode, res.fattr); out: nfs_free_fattr(res.dir_attr); nfs_free_fattr(res.fattr); dprintk("NFS reply link: %d\n", status); return status; } static int nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs3_createdata *data; int status = -ENOMEM; if (len > NFS3_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK]; data->arg.symlink.fromfh = NFS_FH(dir); data->arg.symlink.fromname = dentry->d_name.name; data->arg.symlink.fromlen = dentry->d_name.len; data->arg.symlink.pages = &page; data->arg.symlink.pathlen = len; data->arg.symlink.sattr = sattr; status = nfs3_do_create(dir, dentry, data); nfs3_free_createdata(data); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs3_createdata *data; int mode = sattr->ia_mode; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); sattr->ia_mode &= ~current_umask(); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR]; data->arg.mkdir.fh = NFS_FH(dir); data->arg.mkdir.name = dentry->d_name.name; data->arg.mkdir.len = dentry->d_name.len; data->arg.mkdir.sattr = sattr; status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: nfs3_free_createdata(data); dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs3_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_fattr *dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RMDIR], .rpc_argp = &arg, }; int status = -ENOMEM; dprintk("NFS call rmdir %s\n", name->name); dir_attr = nfs_alloc_fattr(); if (dir_attr == NULL) goto out; msg.rpc_resp = dir_attr; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, dir_attr); nfs_free_fattr(dir_attr); out: dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass the user buffer * to the encode function, which installs it in the receive iovec. * The decode function itself doesn't perform any decoding, it just makes * sure the reply is syntactically correct. * * Also note that this implementation handles both plain readdir and * readdirplus. */ static int nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; __be32 *verf = NFS_COOKIEVERF(dir); struct nfs3_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .verf = {verf[0], verf[1]}, .plus = plus, .count = count, .pages = pages }; struct nfs3_readdirres res = { .verf = verf, .plus = plus }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READDIR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred }; int status = -ENOMEM; if (plus) msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS]; dprintk("NFS call readdir%s %d\n", plus? "plus" : "", (unsigned int) cookie); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); nfs_refresh_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply readdir%s: %d\n", plus? "plus" : "", status); return status; } static int nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs3_createdata *data; mode_t mode = sattr->ia_mode; int status = -ENOMEM; dprintk("NFS call mknod %s %u:%u\n", dentry->d_name.name, MAJOR(rdev), MINOR(rdev)); sattr->ia_mode &= ~current_umask(); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD]; data->arg.mknod.fh = NFS_FH(dir); data->arg.mknod.name = dentry->d_name.name; data->arg.mknod.len = dentry->d_name.len; data->arg.mknod.sattr = sattr; data->arg.mknod.rdev = rdev; switch (sattr->ia_mode & S_IFMT) { case S_IFBLK: data->arg.mknod.type = NF3BLK; break; case S_IFCHR: data->arg.mknod.type = NF3CHR; break; case S_IFIFO: data->arg.mknod.type = NF3FIFO; break; case S_IFSOCK: data->arg.mknod.type = NF3SOCK; break; default: status = -EINVAL; goto out; } status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: nfs3_free_createdata(data); dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSSTAT], .rpc_argp = fhandle, .rpc_resp = stat, }; int status; dprintk("NFS call fsstat\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsstat: %d\n", status); return status; } static int do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); return status; } /* * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via * nfs_create_server */ static int nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int status; status = do_proc_fsinfo(server->client, fhandle, info); if (status && server->nfs_client->cl_rpcclient != server->client) status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info); return status; } static int nfs3_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_PATHCONF], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call pathconf\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply pathconf: %d\n", status); return status; } static int nfs3_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; nfs_invalidate_atime(data->inode); nfs_refresh_inode(data->inode, &data->fattr); return 0; } static void nfs3_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_READ]; } static int nfs3_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs3_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_WRITE]; } static int nfs3_commit_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; nfs_refresh_inode(data->inode, data->res.fattr); return 0; } static void nfs3_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_COMMIT]; } static int nfs3_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_path.dentry->d_inode; return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl); } const struct nfs_rpc_ops nfs_v3_clientops = { .version = 3, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs3_dir_inode_operations, .file_inode_ops = &nfs3_file_inode_operations, .file_ops = &nfs_file_operations, .getroot = nfs3_proc_get_root, .getattr = nfs3_proc_getattr, .setattr = nfs3_proc_setattr, .lookup = nfs3_proc_lookup, .access = nfs3_proc_access, .readlink = nfs3_proc_readlink, .create = nfs3_proc_create, .remove = nfs3_proc_remove, .unlink_setup = nfs3_proc_unlink_setup, .unlink_done = nfs3_proc_unlink_done, .rename = nfs3_proc_rename, .rename_setup = nfs3_proc_rename_setup, .rename_done = nfs3_proc_rename_done, .link = nfs3_proc_link, .symlink = nfs3_proc_symlink, .mkdir = nfs3_proc_mkdir, .rmdir = nfs3_proc_rmdir, .readdir = nfs3_proc_readdir, .mknod = nfs3_proc_mknod, .statfs = nfs3_proc_statfs, .fsinfo = nfs3_proc_fsinfo, .pathconf = nfs3_proc_pathconf, .decode_dirent = nfs3_decode_dirent, .read_setup = nfs3_proc_read_setup, .read_done = nfs3_read_done, .write_setup = nfs3_proc_write_setup, .write_done = nfs3_write_done, .commit_setup = nfs3_proc_commit_setup, .commit_done = nfs3_commit_done, .lock = nfs3_proc_lock, .clear_acl_cache = nfs3_forget_cached_acls, .close_context = nfs_close_context, .init_client = nfs_init_client, };
/* * Create a regular file. */ static int nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nfs_open_context *ctx) { struct nfs3_createdata *data; umode_t mode = sattr->ia_mode; int status = -ENOMEM; ; data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_CREATE]; data->arg.create.fh = NFS_FH(dir); data->arg.create.name = dentry->d_name.name; data->arg.create.len = dentry->d_name.len; data->arg.create.sattr = sattr; data->arg.create.createmode = NFS3_CREATE_UNCHECKED; if (flags & O_EXCL) { data->arg.create.createmode = NFS3_CREATE_EXCLUSIVE; data->arg.create.verifier[0] = jiffies; data->arg.create.verifier[1] = current->pid; } sattr->ia_mode &= ~current_umask(); for (;;) { status = nfs3_do_create(dir, dentry, data); if (status != -ENOTSUPP) break; /* If the server doesn't support the exclusive creation * semantics, try again with simple 'guarded' mode. */ switch (data->arg.create.createmode) { case NFS3_CREATE_EXCLUSIVE: data->arg.create.createmode = NFS3_CREATE_GUARDED; break; case NFS3_CREATE_GUARDED: data->arg.create.createmode = NFS3_CREATE_UNCHECKED; break; case NFS3_CREATE_UNCHECKED: goto out; } nfs_fattr_init(data->res.dir_attr); nfs_fattr_init(data->res.fattr); } if (status != 0) goto out; /* When we created the file with exclusive semantics, make * sure we set the attributes afterwards. */ if (data->arg.create.createmode == NFS3_CREATE_EXCLUSIVE) { ; if (!(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if (!(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; /* Note: we could use a guarded setattr here, but I'm * not sure this buys us anything (and I'd have * to revamp the NFSv3 XDR code) */ status = nfs3_proc_setattr(dentry, data->res.fattr, sattr); nfs_post_op_update_inode(dentry->d_inode, data->res.fattr); ; if (status != 0) goto out; } status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: nfs3_free_createdata(data); ; return status; }
static int nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs3_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct nfs3_linkres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call link %s\n", name->name); res.fattr = nfs_alloc_fattr(); res.dir_attr = nfs_alloc_fattr(); if (res.fattr == NULL || res.dir_attr == NULL) goto out; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_post_op_update_inode(inode, res.fattr); out: nfs_free_fattr(res.dir_attr); nfs_free_fattr(res.fattr); dprintk("NFS reply link: %d\n", status); return status; } static int nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs3_createdata *data; int status = -ENOMEM; if (len > NFS3_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %pd\n", dentry); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK]; data->arg.symlink.fromfh = NFS_FH(dir); data->arg.symlink.fromname = dentry->d_name.name; data->arg.symlink.fromlen = dentry->d_name.len; data->arg.symlink.pages = &page; data->arg.symlink.pathlen = len; data->arg.symlink.sattr = sattr; zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); nfs3_free_createdata(data); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct posix_acl *default_acl, *acl; struct nfs3_createdata *data; int status = -ENOMEM; dprintk("NFS call mkdir %pd\n", dentry); data = nfs3_alloc_createdata(); if (data == NULL) goto out; status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl); if (status) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR]; data->arg.mkdir.fh = NFS_FH(dir); data->arg.mkdir.name = dentry->d_name.name; data->arg.mkdir.len = dentry->d_name.len; data->arg.mkdir.sattr = sattr; zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out_release_acls; status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl); out_release_acls: posix_acl_release(acl); posix_acl_release(default_acl); out: nfs3_free_createdata(data); dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs3_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_fattr *dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RMDIR], .rpc_argp = &arg, }; int status = -ENOMEM; dprintk("NFS call rmdir %s\n", name->name); dir_attr = nfs_alloc_fattr(); if (dir_attr == NULL) goto out; msg.rpc_resp = dir_attr; zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, dir_attr); nfs_free_fattr(dir_attr); out: dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass the user buffer * to the encode function, which installs it in the receive iovec. * The decode function itself doesn't perform any decoding, it just makes * sure the reply is syntactically correct. * * Also note that this implementation handles both plain readdir and * readdirplus. */ static int nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; __be32 *verf = NFS_I(dir)->cookieverf; struct nfs3_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .verf = {verf[0], verf[1]}, .plus = plus, .count = count, .pages = pages }; struct nfs3_readdirres res = { .verf = verf, .plus = plus }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READDIR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred }; int status = -ENOMEM; if (plus) msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS]; dprintk("NFS call readdir%s %d\n", plus? "plus" : "", (unsigned int) cookie); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); nfs_refresh_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply readdir%s: %d\n", plus? "plus" : "", status); return status; } static int nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct posix_acl *default_acl, *acl; struct nfs3_createdata *data; int status = -ENOMEM; dprintk("NFS call mknod %pd %u:%u\n", dentry, MAJOR(rdev), MINOR(rdev)); data = nfs3_alloc_createdata(); if (data == NULL) goto out; status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl); if (status) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD]; data->arg.mknod.fh = NFS_FH(dir); data->arg.mknod.name = dentry->d_name.name; data->arg.mknod.len = dentry->d_name.len; data->arg.mknod.sattr = sattr; data->arg.mknod.rdev = rdev; switch (sattr->ia_mode & S_IFMT) { case S_IFBLK: data->arg.mknod.type = NF3BLK; break; case S_IFCHR: data->arg.mknod.type = NF3CHR; break; case S_IFIFO: data->arg.mknod.type = NF3FIFO; break; case S_IFSOCK: data->arg.mknod.type = NF3SOCK; break; default: status = -EINVAL; goto out; } zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out_release_acls; status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl); out_release_acls: posix_acl_release(acl); posix_acl_release(default_acl); out: nfs3_free_createdata(data); dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSSTAT], .rpc_argp = fhandle, .rpc_resp = stat, }; int status; dprintk("NFS call fsstat\n"); nfs_fattr_init(stat->fattr); zql_control_test(server); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsstat: %d\n", status); return status; } static int do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); return status; } /* * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via * nfs_create_server */ static int nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int status; zql_control_test(server); status = do_proc_fsinfo(server->client, fhandle, info); if (status && server->nfs_client->cl_rpcclient != server->client) status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info); return status; }
static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* * V2 SYMLINK requests don't return any attributes. Setting the * filehandle size to zero indicates to nfs_instantiate that it * should fill in the data with a LOOKUP call on the wire. */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr, NULL); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass a temporary * buffer to the encode function, which installs it in the receive * the receive iovec. The decode function just parses the reply to make * sure it is syntactically correct; the entries itself are decoded * from nfs_readdir by calling the decode_entry function directly. */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { struct inode *inode = data->header->inode; nfs_invalidate_atime(inode); if (task->tk_status >= 0) { nfs_refresh_inode(inode, data->res.fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (data->args.offset + data->res.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data) { rpc_call_start(task); } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { struct inode *inode = data->header->inode; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; }
/* * Create a regular file. */ static int nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags) { struct posix_acl *default_acl, *acl; struct nfs3_createdata *data; int status = -ENOMEM; dprintk("NFS call create %pd\n", dentry); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_CREATE]; data->arg.create.fh = NFS_FH(dir); data->arg.create.name = dentry->d_name.name; data->arg.create.len = dentry->d_name.len; data->arg.create.sattr = sattr; data->arg.create.createmode = NFS3_CREATE_UNCHECKED; if (flags & O_EXCL) { data->arg.create.createmode = NFS3_CREATE_EXCLUSIVE; data->arg.create.verifier[0] = cpu_to_be32(jiffies); data->arg.create.verifier[1] = cpu_to_be32(current->pid); } status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl); if (status) goto out; zql_control_test(NFS_SERVER(dir)); for (;;) { status = nfs3_do_create(dir, dentry, data); if (status != -ENOTSUPP) break; /* If the server doesn't support the exclusive creation * semantics, try again with simple 'guarded' mode. */ switch (data->arg.create.createmode) { case NFS3_CREATE_EXCLUSIVE: data->arg.create.createmode = NFS3_CREATE_GUARDED; break; case NFS3_CREATE_GUARDED: data->arg.create.createmode = NFS3_CREATE_UNCHECKED; break; case NFS3_CREATE_UNCHECKED: goto out; } nfs_fattr_init(data->res.dir_attr); nfs_fattr_init(data->res.fattr); } if (status != 0) goto out_release_acls; /* When we created the file with exclusive semantics, make * sure we set the attributes afterwards. */ if (data->arg.create.createmode == NFS3_CREATE_EXCLUSIVE) { dprintk("NFS call setattr (post-create)\n"); if (!(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if (!(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; /* Note: we could use a guarded setattr here, but I'm * not sure this buys us anything (and I'd have * to revamp the NFSv3 XDR code) */ status = nfs3_proc_setattr(dentry, data->res.fattr, sattr); nfs_post_op_update_inode(dentry->d_inode, data->res.fattr); dprintk("NFS reply setattr (post-create): %d\n", status); if (status != 0) goto out_release_acls; } status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl); out_release_acls: posix_acl_release(acl); posix_acl_release(default_acl); out: nfs3_free_createdata(data); dprintk("NFS reply create: %d\n", status); return status; }
static int nfs_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct nfs_diropok res = { .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LOOKUP], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call lookup %s\n", name->name); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs_readlinkargs args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READLINK], .rpc_argp = &args, }; int status; dprintk("NFS call readlink\n"); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); dprintk("NFS reply readlink: %d\n", status); return status; } static int nfs_proc_read(struct nfs_read_data *rdata) { int flags = rdata->flags; struct inode * inode = rdata->inode; struct nfs_fattr * fattr = rdata->res.fattr; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READ], .rpc_argp = &rdata->args, .rpc_resp = &rdata->res, .rpc_cred = rdata->cred, }; int status; dprintk("NFS call read %d @ %Ld\n", rdata->args.count, (long long) rdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags); if (status >= 0) { nfs_refresh_inode(inode, fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (rdata->args.offset + rdata->args.count >= fattr->size) rdata->res.eof = 1; } dprintk("NFS reply read: %d\n", status); return status; } static int nfs_proc_write(struct nfs_write_data *wdata) { int flags = wdata->flags; struct inode * inode = wdata->inode; struct nfs_fattr * fattr = wdata->res.fattr; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_WRITE], .rpc_argp = &wdata->args, .rpc_resp = &wdata->res, .rpc_cred = wdata->cred, }; int status; dprintk("NFS call write %d @ %Ld\n", wdata->args.count, (long long) wdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags); if (status >= 0) { nfs_post_op_update_inode(inode, fattr); wdata->res.count = wdata->args.count; wdata->verf.committed = NFS_FILE_SYNC; } dprintk("NFS reply write: %d\n", status); return status < 0? status : wdata->res.count; } static int nfs_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nameidata *nd) { struct nfs_fh fhandle; struct nfs_fattr fattr; struct nfs_createargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr }; struct nfs_diropok res = { .fh = &fhandle, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_CREATE], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs_fattr_init(&fattr); dprintk("NFS call create %s\n", dentry->d_name.name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (status == 0) status = nfs_instantiate(dentry, &fhandle, &fattr); dprintk("NFS reply create: %d\n", status); return status; } /* * In NFSv2, mknod is grafted onto the create call. */ static int nfs_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs_fh fhandle; struct nfs_fattr fattr; struct nfs_createargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr }; struct nfs_diropok res = { .fh = &fhandle, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_CREATE], .rpc_argp = &arg, .rpc_resp = &res, }; int status, mode; dprintk("NFS call mknod %s\n", dentry->d_name.name); mode = sattr->ia_mode; if (S_ISFIFO(mode)) { sattr->ia_mode = (mode & ~S_IFMT) | S_IFCHR; sattr->ia_valid &= ~ATTR_SIZE; } else if (S_ISCHR(mode) || S_ISBLK(mode)) { sattr->ia_valid |= ATTR_SIZE; sattr->ia_size = new_encode_dev(rdev);/* get out your barf bag */ } nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == -EINVAL && S_ISFIFO(mode)) { sattr->ia_mode = mode; nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); } if (status == 0) status = nfs_instantiate(dentry, &fhandle, &fattr); dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_REMOVE], .rpc_argp = &arg, }; int status; dprintk("NFS call remove %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply remove: %d\n", status); return status; } static int nfs_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, struct qstr *name) { struct nfs_diropargs *arg; arg = (struct nfs_diropargs *)kmalloc(sizeof(*arg), GFP_KERNEL); if (!arg) return -ENOMEM; arg->fh = NFS_FH(dir->d_inode); arg->name = name->name; arg->len = name->len; msg->rpc_proc = &nfs_procedures[NFSPROC_REMOVE]; msg->rpc_argp = arg; return 0; } static int nfs_proc_unlink_done(struct dentry *dir, struct rpc_task *task) { struct rpc_message *msg = &task->tk_msg; if (msg->rpc_argp) { nfs_mark_for_revalidate(dir->d_inode); kfree(msg->rpc_argp); } return 0; } static int nfs_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_renameargs arg = { .fromfh = NFS_FH(old_dir), .fromname = old_name->name, .fromlen = old_name->len, .tofh = NFS_FH(new_dir), .toname = new_name->name, .tolen = new_name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RENAME], .rpc_argp = &arg, }; int status; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_mark_for_revalidate(old_dir); nfs_mark_for_revalidate(new_dir); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = name->name, .fromlen = name->len, .topath = path->name, .tolen = path->len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status; if (path->len > NFS2_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %s -> %s\n", name->name, path->name); nfs_fattr_init(fattr); fhandle->size = 0; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_fh fhandle; struct nfs_fattr fattr; struct nfs_createargs arg = { .fh = NFS_FH(dir), .name = dentry->d_name.name, .len = dentry->d_name.len, .sattr = sattr }; struct nfs_diropok res = { .fh = &fhandle, .fattr = &fattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call mkdir %s\n", dentry->d_name.name); nfs_fattr_init(&fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, &fhandle, &fattr); dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass a temporary * buffer to the encode function, which installs it in the receive * the receive iovec. The decode function just parses the reply to make * sure it is syntactically correct; the entries itself are decoded * from nfs_readdir by calling the decode_entry function directly. */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page *page, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = &page, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; lock_kernel(); dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); dprintk("NFS reply readdir: %d\n", status); unlock_kernel(); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (task->tk_status >= 0) { nfs_refresh_inode(data->inode, data->res.fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (data->args.offset + data->args.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data) { struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READ], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; rpc_call_setup(&data->task, &msg, 0); } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (task->tk_status >= 0) nfs_post_op_update_inode(data->inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, int how) { struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_WRITE], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; /* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */ data->args.stable = NFS_FILE_SYNC; /* Finalize the task. */ rpc_call_setup(&data->task, &msg, 0); } static void nfs_proc_commit_setup(struct nfs_write_data *data, int how) { BUG(); } static int nfs_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { return nlmclnt_proc(filp->f_dentry->d_inode, cmd, fl); } struct nfs_rpc_ops nfs_v2_clientops = { .version = 2, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs_dir_inode_operations, .file_inode_ops = &nfs_file_inode_operations, .getroot = nfs_proc_get_root, .getattr = nfs_proc_getattr, .setattr = nfs_proc_setattr, .lookup = nfs_proc_lookup, .access = NULL, /* access */ .readlink = nfs_proc_readlink, .read = nfs_proc_read, .write = nfs_proc_write, .commit = NULL, /* commit */ .create = nfs_proc_create, .remove = nfs_proc_remove, .unlink_setup = nfs_proc_unlink_setup, .unlink_done = nfs_proc_unlink_done, .rename = nfs_proc_rename, .link = nfs_proc_link, .symlink = nfs_proc_symlink, .mkdir = nfs_proc_mkdir, .rmdir = nfs_proc_rmdir, .readdir = nfs_proc_readdir, .mknod = nfs_proc_mknod, .statfs = nfs_proc_statfs, .fsinfo = nfs_proc_fsinfo, .pathconf = nfs_proc_pathconf, .decode_dirent = nfs_decode_dirent, .read_setup = nfs_proc_read_setup, .read_done = nfs_read_done, .write_setup = nfs_proc_write_setup, .write_done = nfs_write_done, .commit_setup = nfs_proc_commit_setup, .file_open = nfs_open, .file_release = nfs_release, .lock = nfs_proc_lock, };
static int nfs_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct nfs_diropok res = { .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LOOKUP], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call lookup %s\n", name->name); nfs_fattr_init(fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs_readlinkargs args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READLINK], .rpc_argp = &args, }; int status; dprintk("NFS call readlink\n"); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); dprintk("NFS reply readlink: %d\n", status); return status; } struct nfs_createdata { struct nfs_createargs arg; struct nfs_diropok res; struct nfs_fh fhandle; struct nfs_fattr fattr; }; static struct nfs_createdata *nfs_alloc_createdata(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; data = kmalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { data->arg.fh = NFS_FH(dir); data->arg.name = dentry->d_name.name; data->arg.len = dentry->d_name.len; data->arg.sattr = sattr; nfs_fattr_init(&data->fattr); data->fhandle.size = 0; data->res.fh = &data->fhandle; data->res.fattr = &data->fattr; } return data; }; static void nfs_free_createdata(const struct nfs_createdata *data) { kfree(data); }
static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; nfs_invalidate_atime(data->inode); if (task->tk_status >= 0) { nfs_refresh_inode(data->inode, data->res.fattr); /* */ if (data->args.offset + data->args.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data) { rpc_call_start(task); } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; }
struct posix_acl *nfs3_proc_getacl(struct inode *inode, int type) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_fattr fattr; struct page *pages[NFSACL_MAXPAGES] = { }; struct nfs3_getaclargs args = { .fh = NFS_FH(inode), /* The xdr layer may allocate pages here. */ .pages = pages, }; struct nfs3_getaclres res = { .fattr = &fattr, }; struct rpc_message msg = { .rpc_argp = &args, .rpc_resp = &res, }; struct posix_acl *acl; int status, count; if (!nfs_server_capable(inode, NFS_CAP_ACLS)) return ERR_PTR(-EOPNOTSUPP); status = nfs_revalidate_inode(server, inode); if (status < 0) return ERR_PTR(status); if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); acl = nfs3_get_cached_acl(inode, type); if (acl != ERR_PTR(-EAGAIN)) return acl; acl = NULL; /* * Only get the access acl when explicitly requested: We don't * need it for access decisions, and only some applications use * it. Applications which request the access acl first are not * penalized from this optimization. */ if (type == ACL_TYPE_ACCESS) args.mask |= NFS_ACLCNT|NFS_ACL; if (S_ISDIR(inode->i_mode)) args.mask |= NFS_DFACLCNT|NFS_DFACL; if (args.mask == 0) return NULL; dprintk("NFS call getacl\n"); msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_GETACL]; nfs_fattr_init(&fattr); status = rpc_call_sync(server->client_acl, &msg, 0); dprintk("NFS reply getacl: %d\n", status); /* pages may have been allocated at the xdr layer. */ for (count = 0; count < NFSACL_MAXPAGES && args.pages[count]; count++) __free_page(args.pages[count]); switch (status) { case 0: status = nfs_refresh_inode(inode, &fattr); break; case -EPFNOSUPPORT: case -EPROTONOSUPPORT: dprintk("NFS_V3_ACL extension not supported; disabling\n"); server->caps &= ~NFS_CAP_ACLS; case -ENOTSUPP: status = -EOPNOTSUPP; default: goto getout; } if ((args.mask & res.mask) != args.mask) { status = -EIO; goto getout; } if (res.acl_access != NULL) { if (posix_acl_equiv_mode(res.acl_access, NULL) == 0) { posix_acl_release(res.acl_access); res.acl_access = NULL; } } nfs3_cache_acls(inode, (res.mask & NFS_ACL) ? res.acl_access : ERR_PTR(-EINVAL), (res.mask & NFS_DFACL) ? res.acl_default : ERR_PTR(-EINVAL)); switch(type) { case ACL_TYPE_ACCESS: acl = res.acl_access; res.acl_access = NULL; break; case ACL_TYPE_DEFAULT: acl = res.acl_default; res.acl_default = NULL; } getout: posix_acl_release(res.acl_access); posix_acl_release(res.acl_default); if (status != 0) { posix_acl_release(acl); acl = ERR_PTR(status); } return acl; }
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data) { struct rpc_message msg = { .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct rpc_task_setup task_setup_data = { .rpc_message = &msg, .callback_ops = &nfs_unlink_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; struct dentry *alias; alias = d_lookup(parent, &data->args.name); if (alias != NULL) { int ret; void *devname_garbage = NULL; nfs_free_dname(data); ret = nfs_copy_dname(alias, data); spin_lock(&alias->d_lock); if (ret == 0 && alias->d_inode != NULL && !(alias->d_flags & DCACHE_NFSFS_RENAMED)) { devname_garbage = alias->d_fsdata; alias->d_fsdata = data; alias->d_flags |= DCACHE_NFSFS_RENAMED; ret = 1; } else ret = 0; spin_unlock(&alias->d_lock); nfs_dec_sillycount(dir); dput(alias); kfree(devname_garbage); return ret; } data->dir = igrab(dir); if (!data->dir) { nfs_dec_sillycount(dir); return 0; } nfs_sb_active(dir->i_sb); data->args.fh = NFS_FH(dir); nfs_fattr_init(data->res.dir_attr); NFS_PROTO(dir)->unlink_setup(&msg, dir); task_setup_data.rpc_client = NFS_CLIENT(dir); task = rpc_run_task(&task_setup_data); if (!IS_ERR(task)) rpc_put_task_async(task); return 1; } static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data) { struct dentry *parent; struct inode *dir; int ret = 0; parent = dget_parent(dentry); if (parent == NULL) goto out_free; dir = parent->d_inode; spin_lock(&dir->i_lock); if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) { hlist_add_head(&data->list, &NFS_I(dir)->silly_list); spin_unlock(&dir->i_lock); ret = 1; goto out_dput; } spin_unlock(&dir->i_lock); ret = nfs_do_call_unlink(parent, dir, data); out_dput: dput(parent); out_free: return ret; } void nfs_block_sillyrename(struct dentry *dentry) { struct nfs_inode *nfsi = NFS_I(dentry->d_inode); wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1); } void nfs_unblock_sillyrename(struct dentry *dentry) { struct inode *dir = dentry->d_inode; struct nfs_inode *nfsi = NFS_I(dir); struct nfs_unlinkdata *data; atomic_inc(&nfsi->silly_count); spin_lock(&dir->i_lock); while (!hlist_empty(&nfsi->silly_list)) { if (!atomic_inc_not_zero(&nfsi->silly_count)) break; data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list); hlist_del(&data->list); spin_unlock(&dir->i_lock); if (nfs_do_call_unlink(dentry, dir, data) == 0) nfs_free_unlinkdata(data); spin_lock(&dir->i_lock); } spin_unlock(&dir->i_lock); } static int nfs_async_unlink(struct inode *dir, struct dentry *dentry) { struct nfs_unlinkdata *data; int status = -ENOMEM; void *devname_garbage = NULL; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data == NULL) goto out; data->cred = rpc_lookup_cred(); if (IS_ERR(data->cred)) { status = PTR_ERR(data->cred); goto out_free; } data->res.dir_attr = &data->dir_attr; status = -EBUSY; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) goto out_unlock; dentry->d_flags |= DCACHE_NFSFS_RENAMED; devname_garbage = dentry->d_fsdata; dentry->d_fsdata = data; spin_unlock(&dentry->d_lock); if (devname_garbage) kfree(devname_garbage); return 0; out_unlock: spin_unlock(&dentry->d_lock); put_rpccred(data->cred); out_free: kfree(data); out: return status; } void nfs_complete_unlink(struct dentry *dentry, struct inode *inode) { struct nfs_unlinkdata *data = NULL; spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { dentry->d_flags &= ~DCACHE_NFSFS_RENAMED; data = dentry->d_fsdata; dentry->d_fsdata = NULL; } spin_unlock(&dentry->d_lock); if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data))) nfs_free_unlinkdata(data); } static void nfs_cancel_async_unlink(struct dentry *dentry) { spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { struct nfs_unlinkdata *data = dentry->d_fsdata; dentry->d_flags &= ~DCACHE_NFSFS_RENAMED; dentry->d_fsdata = NULL; spin_unlock(&dentry->d_lock); nfs_free_unlinkdata(data); return; } spin_unlock(&dentry->d_lock); }