Пример #1
0
static int
nfs_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
	       dev_t rdev)
{
	struct nfs_createdata *data;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_CREATE],
	};
	umode_t mode;
	int status = -ENOMEM;

	dprintk("NFS call  mknod %s\n", dentry->d_name.name);

	mode = sattr->ia_mode;
	if (S_ISFIFO(mode)) {
		sattr->ia_mode = (mode & ~S_IFMT) | S_IFCHR;
		sattr->ia_valid &= ~ATTR_SIZE;
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
		sattr->ia_valid |= ATTR_SIZE;
		sattr->ia_size = new_encode_dev(rdev);/*                       */
	}

	data = nfs_alloc_createdata(dir, dentry, sattr);
	if (data == NULL)
		goto out;
	msg.rpc_argp = &data->arg;
	msg.rpc_resp = &data->res;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	if (status == -EINVAL && S_ISFIFO(mode)) {
		sattr->ia_mode = mode;
		nfs_fattr_init(data->res.fattr);
		status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	}
	if (status == 0)
		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
	nfs_free_createdata(data);
out:
	dprintk("NFS reply mknod: %d\n", status);
	return status;
}
Пример #2
0
static int
nfs_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
		  struct nfs_fsinfo *info)
{
	struct nfs_fattr *fattr = info->fattr;
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_GETATTR],
		.rpc_argp	= fhandle,
		.rpc_resp	= fattr,
	};
	int status;

	dprintk("%s: call getattr\n", __func__);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	/*                                                */
	if (status && server->nfs_client->cl_rpcclient != server->client)
		status = rpc_call_sync(server->nfs_client->cl_rpcclient, &msg, 0);
	dprintk("%s: reply getattr: %d\n", __func__, status);
	if (status)
		return status;
	dprintk("%s: call statfs\n", __func__);
	msg.rpc_proc = &nfs_procedures[NFSPROC_STATFS];
	msg.rpc_resp = &fsinfo;
	status = rpc_call_sync(server->client, &msg, 0);
	/*                                                */
	if (status && server->nfs_client->cl_rpcclient != server->client)
		status = rpc_call_sync(server->nfs_client->cl_rpcclient, &msg, 0);
	dprintk("%s: reply statfs: %d\n", __func__, status);
	if (status)
		return status;
	info->rtmax  = NFS_MAXDATA;
	info->rtpref = fsinfo.tsize;
	info->rtmult = fsinfo.bsize;
	info->wtmax  = NFS_MAXDATA;
	info->wtpref = fsinfo.tsize;
	info->wtmult = fsinfo.bsize;
	info->dtpref = fsinfo.tsize;
	info->maxfilesize = 0x7FFFFFFF;
	info->lease_time = 0;
	return 0;
}
Пример #3
0
int migrate_nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *mntfh, struct nfs_fattr *fattr)
{
    struct nfs_fsinfo fsinfo;
    //struct nfs_client *clp = server->nfs_client;
    int error;

    dprintk("--> migrate_nfs_probe_fsinfo()\n");

    /*if (clp->rpc_ops->set_capabilities != NULL) {
    	error = clp->rpc_ops->set_capabilities(server, mntfh);
    	if (error < 0)
    		goto out_error;
    }*/

    fsinfo.fattr = fattr;
    fsinfo.layouttype = 0;
    error = migrate_nfs3_proc_fsinfo(server, mntfh, &fsinfo);
    if (error < 0)
        goto out_error;

    migrate_nfs_server_set_fsinfo(server, mntfh, &fsinfo);

    /* Get some general file system info */
    if (server->namelen == 0) {
        struct nfs_pathconf pathinfo;

        pathinfo.fattr = fattr;
        nfs_fattr_init(fattr);

        if (migrate_nfs3_proc_pathconf(server, mntfh, &pathinfo) >= 0)
            server->namelen = pathinfo.max_namelen;
    }

    dprintk("<-- migrate_nfs_probe_fsinfo() = 0\n");
    return 0;

out_error:
    dprintk("migrate_nfs_probe_fsinfo: error = %d\n", -error);
    return error;
}
Пример #4
0
static int
do_proc_get_root(struct rpc_clnt *client, struct nfs_fh *fhandle,
		 struct nfs_fsinfo *info)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_FSINFO],
		.rpc_argp	= fhandle,
		.rpc_resp	= info,
	};
	int	status;

;
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(client, &msg, 0);
;
	if (!(info->fattr->valid & NFS_ATTR_FATTR)) {
		msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR];
		msg.rpc_resp = info->fattr;
		status = rpc_call_sync(client, &msg, 0);
;
	}
	return status;
}
Пример #5
0
static int
do_proc_get_root(struct rpc_clnt *client, struct nfs_fh *fhandle,
                 struct nfs_fsinfo *info)
{
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_FSINFO],
        .rpc_argp	= fhandle,
        .rpc_resp	= info,
    };
    int	status;

    dprintk("%s: call  fsinfo\n", __func__);
    nfs_fattr_init(info->fattr);
    status = rpc_call_sync(client, &msg, 0);
    dprintk("%s: reply fsinfo: %d\n", __func__, status);
    if (status == 0 && !(info->fattr->valid & NFS_ATTR_FATTR)) {
        msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR];
        msg.rpc_resp = info->fattr;
        status = rpc_call_sync(client, &msg, 0);
        dprintk("%s: reply getattr: %d\n", __func__, status);
    }
    return status;
}
Пример #6
0
static int
nfs3_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
			struct iattr *sattr)
{
	struct inode *inode = dentry->d_inode;
	struct nfs3_sattrargs	arg = {
		.fh		= NFS_FH(inode),
		.sattr		= sattr,
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_SETATTR],
		.rpc_argp	= &arg,
		.rpc_resp	= fattr,
	};
	int	status;

	dprintk("NFS call  setattr\n");
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	if (status == 0)
		nfs_setattr_update_inode(inode, sattr);
	dprintk("NFS reply setattr: %d\n", status);
	return status;
}
Пример #7
0
static int
nfs3_proc_lookup(struct inode *dir, struct qstr *name,
		 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
	struct nfs_fattr	dir_attr;
	struct nfs3_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct nfs3_diropres	res = {
		.dir_attr	= &dir_attr,
		.fh		= fhandle,
		.fattr		= fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_LOOKUP],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  lookup %s\n", name->name);
	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	if (status >= 0 && !(fattr->valid & NFS_ATTR_FATTR)) {
		msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR];
		msg.rpc_argp = fhandle;
		msg.rpc_resp = fattr;
		status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	}
	dprintk("NFS reply lookup: %d\n", status);
	if (status >= 0)
		status = nfs_refresh_inode(dir, &dir_attr);
	return status;
}

static int nfs3_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
	struct nfs_fattr	fattr;
	struct nfs3_accessargs	arg = {
		.fh		= NFS_FH(inode),
	};
	struct nfs3_accessres	res = {
		.fattr		= &fattr,
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_ACCESS],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
		.rpc_cred	= entry->cred,
	};
	int mode = entry->mask;
	int status;

	dprintk("NFS call  access\n");

	if (mode & MAY_READ)
		arg.access |= NFS3_ACCESS_READ;
	if (S_ISDIR(inode->i_mode)) {
		if (mode & MAY_WRITE)
			arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE;
		if (mode & MAY_EXEC)
			arg.access |= NFS3_ACCESS_LOOKUP;
	} else {
		if (mode & MAY_WRITE)
			arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND;
		if (mode & MAY_EXEC)
			arg.access |= NFS3_ACCESS_EXECUTE;
	}
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_refresh_inode(inode, &fattr);
	if (status == 0) {
		entry->mask = 0;
		if (res.access & NFS3_ACCESS_READ)
			entry->mask |= MAY_READ;
		if (res.access & (NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE))
			entry->mask |= MAY_WRITE;
		if (res.access & (NFS3_ACCESS_LOOKUP|NFS3_ACCESS_EXECUTE))
			entry->mask |= MAY_EXEC;
	}
	dprintk("NFS reply access: %d\n", status);
	return status;
}

static int nfs3_proc_readlink(struct inode *inode, struct page *page,
		unsigned int pgbase, unsigned int pglen)
{
	struct nfs_fattr	fattr;
	struct nfs3_readlinkargs args = {
		.fh		= NFS_FH(inode),
		.pgbase		= pgbase,
		.pglen		= pglen,
		.pages		= &page
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_READLINK],
		.rpc_argp	= &args,
		.rpc_resp	= &fattr,
	};
	int			status;

	dprintk("NFS call  readlink\n");
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_refresh_inode(inode, &fattr);
	dprintk("NFS reply readlink: %d\n", status);
	return status;
}

static int nfs3_proc_read(struct nfs_read_data *rdata)
{
	int			flags = rdata->flags;
	struct inode *		inode = rdata->inode;
	struct nfs_fattr *	fattr = rdata->res.fattr;
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_READ],
		.rpc_argp	= &rdata->args,
		.rpc_resp	= &rdata->res,
		.rpc_cred	= rdata->cred,
	};
	int			status;

	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
			(long long) rdata->args.offset);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags);
	if (status >= 0)
		nfs_refresh_inode(inode, fattr);
	dprintk("NFS reply read: %d\n", status);
	return status;
}

static int nfs3_proc_write(struct nfs_write_data *wdata)
{
	int			rpcflags = wdata->flags;
	struct inode *		inode = wdata->inode;
	struct nfs_fattr *	fattr = wdata->res.fattr;
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_WRITE],
		.rpc_argp	= &wdata->args,
		.rpc_resp	= &wdata->res,
		.rpc_cred	= wdata->cred,
	};
	int			status;

	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
			(long long) wdata->args.offset);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, rpcflags);
	if (status >= 0)
		nfs_post_op_update_inode(inode, fattr);
	dprintk("NFS reply write: %d\n", status);
	return status < 0? status : wdata->res.count;
}

static int nfs3_proc_commit(struct nfs_write_data *cdata)
{
	struct inode *		inode = cdata->inode;
	struct nfs_fattr *	fattr = cdata->res.fattr;
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_COMMIT],
		.rpc_argp	= &cdata->args,
		.rpc_resp	= &cdata->res,
		.rpc_cred	= cdata->cred,
	};
	int			status;

	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
			(long long) cdata->args.offset);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	if (status >= 0)
		nfs_post_op_update_inode(inode, fattr);
	dprintk("NFS reply commit: %d\n", status);
	return status;
}

/*
 * Create a regular file.
 * For now, we don't implement O_EXCL.
 */
static int
nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
		 int flags, struct nameidata *nd)
{
	struct nfs_fh		fhandle;
	struct nfs_fattr	fattr;
	struct nfs_fattr	dir_attr;
	struct nfs3_createargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr,
	};
	struct nfs3_diropres	res = {
		.dir_attr	= &dir_attr,
		.fh		= &fhandle,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_CREATE],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	mode_t mode = sattr->ia_mode;
	int status;

	dprintk("NFS call  create %s\n", dentry->d_name.name);
	arg.createmode = NFS3_CREATE_UNCHECKED;
	if (flags & O_EXCL) {
		arg.createmode  = NFS3_CREATE_EXCLUSIVE;
		arg.verifier[0] = jiffies;
		arg.verifier[1] = current->pid;
	}

	sattr->ia_mode &= ~current->fs->umask;

again:
	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_refresh_inode(dir, &dir_attr);

	/* If the server doesn't support the exclusive creation semantics,
	 * try again with simple 'guarded' mode. */
	if (status == NFSERR_NOTSUPP) {
		switch (arg.createmode) {
			case NFS3_CREATE_EXCLUSIVE:
				arg.createmode = NFS3_CREATE_GUARDED;
				break;

			case NFS3_CREATE_GUARDED:
				arg.createmode = NFS3_CREATE_UNCHECKED;
				break;

			case NFS3_CREATE_UNCHECKED:
				goto out;
		}
		goto again;
	}

	if (status == 0)
		status = nfs_instantiate(dentry, &fhandle, &fattr);
	if (status != 0)
		goto out;

	/* When we created the file with exclusive semantics, make
	 * sure we set the attributes afterwards. */
	if (arg.createmode == NFS3_CREATE_EXCLUSIVE) {
		dprintk("NFS call  setattr (post-create)\n");

		if (!(sattr->ia_valid & ATTR_ATIME_SET))
			sattr->ia_valid |= ATTR_ATIME;
		if (!(sattr->ia_valid & ATTR_MTIME_SET))
			sattr->ia_valid |= ATTR_MTIME;

		/* Note: we could use a guarded setattr here, but I'm
		 * not sure this buys us anything (and I'd have
		 * to revamp the NFSv3 XDR code) */
		status = nfs3_proc_setattr(dentry, &fattr, sattr);
		if (status == 0)
			nfs_setattr_update_inode(dentry->d_inode, sattr);
		nfs_refresh_inode(dentry->d_inode, &fattr);
		dprintk("NFS reply setattr (post-create): %d\n", status);
	}
	if (status != 0)
		goto out;
	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	dprintk("NFS reply create: %d\n", status);
	return status;
}

static int
nfs3_proc_remove(struct inode *dir, struct qstr *name)
{
	struct nfs_fattr	dir_attr;
	struct nfs3_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_REMOVE],
		.rpc_argp	= &arg,
		.rpc_resp	= &dir_attr,
	};
	int			status;

	dprintk("NFS call  remove %s\n", name->name);
	nfs_fattr_init(&dir_attr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	dprintk("NFS reply remove: %d\n", status);
	return status;
}

static int
nfs3_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, struct qstr *name)
{
	struct unlinkxdr {
		struct nfs3_diropargs arg;
		struct nfs_fattr res;
	} *ptr;

	ptr = (struct unlinkxdr *)kmalloc(sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;
	ptr->arg.fh = NFS_FH(dir->d_inode);
	ptr->arg.name = name->name;
	ptr->arg.len = name->len;
	nfs_fattr_init(&ptr->res);
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE];
	msg->rpc_argp = &ptr->arg;
	msg->rpc_resp = &ptr->res;
	return 0;
}

static int
nfs3_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
{
	struct rpc_message *msg = &task->tk_msg;
	struct nfs_fattr	*dir_attr;

	if (nfs3_async_handle_jukebox(task, dir->d_inode))
		return 1;
	if (msg->rpc_argp) {
		dir_attr = (struct nfs_fattr*)msg->rpc_resp;
		nfs_post_op_update_inode(dir->d_inode, dir_attr);
		kfree(msg->rpc_argp);
	}
	return 0;
}

static int
nfs3_proc_rename(struct inode *old_dir, struct qstr *old_name,
		 struct inode *new_dir, struct qstr *new_name)
{
	struct nfs_fattr	old_dir_attr, new_dir_attr;
	struct nfs3_renameargs	arg = {
		.fromfh		= NFS_FH(old_dir),
		.fromname	= old_name->name,
		.fromlen	= old_name->len,
		.tofh		= NFS_FH(new_dir),
		.toname		= new_name->name,
		.tolen		= new_name->len
	};
	struct nfs3_renameres	res = {
		.fromattr	= &old_dir_attr,
		.toattr		= &new_dir_attr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_RENAME],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  rename %s -> %s\n", old_name->name, new_name->name);
	nfs_fattr_init(&old_dir_attr);
	nfs_fattr_init(&new_dir_attr);
	status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0);
	nfs_post_op_update_inode(old_dir, &old_dir_attr);
	nfs_post_op_update_inode(new_dir, &new_dir_attr);
	dprintk("NFS reply rename: %d\n", status);
	return status;
}

static int
nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs_fattr	dir_attr, fattr;
	struct nfs3_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct nfs3_linkres	res = {
		.dir_attr	= &dir_attr,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_LINK],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  link %s\n", name->name);
	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	nfs_post_op_update_inode(inode, &fattr);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs3_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path,
		  struct iattr *sattr, struct nfs_fh *fhandle,
		  struct nfs_fattr *fattr)
{
	struct nfs_fattr	dir_attr;
	struct nfs3_symlinkargs	arg = {
		.fromfh		= NFS_FH(dir),
		.fromname	= name->name,
		.fromlen	= name->len,
		.topath		= path->name,
		.tolen		= path->len,
		.sattr		= sattr
	};
	struct nfs3_diropres	res = {
		.dir_attr	= &dir_attr,
		.fh		= fhandle,
		.fattr		= fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_SYMLINK],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	if (path->len > NFS3_MAXPATHLEN)
		return -ENAMETOOLONG;
	dprintk("NFS call  symlink %s -> %s\n", name->name, path->name);
	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_fh fhandle;
	struct nfs_fattr fattr, dir_attr;
	struct nfs3_mkdirargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr
	};
	struct nfs3_diropres	res = {
		.dir_attr	= &dir_attr,
		.fh		= &fhandle,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_MKDIR],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int mode = sattr->ia_mode;
	int status;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);

	sattr->ia_mode &= ~current->fs->umask;

	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	if (status != 0)
		goto out;
	status = nfs_instantiate(dentry, &fhandle, &fattr);
	if (status != 0)
		goto out;
	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs3_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_fattr	dir_attr;
	struct nfs3_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_RMDIR],
		.rpc_argp	= &arg,
		.rpc_resp	= &dir_attr,
	};
	int			status;

	dprintk("NFS call  rmdir %s\n", name->name);
	nfs_fattr_init(&dir_attr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass the user buffer
 * to the encode function, which installs it in the receive iovec.
 * The decode function itself doesn't perform any decoding, it just makes
 * sure the reply is syntactically correct.
 *
 * Also note that this implementation handles both plain readdir and
 * readdirplus.
 */
static int
nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		  u64 cookie, struct page *page, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	struct nfs_fattr	dir_attr;
	u32			*verf = NFS_COOKIEVERF(dir);
	struct nfs3_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.verf		= {verf[0], verf[1]},
		.plus		= plus,
		.count		= count,
		.pages		= &page
	};
	struct nfs3_readdirres	res = {
		.dir_attr	= &dir_attr,
		.verf		= verf,
		.plus		= plus
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
		.rpc_cred	= cred
	};
	int			status;

	lock_kernel();

	if (plus)
		msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS];

	dprintk("NFS call  readdir%s %d\n",
			plus? "plus" : "", (unsigned int) cookie);

	nfs_fattr_init(&dir_attr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_refresh_inode(dir, &dir_attr);
	dprintk("NFS reply readdir: %d\n", status);
	unlock_kernel();
	return status;
}

static int
nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
		dev_t rdev)
{
	struct nfs_fh fh;
	struct nfs_fattr fattr, dir_attr;
	struct nfs3_mknodargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr,
		.rdev		= rdev
	};
	struct nfs3_diropres	res = {
		.dir_attr	= &dir_attr,
		.fh		= &fh,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_MKNOD],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	mode_t mode = sattr->ia_mode;
	int status;

	switch (sattr->ia_mode & S_IFMT) {
	case S_IFBLK:	arg.type = NF3BLK;  break;
	case S_IFCHR:	arg.type = NF3CHR;  break;
	case S_IFIFO:	arg.type = NF3FIFO; break;
	case S_IFSOCK:	arg.type = NF3SOCK; break;
	default:	return -EINVAL;
	}

	dprintk("NFS call  mknod %s %u:%u\n", dentry->d_name.name,
			MAJOR(rdev), MINOR(rdev));

	sattr->ia_mode &= ~current->fs->umask;

	nfs_fattr_init(&dir_attr);
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, &dir_attr);
	if (status != 0)
		goto out;
	status = nfs_instantiate(dentry, &fh, &fattr);
	if (status != 0)
		goto out;
	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	dprintk("NFS reply mknod: %d\n", status);
	return status;
}

static int
nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
		 struct nfs_fsstat *stat)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_FSSTAT],
		.rpc_argp	= fhandle,
		.rpc_resp	= stat,
	};
	int	status;

	dprintk("NFS call  fsstat\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply statfs: %d\n", status);
	return status;
}

static int
nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
		 struct nfs_fsinfo *info)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_FSINFO],
		.rpc_argp	= fhandle,
		.rpc_resp	= info,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client_sys, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	return status;
}

static int
nfs3_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		   struct nfs_pathconf *info)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_PATHCONF],
		.rpc_argp	= fhandle,
		.rpc_resp	= info,
	};
	int	status;

	dprintk("NFS call  pathconf\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply pathconf: %d\n", status);
	return status;
}

static int nfs3_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;
	/* Call back common NFS readpage processing */
	if (task->tk_status >= 0)
		nfs_refresh_inode(data->inode, &data->fattr);
	return 0;
}

static void nfs3_proc_read_setup(struct nfs_read_data *data)
{
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_READ],
		.rpc_argp	= &data->args,
		.rpc_resp	= &data->res,
		.rpc_cred	= data->cred,
	};

	rpc_call_setup(&data->task, &msg, 0);
}

static int nfs3_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;
	if (task->tk_status >= 0)
		nfs_post_op_update_inode(data->inode, data->res.fattr);
	return 0;
}

static void nfs3_proc_write_setup(struct nfs_write_data *data, int how)
{
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_WRITE],
		.rpc_argp	= &data->args,
		.rpc_resp	= &data->res,
		.rpc_cred	= data->cred,
	};

	data->args.stable = NFS_UNSTABLE;
	if (how & FLUSH_STABLE) {
		data->args.stable = NFS_FILE_SYNC;
		if (NFS_I(data->inode)->ncommit)
			data->args.stable = NFS_DATA_SYNC;
	}

	/* Finalize the task. */
	rpc_call_setup(&data->task, &msg, 0);
}

static int nfs3_commit_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;
	if (task->tk_status >= 0)
		nfs_post_op_update_inode(data->inode, data->res.fattr);
	return 0;
}

static void nfs3_proc_commit_setup(struct nfs_write_data *data, int how)
{
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_COMMIT],
		.rpc_argp	= &data->args,
		.rpc_resp	= &data->res,
		.rpc_cred	= data->cred,
	};

	rpc_call_setup(&data->task, &msg, 0);
}

static int
nfs3_proc_lock(struct file *filp, int cmd, struct file_lock *fl)
{
	return nlmclnt_proc(filp->f_dentry->d_inode, cmd, fl);
}

struct nfs_rpc_ops	nfs_v3_clientops = {
	.version	= 3,			/* protocol version */
	.dentry_ops	= &nfs_dentry_operations,
	.dir_inode_ops	= &nfs3_dir_inode_operations,
	.file_inode_ops	= &nfs3_file_inode_operations,
	.getroot	= nfs3_proc_get_root,
	.getattr	= nfs3_proc_getattr,
	.setattr	= nfs3_proc_setattr,
	.lookup		= nfs3_proc_lookup,
	.access		= nfs3_proc_access,
	.readlink	= nfs3_proc_readlink,
	.read		= nfs3_proc_read,
	.write		= nfs3_proc_write,
	.commit		= nfs3_proc_commit,
	.create		= nfs3_proc_create,
	.remove		= nfs3_proc_remove,
	.unlink_setup	= nfs3_proc_unlink_setup,
	.unlink_done	= nfs3_proc_unlink_done,
	.rename		= nfs3_proc_rename,
	.link		= nfs3_proc_link,
	.symlink	= nfs3_proc_symlink,
	.mkdir		= nfs3_proc_mkdir,
	.rmdir		= nfs3_proc_rmdir,
	.readdir	= nfs3_proc_readdir,
	.mknod		= nfs3_proc_mknod,
	.statfs		= nfs3_proc_statfs,
	.fsinfo		= nfs3_proc_fsinfo,
	.pathconf	= nfs3_proc_pathconf,
	.decode_dirent	= nfs3_decode_dirent,
	.read_setup	= nfs3_proc_read_setup,
	.read_done	= nfs3_read_done,
	.write_setup	= nfs3_proc_write_setup,
	.write_done	= nfs3_write_done,
	.commit_setup	= nfs3_proc_commit_setup,
	.commit_done	= nfs3_commit_done,
	.file_open	= nfs_open,
	.file_release	= nfs_release,
	.lock		= nfs3_proc_lock,
	.clear_acl_cache = nfs3_forget_cached_acls,
};
Пример #8
0
static int
nfs_proc_remove(struct inode *dir, struct qstr *name)
{
	struct nfs_removeargs arg = {
		.fh = NFS_FH(dir),
		.name.len = name->len,
		.name.name = name->name,
	};
	struct rpc_message msg = { 
		.rpc_proc = &nfs_procedures[NFSPROC_REMOVE],
		.rpc_argp = &arg,
	};
	int			status;

	dprintk("NFS call  remove %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	dprintk("NFS reply remove: %d\n", status);
	return status;
}

static void
nfs_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
{
	msg->rpc_proc = &nfs_procedures[NFSPROC_REMOVE];
}

static int nfs_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
	if (nfs_async_handle_expired_key(task))
		return 0;
	nfs_mark_for_revalidate(dir);
	return 1;
}

static void
nfs_proc_rename_setup(struct rpc_message *msg, struct inode *dir)
{
	msg->rpc_proc = &nfs_procedures[NFSPROC_RENAME];
}

static int
nfs_proc_rename_done(struct rpc_task *task, struct inode *old_dir,
		     struct inode *new_dir)
{
	if (nfs_async_handle_expired_key(task))
		return 0;
	nfs_mark_for_revalidate(old_dir);
	nfs_mark_for_revalidate(new_dir);
	return 1;
}

static int
nfs_proc_rename(struct inode *old_dir, struct qstr *old_name,
		struct inode *new_dir, struct qstr *new_name)
{
	struct nfs_renameargs	arg = {
		.old_dir	= NFS_FH(old_dir),
		.old_name	= old_name,
		.new_dir	= NFS_FH(new_dir),
		.new_name	= new_name,
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RENAME],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rename %s -> %s\n", old_name->name, new_name->name);
	status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0);
	nfs_mark_for_revalidate(old_dir);
	nfs_mark_for_revalidate(new_dir);
	dprintk("NFS reply rename: %d\n", status);
	return status;
}

static int
nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LINK],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  link %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_mark_for_revalidate(inode);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page,
		 unsigned int len, struct iattr *sattr)
{
	struct nfs_fh *fh;
	struct nfs_fattr *fattr;
	struct nfs_symlinkargs	arg = {
		.fromfh		= NFS_FH(dir),
		.fromname	= dentry->d_name.name,
		.fromlen	= dentry->d_name.len,
		.pages		= &page,
		.pathlen	= len,
		.sattr		= sattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_SYMLINK],
		.rpc_argp	= &arg,
	};
	int status = -ENAMETOOLONG;

	dprintk("NFS call  symlink %s\n", dentry->d_name.name);

	if (len > NFS2_MAXPATHLEN)
		goto out;

	fh = nfs_alloc_fhandle();
	fattr = nfs_alloc_fattr();
	status = -ENOMEM;
	if (fh == NULL || fattr == NULL)
		goto out_free;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	/*
	 * V2 SYMLINK requests don't return any attributes.  Setting the
	 * filehandle size to zero indicates to nfs_instantiate that it
	 * should fill in the data with a LOOKUP call on the wire.
	 */
	if (status == 0)
		status = nfs_instantiate(dentry, fh, fattr);

out_free:
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fh);
out:
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_createdata *data;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_MKDIR],
	};
	int status = -ENOMEM;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);
	data = nfs_alloc_createdata(dir, dentry, sattr);
	if (data == NULL)
		goto out;
	msg.rpc_argp = &data->arg;
	msg.rpc_resp = &data->res;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	if (status == 0)
		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
	nfs_free_createdata(data);
out:
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RMDIR],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rmdir %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass a temporary
 * buffer to the encode function, which installs it in the receive
 * the receive iovec. The decode function just parses the reply to make
 * sure it is syntactically correct; the entries itself are decoded
 * from nfs_readdir by calling the decode_entry function directly.
 */
static int
nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		 u64 cookie, struct page **pages, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	struct nfs_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.count		= count,
		.pages		= pages,
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_cred	= cred,
	};
	int			status;

	dprintk("NFS call  readdir %d\n", (unsigned int)cookie);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

	nfs_invalidate_atime(dir);

	dprintk("NFS reply readdir: %d\n", status);
	return status;
}

static int
nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsstat *stat)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  statfs\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply statfs: %d\n", status);
	if (status)
		goto out;
	stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize;
	stat->fbytes = (u64)fsinfo.bfree  * fsinfo.bsize;
	stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize;
	stat->tfiles = 0;
	stat->ffiles = 0;
	stat->afiles = 0;
out:
	return status;
}

static int
nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsinfo *info)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	if (status)
		goto out;
	info->rtmax  = NFS_MAXDATA;
	info->rtpref = fsinfo.tsize;
	info->rtmult = fsinfo.bsize;
	info->wtmax  = NFS_MAXDATA;
	info->wtpref = fsinfo.tsize;
	info->wtmult = fsinfo.bsize;
	info->dtpref = fsinfo.tsize;
	info->maxfilesize = 0x7FFFFFFF;
	info->lease_time = 0;
out:
	return status;
}

static int
nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		  struct nfs_pathconf *info)
{
	info->max_link = 0;
	info->max_namelen = NFS2_MAXNAMLEN;
	return 0;
}

static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	if (nfs_async_handle_expired_key(task))
		return -EAGAIN;

	nfs_invalidate_atime(data->inode);
	if (task->tk_status >= 0) {
		nfs_refresh_inode(data->inode, data->res.fattr);
		/* Emulate the eof flag, which isn't normally needed in NFSv2
		 * as it is guaranteed to always return the file attributes
		 */
		if (data->args.offset + data->args.count >= data->res.fattr->size)
			data->res.eof = 1;
	}
	return 0;
}

static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs_procedures[NFSPROC_READ];
}

static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs_async_handle_expired_key(task))
		return -EAGAIN;

	if (task->tk_status >= 0)
		nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr);
	return 0;
}

static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	/* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */
	data->args.stable = NFS_FILE_SYNC;
	msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE];
}

static void
nfs_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	BUG();
}

static int
nfs_proc_lock(struct file *filp, int cmd, struct file_lock *fl)
{
	struct inode *inode = filp->f_path.dentry->d_inode;

	return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl);
}

/* Helper functions for NFS lock bounds checking */
#define NFS_LOCK32_OFFSET_MAX ((__s32)0x7fffffffUL)
static int nfs_lock_check_bounds(const struct file_lock *fl)
{
	__s32 start, end;

	start = (__s32)fl->fl_start;
	if ((loff_t)start != fl->fl_start)
		goto out_einval;

	if (fl->fl_end != OFFSET_MAX) {
		end = (__s32)fl->fl_end;
		if ((loff_t)end != fl->fl_end)
			goto out_einval;
	} else
		end = NFS_LOCK32_OFFSET_MAX;

	if (start < 0 || start > end)
		goto out_einval;
	return 0;
out_einval:
	return -EINVAL;
}

const struct nfs_rpc_ops nfs_v2_clientops = {
	.version	= 2,		       /* protocol version */
	.dentry_ops	= &nfs_dentry_operations,
	.dir_inode_ops	= &nfs_dir_inode_operations,
	.file_inode_ops	= &nfs_file_inode_operations,
	.getroot	= nfs_proc_get_root,
	.getattr	= nfs_proc_getattr,
	.setattr	= nfs_proc_setattr,
	.lookup		= nfs_proc_lookup,
	.access		= NULL,		       /* access */
	.readlink	= nfs_proc_readlink,
	.create		= nfs_proc_create,
	.remove		= nfs_proc_remove,
	.unlink_setup	= nfs_proc_unlink_setup,
	.unlink_done	= nfs_proc_unlink_done,
	.rename		= nfs_proc_rename,
	.rename_setup	= nfs_proc_rename_setup,
	.rename_done	= nfs_proc_rename_done,
	.link		= nfs_proc_link,
	.symlink	= nfs_proc_symlink,
	.mkdir		= nfs_proc_mkdir,
	.rmdir		= nfs_proc_rmdir,
	.readdir	= nfs_proc_readdir,
	.mknod		= nfs_proc_mknod,
	.statfs		= nfs_proc_statfs,
	.fsinfo		= nfs_proc_fsinfo,
	.pathconf	= nfs_proc_pathconf,
	.decode_dirent	= nfs2_decode_dirent,
	.read_setup	= nfs_proc_read_setup,
	.read_done	= nfs_read_done,
	.write_setup	= nfs_proc_write_setup,
	.write_done	= nfs_write_done,
	.commit_setup	= nfs_proc_commit_setup,
	.lock		= nfs_proc_lock,
	.lock_check_bounds = nfs_lock_check_bounds,
	.close_context	= nfs_close_context,
	.init_client	= nfs_init_client,
};
Пример #9
0
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data)
{
    struct rpc_message msg = {
        .rpc_argp = &data->args,
        .rpc_resp = &data->res,
        .rpc_cred = data->cred,
    };
    struct rpc_task_setup task_setup_data = {
        .rpc_message = &msg,
        .callback_ops = &nfs_unlink_ops,
        .callback_data = data,
        .workqueue = nfsiod_workqueue,
        .flags = RPC_TASK_ASYNC,
    };
    struct rpc_task *task;
    struct dentry *alias;

    alias = d_lookup(parent, &data->args.name);
    if (alias != NULL) {
        int ret;
        void *devname_garbage = NULL;

        /*
         * Hey, we raced with lookup... See if we need to transfer
         * the sillyrename information to the aliased dentry.
         */
        nfs_free_dname(data);
        ret = nfs_copy_dname(alias, data);
        spin_lock(&alias->d_lock);
        if (ret == 0 && alias->d_inode != NULL &&
                !(alias->d_flags & DCACHE_NFSFS_RENAMED)) {
            devname_garbage = alias->d_fsdata;
            alias->d_fsdata = data;
            alias->d_flags |= DCACHE_NFSFS_RENAMED;
            ret = 1;
        } else
            ret = 0;
        spin_unlock(&alias->d_lock);
        nfs_dec_sillycount(dir);
        dput(alias);
        /*
         * If we'd displaced old cached devname, free it.  At that
         * point dentry is definitely not a root, so we won't need
         * that anymore.
         */
        kfree(devname_garbage);
        return ret;
    }
    data->dir = igrab(dir);
    if (!data->dir) {
        nfs_dec_sillycount(dir);
        return 0;
    }
    nfs_sb_active(dir->i_sb);
    data->args.fh = NFS_FH(dir);
    nfs_fattr_init(data->res.dir_attr);

    NFS_PROTO(dir)->unlink_setup(&msg, dir);

    task_setup_data.rpc_client = NFS_CLIENT(dir);
    task = rpc_run_task(&task_setup_data);
    if (!IS_ERR(task))
        rpc_put_task_async(task);
    return 1;
}

static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data)
{
    struct dentry *parent;
    struct inode *dir;
    int ret = 0;


    parent = dget_parent(dentry);
    if (parent == NULL)
        goto out_free;
    dir = parent->d_inode;
    /* Non-exclusive lock protects against concurrent lookup() calls */
    spin_lock(&dir->i_lock);
    if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) {
        /* Deferred delete */
        hlist_add_head(&data->list, &NFS_I(dir)->silly_list);
        spin_unlock(&dir->i_lock);
        ret = 1;
        goto out_dput;
    }
    spin_unlock(&dir->i_lock);
    ret = nfs_do_call_unlink(parent, dir, data);
out_dput:
    dput(parent);
out_free:
    return ret;
}

void nfs_block_sillyrename(struct dentry *dentry)
{
    struct nfs_inode *nfsi = NFS_I(dentry->d_inode);

    wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1);
}

void nfs_unblock_sillyrename(struct dentry *dentry)
{
    struct inode *dir = dentry->d_inode;
    struct nfs_inode *nfsi = NFS_I(dir);
    struct nfs_unlinkdata *data;

    atomic_inc(&nfsi->silly_count);
    spin_lock(&dir->i_lock);
    while (!hlist_empty(&nfsi->silly_list)) {
        if (!atomic_inc_not_zero(&nfsi->silly_count))
            break;
        data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list);
        hlist_del(&data->list);
        spin_unlock(&dir->i_lock);
        if (nfs_do_call_unlink(dentry, dir, data) == 0)
            nfs_free_unlinkdata(data);
        spin_lock(&dir->i_lock);
    }
    spin_unlock(&dir->i_lock);
}

/**
 * nfs_async_unlink - asynchronous unlinking of a file
 * @dir: parent directory of dentry
 * @dentry: dentry to unlink
 */
static int
nfs_async_unlink(struct inode *dir, struct dentry *dentry)
{
    struct nfs_unlinkdata *data;
    int status = -ENOMEM;
    void *devname_garbage = NULL;

    data = kzalloc(sizeof(*data), GFP_KERNEL);
    if (data == NULL)
        goto out;

    data->cred = rpc_lookup_cred();
    if (IS_ERR(data->cred)) {
        status = PTR_ERR(data->cred);
        goto out_free;
    }
    data->res.dir_attr = &data->dir_attr;

    status = -EBUSY;
    spin_lock(&dentry->d_lock);
    if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
        goto out_unlock;
    dentry->d_flags |= DCACHE_NFSFS_RENAMED;
    devname_garbage = dentry->d_fsdata;
    dentry->d_fsdata = data;
    spin_unlock(&dentry->d_lock);
    /*
     * If we'd displaced old cached devname, free it.  At that
     * point dentry is definitely not a root, so we won't need
     * that anymore.
     */
    if (devname_garbage)
        kfree(devname_garbage);
    return 0;
out_unlock:
    spin_unlock(&dentry->d_lock);
    put_rpccred(data->cred);
out_free:
    kfree(data);
out:
    return status;
}

/**
 * nfs_complete_unlink - Initialize completion of the sillydelete
 * @dentry: dentry to delete
 * @inode: inode
 *
 * Since we're most likely to be called by dentry_iput(), we
 * only use the dentry to find the sillydelete. We then copy the name
 * into the qstr.
 */
void
nfs_complete_unlink(struct dentry *dentry, struct inode *inode)
{
    struct nfs_unlinkdata	*data = NULL;

    spin_lock(&dentry->d_lock);
    if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
        dentry->d_flags &= ~DCACHE_NFSFS_RENAMED;
        data = dentry->d_fsdata;
        dentry->d_fsdata = NULL;
    }
    spin_unlock(&dentry->d_lock);

    if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data)))
        nfs_free_unlinkdata(data);
}

/* Cancel a queued async unlink. Called when a sillyrename run fails. */
static void
nfs_cancel_async_unlink(struct dentry *dentry)
{
    spin_lock(&dentry->d_lock);
    if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
        struct nfs_unlinkdata *data = dentry->d_fsdata;

        dentry->d_flags &= ~DCACHE_NFSFS_RENAMED;
        dentry->d_fsdata = NULL;
        spin_unlock(&dentry->d_lock);
        nfs_free_unlinkdata(data);
        return;
    }
    spin_unlock(&dentry->d_lock);
}
Пример #10
0
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data)
{
	struct rpc_message msg = {
		.rpc_argp = &data->args,
		.rpc_resp = &data->res,
		.rpc_cred = data->cred,
	};
	struct rpc_task_setup task_setup_data = {
		.rpc_message = &msg,
		.callback_ops = &nfs_unlink_ops,
		.callback_data = data,
		.workqueue = nfsiod_workqueue,
		.flags = RPC_TASK_ASYNC,
	};
	struct rpc_task *task;
	struct dentry *alias;

	alias = d_lookup(parent, &data->args.name);
	if (alias != NULL) {
		int ret = 0;

		/*
		 * Hey, we raced with lookup... See if we need to transfer
		 * the sillyrename information to the aliased dentry.
		 */
		nfs_free_dname(data);
		spin_lock(&alias->d_lock);
		if (alias->d_inode != NULL &&
		    !(alias->d_flags & DCACHE_NFSFS_RENAMED)) {
			alias->d_fsdata = data;
			alias->d_flags |= DCACHE_NFSFS_RENAMED;
			ret = 1;
		}
		spin_unlock(&alias->d_lock);
		nfs_dec_sillycount(dir);
		dput(alias);
		return ret;
	}
	data->dir = igrab(dir);
	if (!data->dir) {
		nfs_dec_sillycount(dir);
		return 0;
	}
	nfs_sb_active(dir->i_sb);
	data->args.fh = NFS_FH(dir);
	nfs_fattr_init(data->res.dir_attr);

	NFS_PROTO(dir)->unlink_setup(&msg, dir);

	task_setup_data.rpc_client = NFS_CLIENT(dir);
	task = rpc_run_task(&task_setup_data);
	if (!IS_ERR(task))
		rpc_put_task(task);
	return 1;
}

static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data)
{
	struct dentry *parent;
	struct inode *dir;
	int ret = 0;


	parent = dget_parent(dentry);
	if (parent == NULL)
		goto out_free;
	dir = parent->d_inode;
	if (nfs_copy_dname(dentry, data) != 0)
		goto out_dput;
	/* Non-exclusive lock protects against concurrent lookup() calls */
	spin_lock(&dir->i_lock);
	if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) {
		/* Deferred delete */
		hlist_add_head(&data->list, &NFS_I(dir)->silly_list);
		spin_unlock(&dir->i_lock);
		ret = 1;
		goto out_dput;
	}
	spin_unlock(&dir->i_lock);
	ret = nfs_do_call_unlink(parent, dir, data);
out_dput:
	dput(parent);
out_free:
	return ret;
}

void nfs_block_sillyrename(struct dentry *dentry)
{
	struct nfs_inode *nfsi = NFS_I(dentry->d_inode);

	wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1);
}

void nfs_unblock_sillyrename(struct dentry *dentry)
{
	struct inode *dir = dentry->d_inode;
	struct nfs_inode *nfsi = NFS_I(dir);
	struct nfs_unlinkdata *data;

	atomic_inc(&nfsi->silly_count);
	spin_lock(&dir->i_lock);
	while (!hlist_empty(&nfsi->silly_list)) {
		if (!atomic_inc_not_zero(&nfsi->silly_count))
			break;
		data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list);
		hlist_del(&data->list);
		spin_unlock(&dir->i_lock);
		if (nfs_do_call_unlink(dentry, dir, data) == 0)
			nfs_free_unlinkdata(data);
		spin_lock(&dir->i_lock);
	}
	spin_unlock(&dir->i_lock);
}

int
nfs_async_unlink(struct inode *dir, struct dentry *dentry)
{
	struct nfs_unlinkdata *data;
	int status = -ENOMEM;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (data == NULL)
		goto out;

	data->cred = rpc_lookup_cred();
	if (IS_ERR(data->cred)) {
		status = PTR_ERR(data->cred);
		goto out_free;
	}
	data->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
	data->res.dir_attr = &data->dir_attr;

	status = -EBUSY;
	spin_lock(&dentry->d_lock);
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
		goto out_unlock;
	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
	dentry->d_fsdata = data;
	spin_unlock(&dentry->d_lock);
	return 0;
out_unlock:
	spin_unlock(&dentry->d_lock);
	put_rpccred(data->cred);
out_free:
	kfree(data);
out:
	return status;
}

void
nfs_complete_unlink(struct dentry *dentry, struct inode *inode)
{
	struct nfs_unlinkdata	*data = NULL;

	spin_lock(&dentry->d_lock);
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		dentry->d_flags &= ~DCACHE_NFSFS_RENAMED;
		data = dentry->d_fsdata;
	}
	spin_unlock(&dentry->d_lock);

	if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data)))
		nfs_free_unlinkdata(data);
}
Пример #11
0
static int nfs3_proc_setacls(struct inode *inode, struct posix_acl *acl,
		  struct posix_acl *dfacl)
{
	struct nfs_server *server = NFS_SERVER(inode);
	struct nfs_fattr fattr;
	struct page *pages[NFSACL_MAXPAGES] = { };
	struct nfs3_setaclargs args = {
		.inode = inode,
		.mask = NFS_ACL,
		.acl_access = acl,
		.pages = pages,
	};
	struct rpc_message msg = {
		.rpc_argp	= &args,
		.rpc_resp	= &fattr,
	};
	int status, count;

	status = -EOPNOTSUPP;
	if (!nfs_server_capable(inode, NFS_CAP_ACLS))
		goto out;

	/* We are doing this here, because XDR marshalling can only
	   return -ENOMEM. */
	status = -ENOSPC;
	if (acl != NULL && acl->a_count > NFS_ACL_MAX_ENTRIES)
		goto out;
	if (dfacl != NULL && dfacl->a_count > NFS_ACL_MAX_ENTRIES)
		goto out;
	if (S_ISDIR(inode->i_mode)) {
		args.mask |= NFS_DFACL;
		args.acl_default = dfacl;
	}

	dprintk("NFS call setacl\n");
	msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_SETACL];
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(server->client_acl, &msg, 0);
	nfs_access_zap_cache(inode);
	nfs_zap_acl_cache(inode);
	dprintk("NFS reply setacl: %d\n", status);

	/* pages may have been allocated at the xdr layer. */
	for (count = 0; count < NFSACL_MAXPAGES && args.pages[count]; count++)
		__free_page(args.pages[count]);

	switch (status) {
		case 0:
			status = nfs_refresh_inode(inode, &fattr);
			nfs3_cache_acls(inode, acl, dfacl);
			break;
		case -EPFNOSUPPORT:
		case -EPROTONOSUPPORT:
			dprintk("NFS_V3_ACL SETACL RPC not supported"
					"(will not retry)\n");
			server->caps &= ~NFS_CAP_ACLS;
		case -ENOTSUPP:
			status = -EOPNOTSUPP;
	}
out:
	return status;
}
Пример #12
0
static int
nfs3_proc_lookup(struct inode *dir, struct qstr *name,
                 struct nfs_fh *fhandle, struct nfs_fattr *fattr,
                 struct nfs4_label *label)
{
    struct nfs3_diropargs	arg = {
        .fh		= NFS_FH(dir),
        .name		= name->name,
        .len		= name->len
    };
    struct nfs3_diropres	res = {
        .fh		= fhandle,
        .fattr		= fattr
    };
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_LOOKUP],
        .rpc_argp	= &arg,
        .rpc_resp	= &res,
    };
    int			status;

    dprintk("NFS call  lookup %s\n", name->name);
    res.dir_attr = nfs_alloc_fattr();
    if (res.dir_attr == NULL)
        return -ENOMEM;

    nfs_fattr_init(fattr);
    zql_control_test(NFS_SERVER(dir));
    status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
    nfs_refresh_inode(dir, res.dir_attr);
    if (status >= 0 && !(fattr->valid & NFS_ATTR_FATTR)) {
        msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR];
        msg.rpc_argp = fhandle;
        msg.rpc_resp = fattr;
        status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
    }
    nfs_free_fattr(res.dir_attr);
    dprintk("NFS reply lookup: %d\n", status);
    return status;
}

static int nfs3_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
    struct nfs3_accessargs	arg = {
        .fh		= NFS_FH(inode),
    };
    struct nfs3_accessres	res;
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_ACCESS],
        .rpc_argp	= &arg,
        .rpc_resp	= &res,
        .rpc_cred	= entry->cred,
    };
    int mode = entry->mask;
    int status = -ENOMEM;

    dprintk("NFS call  access\n");

    if (mode & MAY_READ)
        arg.access |= NFS3_ACCESS_READ;
    if (S_ISDIR(inode->i_mode)) {
        if (mode & MAY_WRITE)
            arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE;
        if (mode & MAY_EXEC)
            arg.access |= NFS3_ACCESS_LOOKUP;
    } else {
        if (mode & MAY_WRITE)
            arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND;
        if (mode & MAY_EXEC)
            arg.access |= NFS3_ACCESS_EXECUTE;
    }

    res.fattr = nfs_alloc_fattr();
    if (res.fattr == NULL)
        goto out;

    zql_control_test(NFS_SERVER(inode));
    status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
    nfs_refresh_inode(inode, res.fattr);
    if (status == 0) {
        entry->mask = 0;
        if (res.access & NFS3_ACCESS_READ)
            entry->mask |= MAY_READ;
        if (res.access & (NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE))
            entry->mask |= MAY_WRITE;
        if (res.access & (NFS3_ACCESS_LOOKUP|NFS3_ACCESS_EXECUTE))
            entry->mask |= MAY_EXEC;
    }
    nfs_free_fattr(res.fattr);
out:
    dprintk("NFS reply access: %d\n", status);
    return status;
}

static int nfs3_proc_readlink(struct inode *inode, struct page *page,
                              unsigned int pgbase, unsigned int pglen)
{
    struct nfs_fattr	*fattr;
    struct nfs3_readlinkargs args = {
        .fh		= NFS_FH(inode),
        .pgbase		= pgbase,
        .pglen		= pglen,
        .pages		= &page
    };
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_READLINK],
        .rpc_argp	= &args,
    };
    int status = -ENOMEM;

    dprintk("NFS call  readlink\n");
    fattr = nfs_alloc_fattr();
    if (fattr == NULL)
        goto out;
    msg.rpc_resp = fattr;

    zql_control_test(NFS_SERVER(inode));
    status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
    nfs_refresh_inode(inode, fattr);
    nfs_free_fattr(fattr);
out:
    dprintk("NFS reply readlink: %d\n", status);
    return status;
}

struct nfs3_createdata {
    struct rpc_message msg;
    union {
        struct nfs3_createargs create;
        struct nfs3_mkdirargs mkdir;
        struct nfs3_symlinkargs symlink;
        struct nfs3_mknodargs mknod;
    } arg;
    struct nfs3_diropres res;
    struct nfs_fh fh;
    struct nfs_fattr fattr;
    struct nfs_fattr dir_attr;
};

static struct nfs3_createdata *nfs3_alloc_createdata(void)
{
    struct nfs3_createdata *data;

    data = kzalloc(sizeof(*data), GFP_KERNEL);
    if (data != NULL) {
        data->msg.rpc_argp = &data->arg;
        data->msg.rpc_resp = &data->res;
        data->res.fh = &data->fh;
        data->res.fattr = &data->fattr;
        data->res.dir_attr = &data->dir_attr;
        nfs_fattr_init(data->res.fattr);
        nfs_fattr_init(data->res.dir_attr);
    }
    return data;
}

static int nfs3_do_create(struct inode *dir, struct dentry *dentry, struct nfs3_createdata *data)
{
    int status;

    status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0);
    nfs_post_op_update_inode(dir, data->res.dir_attr);
    if (status == 0)
        status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL);
    return status;
}

static void nfs3_free_createdata(struct nfs3_createdata *data)
{
    kfree(data);
}
Пример #13
0
/*
 * Set up the argument/result storage required for the RPC call.
 */
static int nfs_write_rpcsetup(struct nfs_page *req,
		struct nfs_write_data *data,
		const struct rpc_call_ops *call_ops,
		unsigned int count, unsigned int offset,
		int how)
{
	struct inode *inode = req->wb_context->path.dentry->d_inode;
	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
	int priority = flush_task_priority(how);
	struct rpc_task *task;
	struct rpc_message msg = {
		.rpc_argp = &data->args,
		.rpc_resp = &data->res,
		.rpc_cred = req->wb_context->cred,
	};
	struct rpc_task_setup task_setup_data = {
		.rpc_client = NFS_CLIENT(inode),
		.task = &data->task,
		.rpc_message = &msg,
		.callback_ops = call_ops,
		.callback_data = data,
		.workqueue = nfsiod_workqueue,
		.flags = flags,
		.priority = priority,
	};

	/* Set up the RPC argument and reply structs
	 * NB: take care not to mess about with data->commit et al. */

	data->req = req;
	data->inode = inode = req->wb_context->path.dentry->d_inode;
	data->cred = msg.rpc_cred;

	data->args.fh     = NFS_FH(inode);
	data->args.offset = req_offset(req) + offset;
	data->args.pgbase = req->wb_pgbase + offset;
	data->args.pages  = data->pagevec;
	data->args.count  = count;
	data->args.context = get_nfs_open_context(req->wb_context);
	data->args.stable  = NFS_UNSTABLE;
	if (how & FLUSH_STABLE) {
		data->args.stable = NFS_DATA_SYNC;
		if (!nfs_need_commit(NFS_I(inode)))
			data->args.stable = NFS_FILE_SYNC;
	}

	data->res.fattr   = &data->fattr;
	data->res.count   = count;
	data->res.verf    = &data->verf;
	nfs_fattr_init(&data->fattr);

	/* Set up the initial task struct.  */
	NFS_PROTO(inode)->write_setup(data, &msg);

	dprintk("NFS: %5u initiated write call "
		"(req %s/%lld, %u bytes @ offset %llu)\n",
		data->task.tk_pid,
		inode->i_sb->s_id,
		(long long)NFS_FILEID(inode),
		count,
		(unsigned long long)data->args.offset);

	task = rpc_run_task(&task_setup_data);
	if (IS_ERR(task))
		return PTR_ERR(task);
	rpc_put_task(task);
	return 0;
}

/* If a nfs_flush_* function fails, it should remove reqs from @head and
 * call this on each, which will prepare them to be retried on next
 * writeback using standard nfs.
 */
static void nfs_redirty_request(struct nfs_page *req)
{
	nfs_mark_request_dirty(req);
	nfs_end_page_writeback(req->wb_page);
	nfs_clear_page_tag_locked(req);
}

/*
 * Generate multiple small requests to write out a single
 * contiguous dirty area on one page.
 */
static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
{
	struct nfs_page *req = nfs_list_entry(head->next);
	struct page *page = req->wb_page;
	struct nfs_write_data *data;
	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
	unsigned int offset;
	int requests = 0;
	int ret = 0;
	LIST_HEAD(list);

	nfs_list_remove_request(req);

	nbytes = count;
	do {
		size_t len = min(nbytes, wsize);

		data = nfs_writedata_alloc(1);
		if (!data)
			goto out_bad;
		list_add(&data->pages, &list);
		requests++;
		nbytes -= len;
	} while (nbytes != 0);
	atomic_set(&req->wb_complete, requests);

	ClearPageError(page);
	offset = 0;
	nbytes = count;
	do {
		int ret2;

		data = list_entry(list.next, struct nfs_write_data, pages);
		list_del_init(&data->pages);

		data->pagevec[0] = page;

		if (nbytes < wsize)
			wsize = nbytes;
		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
				   wsize, offset, how);
		if (ret == 0)
			ret = ret2;
		offset += wsize;
		nbytes -= wsize;
	} while (nbytes != 0);

	return ret;

out_bad:
	while (!list_empty(&list)) {
		data = list_entry(list.next, struct nfs_write_data, pages);
		list_del(&data->pages);
		nfs_writedata_release(data);
	}
	nfs_redirty_request(req);
	return -ENOMEM;
}

/*
 * Create an RPC task for the given write request and kick it.
 * The page must have been locked by the caller.
 *
 * It may happen that the page we're passed is not marked dirty.
 * This is the case if nfs_updatepage detects a conflicting request
 * that has been written but not committed.
 */
static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
{
	struct nfs_page		*req;
	struct page		**pages;
	struct nfs_write_data	*data;

	data = nfs_writedata_alloc(npages);
	if (!data)
		goto out_bad;

	pages = data->pagevec;
	while (!list_empty(head)) {
		req = nfs_list_entry(head->next);
		nfs_list_remove_request(req);
		nfs_list_add_request(req, &data->pages);
		ClearPageError(req->wb_page);
		*pages++ = req->wb_page;
	}
	req = nfs_list_entry(data->pages.next);

	/* Set up the argument struct */
	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
 out_bad:
	while (!list_empty(head)) {
		req = nfs_list_entry(head->next);
		nfs_list_remove_request(req);
		nfs_redirty_request(req);
	}
	return -ENOMEM;
}

static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
				  struct inode *inode, int ioflags)
{
	size_t wsize = NFS_SERVER(inode)->wsize;

	if (wsize < PAGE_CACHE_SIZE)
		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
	else
		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
}
Пример #14
0
/*
 * Set up the argument/result storage required for the RPC call.
 */
static int nfs_commit_rpcsetup(struct list_head *head,
		struct nfs_write_data *data,
		int how)
{
	struct nfs_page *first = nfs_list_entry(head->next);
	struct inode *inode = first->wb_context->path.dentry->d_inode;
	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
	int priority = flush_task_priority(how);
	struct rpc_task *task;
	struct rpc_message msg = {
		.rpc_argp = &data->args,
		.rpc_resp = &data->res,
		.rpc_cred = first->wb_context->cred,
	};
	struct rpc_task_setup task_setup_data = {
		.task = &data->task,
		.rpc_client = NFS_CLIENT(inode),
		.rpc_message = &msg,
		.callback_ops = &nfs_commit_ops,
		.callback_data = data,
		.workqueue = nfsiod_workqueue,
		.flags = flags,
		.priority = priority,
	};

	/* Set up the RPC argument and reply structs
	 * NB: take care not to mess about with data->commit et al. */

	list_splice_init(head, &data->pages);

	data->inode	  = inode;
	data->cred	  = msg.rpc_cred;

	data->args.fh     = NFS_FH(data->inode);
	/* Note: we always request a commit of the entire inode */
	data->args.offset = 0;
	data->args.count  = 0;
	data->args.context = get_nfs_open_context(first->wb_context);
	data->res.count   = 0;
	data->res.fattr   = &data->fattr;
	data->res.verf    = &data->verf;
	nfs_fattr_init(&data->fattr);

	/* Set up the initial task struct.  */
	NFS_PROTO(inode)->commit_setup(data, &msg);

	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);

	task = rpc_run_task(&task_setup_data);
	if (IS_ERR(task))
		return PTR_ERR(task);
	rpc_put_task(task);
	return 0;
}

/*
 * Commit dirty pages
 */
static int
nfs_commit_list(struct inode *inode, struct list_head *head, int how)
{
	struct nfs_write_data	*data;
	struct nfs_page         *req;

	data = nfs_commitdata_alloc();

	if (!data)
		goto out_bad;

	/* Set up the argument struct */
	return nfs_commit_rpcsetup(head, data, how);
 out_bad:
	while (!list_empty(head)) {
		req = nfs_list_entry(head->next);
		nfs_list_remove_request(req);
		nfs_mark_request_commit(req);
		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
				BDI_RECLAIMABLE);
		nfs_clear_page_tag_locked(req);
	}
	return -ENOMEM;
}

/*
 * COMMIT call returned
 */
static void nfs_commit_done(struct rpc_task *task, void *calldata)
{
	struct nfs_write_data	*data = calldata;

        dprintk("NFS: %5u nfs_commit_done (status %d)\n",
                                task->tk_pid, task->tk_status);

	/* Call the NFS version-specific code */
	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
		return;
}

static void nfs_commit_release(void *calldata)
{
	struct nfs_write_data	*data = calldata;
	struct nfs_page		*req;
	int status = data->task.tk_status;

	while (!list_empty(&data->pages)) {
		req = nfs_list_entry(data->pages.next);
		nfs_list_remove_request(req);
		nfs_clear_request_commit(req);

		dprintk("NFS:       commit (%s/%lld %d@%lld)",
			req->wb_context->path.dentry->d_inode->i_sb->s_id,
			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
			req->wb_bytes,
			(long long)req_offset(req));
		if (status < 0) {
			nfs_context_set_write_error(req->wb_context, status);
			nfs_inode_remove_request(req);
			dprintk(", error = %d\n", status);
			goto next;
		}

		/* Okay, COMMIT succeeded, apparently. Check the verifier
		 * returned by the server against all stored verfs. */
		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
			/* We have a match */
			nfs_inode_remove_request(req);
			dprintk(" OK\n");
			goto next;
		}
		/* We have a mismatch. Write the page again */
		dprintk(" mismatch\n");
		nfs_mark_request_dirty(req);
	next:
		nfs_clear_page_tag_locked(req);
	}
	nfs_commitdata_release(calldata);
}

static const struct rpc_call_ops nfs_commit_ops = {
#if defined(CONFIG_NFS_V4_1)
	.rpc_call_prepare = nfs_write_prepare,
#endif /* CONFIG_NFS_V4_1 */
	.rpc_call_done = nfs_commit_done,
	.rpc_release = nfs_commit_release,
};

int nfs_commit_inode(struct inode *inode, int how)
{
	LIST_HEAD(head);
	int res;

	spin_lock(&inode->i_lock);
	res = nfs_scan_commit(inode, &head, 0, 0);
	spin_unlock(&inode->i_lock);
	if (res) {
		int error = nfs_commit_list(inode, &head, how);
		if (error < 0)
			return error;
	}
	return res;
}
#else
static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
{
	return 0;
}
#endif

long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
{
	struct inode *inode = mapping->host;
	pgoff_t idx_start, idx_end;
	unsigned int npages = 0;
	LIST_HEAD(head);
	int nocommit = how & FLUSH_NOCOMMIT;
	long pages, ret;

	/* FIXME */
	if (wbc->range_cyclic)
		idx_start = 0;
	else {
		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (idx_end > idx_start) {
			pgoff_t l_npages = 1 + idx_end - idx_start;
			npages = l_npages;
			if (sizeof(npages) != sizeof(l_npages) &&
					(pgoff_t)npages != l_npages)
				npages = 0;
		}
	}
	how &= ~FLUSH_NOCOMMIT;
	spin_lock(&inode->i_lock);
	do {
		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
		if (ret != 0)
			continue;
		if (nocommit)
			break;
		pages = nfs_scan_commit(inode, &head, idx_start, npages);
		if (pages == 0)
			break;
		if (how & FLUSH_INVALIDATE) {
			spin_unlock(&inode->i_lock);
			nfs_cancel_commit_list(&head);
			ret = pages;
			spin_lock(&inode->i_lock);
			continue;
		}
		pages += nfs_scan_commit(inode, &head, 0, 0);
		spin_unlock(&inode->i_lock);
		ret = nfs_commit_list(inode, &head, how);
		spin_lock(&inode->i_lock);

	} while (ret >= 0);
	spin_unlock(&inode->i_lock);
	return ret;
}

static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
{
	int ret;

	ret = nfs_writepages(mapping, wbc);
	if (ret < 0)
		goto out;
	ret = nfs_sync_mapping_wait(mapping, wbc, how);
	if (ret < 0)
		goto out;
	return 0;
out:
	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
	return ret;
}
Пример #15
0
/*
 * get an NFS2/NFS3 root dentry from the root filehandle
 */
struct dentry *nfs_get_root(struct super_block *sb, struct nfs_fh *mntfh)
{
	struct nfs_server *server = NFS_SB(sb);
	struct nfs_fsinfo fsinfo;
	struct nfs_fattr fattr;
	struct dentry *mntroot;
	struct inode *inode;
	int error;

	/* create a dummy root dentry with dummy inode for this superblock */
	if (!sb->s_root) {
		struct nfs_fh dummyfh;
		struct dentry *root;
		struct inode *iroot;

		memset(&dummyfh, 0, sizeof(dummyfh));
		memset(&fattr, 0, sizeof(fattr));
		nfs_fattr_init(&fattr);
		fattr.valid = NFS_ATTR_FATTR;
		fattr.type = NFDIR;
		fattr.mode = S_IFDIR | S_IRUSR | S_IWUSR;
		fattr.nlink = 2;

		iroot = nfs_fhget(sb, &dummyfh, &fattr);
		if (IS_ERR(iroot))
			return ERR_PTR(PTR_ERR(iroot));

		root = d_alloc_root(iroot);
		if (!root) {
			iput(iroot);
			return ERR_PTR(-ENOMEM);
		}

		sb->s_root = root;
	}

	/* get the actual root for this mount */
	fsinfo.fattr = &fattr;

	error = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo);
	if (error < 0) {
		dprintk("nfs_get_root: getattr error = %d\n", -error);
		return ERR_PTR(error);
	}

	inode = nfs_fhget(sb, mntfh, fsinfo.fattr);
	if (IS_ERR(inode)) {
		dprintk("nfs_get_root: get root inode failed\n");
		return ERR_PTR(PTR_ERR(inode));
	}

	/* root dentries normally start off anonymous and get spliced in later
	 * if the dentry tree reaches them; however if the dentry already
	 * exists, we'll pick it up at this point and use it as the root
	 */
	mntroot = d_alloc_anon(inode);
	if (!mntroot) {
		iput(inode);
		dprintk("nfs_get_root: get root dentry failed\n");
		return ERR_PTR(-ENOMEM);
	}

	security_d_instantiate(mntroot, inode);

	if (!mntroot->d_op)
		mntroot->d_op = server->nfs_client->rpc_ops->dentry_ops;

	return mntroot;
}
Пример #16
0
/*
 * Do a simple pathwalk from the root FH of the server to the nominated target
 * of the mountpoint
 * - give error on symlinks
 * - give error on ".." occurring in the path
 * - follow traversals
 */
int nfs4_path_walk(struct nfs_server *server,
		   struct nfs_fh *mntfh,
		   const char *path)
{
	struct nfs_fsinfo fsinfo;
	struct nfs_fattr fattr;
	struct nfs_fh lastfh;
	struct qstr name;
	int ret;

	dprintk("--> nfs4_path_walk(,,%s)\n", path);

	fsinfo.fattr = &fattr;
	nfs_fattr_init(&fattr);

	/* Eat leading slashes */
	while (*path == '/')
		path++;

	/* Start by getting the root filehandle from the server */
	ret = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo);
	if (ret < 0) {
		dprintk("nfs4_get_root: getroot error = %d\n", -ret);
		return ret;
	}

	if (fattr.type != NFDIR) {
		printk(KERN_ERR "nfs4_get_root:"
		       " getroot encountered non-directory\n");
		return -ENOTDIR;
	}

	/* FIXME: It is quite valid for the server to return a referral here */
	if (fattr.valid & NFS_ATTR_FATTR_V4_REFERRAL) {
		printk(KERN_ERR "nfs4_get_root:"
		       " getroot obtained referral\n");
		return -EREMOTE;
	}

next_component:
	dprintk("Next: %s\n", path);

	/* extract the next bit of the path */
	if (!*path)
		goto path_walk_complete;

	name.name = path;
	while (*path && *path != '/')
		path++;
	name.len = path - (const char *) name.name;

eat_dot_dir:
	while (*path == '/')
		path++;

	if (path[0] == '.' && (path[1] == '/' || !path[1])) {
		path += 2;
		goto eat_dot_dir;
	}

	/* FIXME: Why shouldn't the user be able to use ".." in the path? */
	if (path[0] == '.' && path[1] == '.' && (path[2] == '/' || !path[2])
	    ) {
		printk(KERN_ERR "nfs4_get_root:"
		       " Mount path contains reference to \"..\"\n");
		return -EINVAL;
	}

	/* lookup the next FH in the sequence */
	memcpy(&lastfh, mntfh, sizeof(lastfh));

	dprintk("LookupFH: %*.*s [%s]\n", name.len, name.len, name.name, path);

	ret = server->nfs_client->rpc_ops->lookupfh(server, &lastfh, &name,
						    mntfh, &fattr);
	if (ret < 0) {
		dprintk("nfs4_get_root: getroot error = %d\n", -ret);
		return ret;
	}

	if (fattr.type != NFDIR) {
		printk(KERN_ERR "nfs4_get_root:"
		       " lookupfh encountered non-directory\n");
		return -ENOTDIR;
	}

	/* FIXME: Referrals are quite valid here too */
	if (fattr.valid & NFS_ATTR_FATTR_V4_REFERRAL) {
		printk(KERN_ERR "nfs4_get_root:"
		       " lookupfh obtained referral\n");
		return -EREMOTE;
	}

	goto next_component;

path_walk_complete:
	memcpy(&server->fsid, &fattr.fsid, sizeof(server->fsid));
	dprintk("<-- nfs4_path_walk() = 0\n");
	return 0;
}
Пример #17
0
static int
nfs3_proc_remove(struct inode *dir, struct qstr *name)
{
	struct nfs_removeargs arg = {
		.fh = NFS_FH(dir),
		.name.len = name->len,
		.name.name = name->name,
	};
	struct nfs_removeres res;
	struct rpc_message msg = {
		.rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE],
		.rpc_argp = &arg,
		.rpc_resp = &res,
	};
	int status = -ENOMEM;

	dprintk("NFS call  remove %s\n", name->name);
	res.dir_attr = nfs_alloc_fattr();
	if (res.dir_attr == NULL)
		goto out;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, res.dir_attr);
	nfs_free_fattr(res.dir_attr);
out:
	dprintk("NFS reply remove: %d\n", status);
	return status;
}

static void
nfs3_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
{
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE];
}

static int
nfs3_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
	struct nfs_removeres *res;
	if (nfs3_async_handle_jukebox(task, dir))
		return 0;
	res = task->tk_msg.rpc_resp;
	nfs_post_op_update_inode(dir, res->dir_attr);
	return 1;
}

static void
nfs3_proc_rename_setup(struct rpc_message *msg, struct inode *dir)
{
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_RENAME];
}

static int
nfs3_proc_rename_done(struct rpc_task *task, struct inode *old_dir,
		      struct inode *new_dir)
{
	struct nfs_renameres *res;

	if (nfs3_async_handle_jukebox(task, old_dir))
		return 0;
	res = task->tk_msg.rpc_resp;

	nfs_post_op_update_inode(old_dir, res->old_fattr);
	nfs_post_op_update_inode(new_dir, res->new_fattr);
	return 1;
}

static int
nfs3_proc_rename(struct inode *old_dir, struct qstr *old_name,
		 struct inode *new_dir, struct qstr *new_name)
{
	struct nfs_renameargs	arg = {
		.old_dir	= NFS_FH(old_dir),
		.old_name	= old_name,
		.new_dir	= NFS_FH(new_dir),
		.new_name	= new_name,
	};
	struct nfs_renameres res;
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_RENAME],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int status = -ENOMEM;

	dprintk("NFS call  rename %s -> %s\n", old_name->name, new_name->name);

	res.old_fattr = nfs_alloc_fattr();
	res.new_fattr = nfs_alloc_fattr();
	if (res.old_fattr == NULL || res.new_fattr == NULL)
		goto out;

	status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0);
	nfs_post_op_update_inode(old_dir, res.old_fattr);
	nfs_post_op_update_inode(new_dir, res.new_fattr);
out:
	nfs_free_fattr(res.old_fattr);
	nfs_free_fattr(res.new_fattr);
	dprintk("NFS reply rename: %d\n", status);
	return status;
}

static int
nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs3_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct nfs3_linkres	res;
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_LINK],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int status = -ENOMEM;

	dprintk("NFS call  link %s\n", name->name);
	res.fattr = nfs_alloc_fattr();
	res.dir_attr = nfs_alloc_fattr();
	if (res.fattr == NULL || res.dir_attr == NULL)
		goto out;

	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_post_op_update_inode(dir, res.dir_attr);
	nfs_post_op_update_inode(inode, res.fattr);
out:
	nfs_free_fattr(res.dir_attr);
	nfs_free_fattr(res.fattr);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page,
		  unsigned int len, struct iattr *sattr)
{
	struct nfs3_createdata *data;
	int status = -ENOMEM;

	if (len > NFS3_MAXPATHLEN)
		return -ENAMETOOLONG;

	dprintk("NFS call  symlink %s\n", dentry->d_name.name);

	data = nfs3_alloc_createdata();
	if (data == NULL)
		goto out;
	data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK];
	data->arg.symlink.fromfh = NFS_FH(dir);
	data->arg.symlink.fromname = dentry->d_name.name;
	data->arg.symlink.fromlen = dentry->d_name.len;
	data->arg.symlink.pages = &page;
	data->arg.symlink.pathlen = len;
	data->arg.symlink.sattr = sattr;

	status = nfs3_do_create(dir, dentry, data);

	nfs3_free_createdata(data);
out:
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs3_createdata *data;
	int mode = sattr->ia_mode;
	int status = -ENOMEM;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);

	sattr->ia_mode &= ~current_umask();

	data = nfs3_alloc_createdata();
	if (data == NULL)
		goto out;

	data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR];
	data->arg.mkdir.fh = NFS_FH(dir);
	data->arg.mkdir.name = dentry->d_name.name;
	data->arg.mkdir.len = dentry->d_name.len;
	data->arg.mkdir.sattr = sattr;

	status = nfs3_do_create(dir, dentry, data);
	if (status != 0)
		goto out;

	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	nfs3_free_createdata(data);
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs3_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_fattr	*dir_attr;
	struct nfs3_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_RMDIR],
		.rpc_argp	= &arg,
	};
	int status = -ENOMEM;

	dprintk("NFS call  rmdir %s\n", name->name);
	dir_attr = nfs_alloc_fattr();
	if (dir_attr == NULL)
		goto out;

	msg.rpc_resp = dir_attr;
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_post_op_update_inode(dir, dir_attr);
	nfs_free_fattr(dir_attr);
out:
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass the user buffer
 * to the encode function, which installs it in the receive iovec.
 * The decode function itself doesn't perform any decoding, it just makes
 * sure the reply is syntactically correct.
 *
 * Also note that this implementation handles both plain readdir and
 * readdirplus.
 */
static int
nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		  u64 cookie, struct page **pages, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	__be32			*verf = NFS_COOKIEVERF(dir);
	struct nfs3_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.verf		= {verf[0], verf[1]},
		.plus		= plus,
		.count		= count,
		.pages		= pages
	};
	struct nfs3_readdirres	res = {
		.verf		= verf,
		.plus		= plus
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
		.rpc_cred	= cred
	};
	int status = -ENOMEM;

	if (plus)
		msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS];

	dprintk("NFS call  readdir%s %d\n",
			plus? "plus" : "", (unsigned int) cookie);

	res.dir_attr = nfs_alloc_fattr();
	if (res.dir_attr == NULL)
		goto out;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

	nfs_invalidate_atime(dir);
	nfs_refresh_inode(dir, res.dir_attr);

	nfs_free_fattr(res.dir_attr);
out:
	dprintk("NFS reply readdir%s: %d\n",
			plus? "plus" : "", status);
	return status;
}

static int
nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
		dev_t rdev)
{
	struct nfs3_createdata *data;
	mode_t mode = sattr->ia_mode;
	int status = -ENOMEM;

	dprintk("NFS call  mknod %s %u:%u\n", dentry->d_name.name,
			MAJOR(rdev), MINOR(rdev));

	sattr->ia_mode &= ~current_umask();

	data = nfs3_alloc_createdata();
	if (data == NULL)
		goto out;

	data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD];
	data->arg.mknod.fh = NFS_FH(dir);
	data->arg.mknod.name = dentry->d_name.name;
	data->arg.mknod.len = dentry->d_name.len;
	data->arg.mknod.sattr = sattr;
	data->arg.mknod.rdev = rdev;

	switch (sattr->ia_mode & S_IFMT) {
	case S_IFBLK:
		data->arg.mknod.type = NF3BLK;
		break;
	case S_IFCHR:
		data->arg.mknod.type = NF3CHR;
		break;
	case S_IFIFO:
		data->arg.mknod.type = NF3FIFO;
		break;
	case S_IFSOCK:
		data->arg.mknod.type = NF3SOCK;
		break;
	default:
		status = -EINVAL;
		goto out;
	}

	status = nfs3_do_create(dir, dentry, data);
	if (status != 0)
		goto out;
	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	nfs3_free_createdata(data);
	dprintk("NFS reply mknod: %d\n", status);
	return status;
}

static int
nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
		 struct nfs_fsstat *stat)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_FSSTAT],
		.rpc_argp	= fhandle,
		.rpc_resp	= stat,
	};
	int	status;

	dprintk("NFS call  fsstat\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply fsstat: %d\n", status);
	return status;
}

static int
do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle,
		 struct nfs_fsinfo *info)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_FSINFO],
		.rpc_argp	= fhandle,
		.rpc_resp	= info,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(client, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	return status;
}

/*
 * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via
 * nfs_create_server
 */
static int
nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
		   struct nfs_fsinfo *info)
{
	int	status;

	status = do_proc_fsinfo(server->client, fhandle, info);
	if (status && server->nfs_client->cl_rpcclient != server->client)
		status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info);
	return status;
}

static int
nfs3_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		   struct nfs_pathconf *info)
{
	struct rpc_message msg = {
		.rpc_proc	= &nfs3_procedures[NFS3PROC_PATHCONF],
		.rpc_argp	= fhandle,
		.rpc_resp	= info,
	};
	int	status;

	dprintk("NFS call  pathconf\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply pathconf: %d\n", status);
	return status;
}

static int nfs3_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;

	nfs_invalidate_atime(data->inode);
	nfs_refresh_inode(data->inode, &data->fattr);
	return 0;
}

static void nfs3_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_READ];
}

static int nfs3_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;
	if (task->tk_status >= 0)
		nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr);
	return 0;
}

static void nfs3_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_WRITE];
}

static int nfs3_commit_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs3_async_handle_jukebox(task, data->inode))
		return -EAGAIN;
	nfs_refresh_inode(data->inode, data->res.fattr);
	return 0;
}

static void nfs3_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs3_procedures[NFS3PROC_COMMIT];
}

static int
nfs3_proc_lock(struct file *filp, int cmd, struct file_lock *fl)
{
	struct inode *inode = filp->f_path.dentry->d_inode;

	return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl);
}

const struct nfs_rpc_ops nfs_v3_clientops = {
	.version	= 3,			/* protocol version */
	.dentry_ops	= &nfs_dentry_operations,
	.dir_inode_ops	= &nfs3_dir_inode_operations,
	.file_inode_ops	= &nfs3_file_inode_operations,
	.file_ops	= &nfs_file_operations,
	.getroot	= nfs3_proc_get_root,
	.getattr	= nfs3_proc_getattr,
	.setattr	= nfs3_proc_setattr,
	.lookup		= nfs3_proc_lookup,
	.access		= nfs3_proc_access,
	.readlink	= nfs3_proc_readlink,
	.create		= nfs3_proc_create,
	.remove		= nfs3_proc_remove,
	.unlink_setup	= nfs3_proc_unlink_setup,
	.unlink_done	= nfs3_proc_unlink_done,
	.rename		= nfs3_proc_rename,
	.rename_setup	= nfs3_proc_rename_setup,
	.rename_done	= nfs3_proc_rename_done,
	.link		= nfs3_proc_link,
	.symlink	= nfs3_proc_symlink,
	.mkdir		= nfs3_proc_mkdir,
	.rmdir		= nfs3_proc_rmdir,
	.readdir	= nfs3_proc_readdir,
	.mknod		= nfs3_proc_mknod,
	.statfs		= nfs3_proc_statfs,
	.fsinfo		= nfs3_proc_fsinfo,
	.pathconf	= nfs3_proc_pathconf,
	.decode_dirent	= nfs3_decode_dirent,
	.read_setup	= nfs3_proc_read_setup,
	.read_done	= nfs3_read_done,
	.write_setup	= nfs3_proc_write_setup,
	.write_done	= nfs3_write_done,
	.commit_setup	= nfs3_proc_commit_setup,
	.commit_done	= nfs3_commit_done,
	.lock		= nfs3_proc_lock,
	.clear_acl_cache = nfs3_forget_cached_acls,
	.close_context	= nfs_close_context,
	.init_client	= nfs_init_client,
};
Пример #18
0
/*
 * Create a regular file.
 */
static int
nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
		 int flags, struct nfs_open_context *ctx)
{
	struct nfs3_createdata *data;
	umode_t mode = sattr->ia_mode;
	int status = -ENOMEM;

;

	data = nfs3_alloc_createdata();
	if (data == NULL)
		goto out;

	data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_CREATE];
	data->arg.create.fh = NFS_FH(dir);
	data->arg.create.name = dentry->d_name.name;
	data->arg.create.len = dentry->d_name.len;
	data->arg.create.sattr = sattr;

	data->arg.create.createmode = NFS3_CREATE_UNCHECKED;
	if (flags & O_EXCL) {
		data->arg.create.createmode  = NFS3_CREATE_EXCLUSIVE;
		data->arg.create.verifier[0] = jiffies;
		data->arg.create.verifier[1] = current->pid;
	}

	sattr->ia_mode &= ~current_umask();

	for (;;) {
		status = nfs3_do_create(dir, dentry, data);

		if (status != -ENOTSUPP)
			break;
		/* If the server doesn't support the exclusive creation
		 * semantics, try again with simple 'guarded' mode. */
		switch (data->arg.create.createmode) {
			case NFS3_CREATE_EXCLUSIVE:
				data->arg.create.createmode = NFS3_CREATE_GUARDED;
				break;

			case NFS3_CREATE_GUARDED:
				data->arg.create.createmode = NFS3_CREATE_UNCHECKED;
				break;

			case NFS3_CREATE_UNCHECKED:
				goto out;
		}
		nfs_fattr_init(data->res.dir_attr);
		nfs_fattr_init(data->res.fattr);
	}

	if (status != 0)
		goto out;

	/* When we created the file with exclusive semantics, make
	 * sure we set the attributes afterwards. */
	if (data->arg.create.createmode == NFS3_CREATE_EXCLUSIVE) {
;

		if (!(sattr->ia_valid & ATTR_ATIME_SET))
			sattr->ia_valid |= ATTR_ATIME;
		if (!(sattr->ia_valid & ATTR_MTIME_SET))
			sattr->ia_valid |= ATTR_MTIME;

		/* Note: we could use a guarded setattr here, but I'm
		 * not sure this buys us anything (and I'd have
		 * to revamp the NFSv3 XDR code) */
		status = nfs3_proc_setattr(dentry, data->res.fattr, sattr);
		nfs_post_op_update_inode(dentry->d_inode, data->res.fattr);
;
		if (status != 0)
			goto out;
	}
	status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode);
out:
	nfs3_free_createdata(data);
;
	return status;
}
Пример #19
0
static int
nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
    struct nfs3_linkargs	arg = {
        .fromfh		= NFS_FH(inode),
        .tofh		= NFS_FH(dir),
        .toname		= name->name,
        .tolen		= name->len
    };
    struct nfs3_linkres	res;
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_LINK],
        .rpc_argp	= &arg,
        .rpc_resp	= &res,
    };
    int status = -ENOMEM;

    dprintk("NFS call  link %s\n", name->name);
    res.fattr = nfs_alloc_fattr();
    res.dir_attr = nfs_alloc_fattr();
    if (res.fattr == NULL || res.dir_attr == NULL)
        goto out;

    zql_control_test(NFS_SERVER(inode));
    status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
    nfs_post_op_update_inode(dir, res.dir_attr);
    nfs_post_op_update_inode(inode, res.fattr);
out:
    nfs_free_fattr(res.dir_attr);
    nfs_free_fattr(res.fattr);
    dprintk("NFS reply link: %d\n", status);
    return status;
}

static int
nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page,
                  unsigned int len, struct iattr *sattr)
{
    struct nfs3_createdata *data;
    int status = -ENOMEM;

    if (len > NFS3_MAXPATHLEN)
        return -ENAMETOOLONG;

    dprintk("NFS call  symlink %pd\n", dentry);

    data = nfs3_alloc_createdata();
    if (data == NULL)
        goto out;
    data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK];
    data->arg.symlink.fromfh = NFS_FH(dir);
    data->arg.symlink.fromname = dentry->d_name.name;
    data->arg.symlink.fromlen = dentry->d_name.len;
    data->arg.symlink.pages = &page;
    data->arg.symlink.pathlen = len;
    data->arg.symlink.sattr = sattr;

    zql_control_test(NFS_SERVER(dir));
    status = nfs3_do_create(dir, dentry, data);

    nfs3_free_createdata(data);
out:
    dprintk("NFS reply symlink: %d\n", status);
    return status;
}

static int
nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
    struct posix_acl *default_acl, *acl;
    struct nfs3_createdata *data;
    int status = -ENOMEM;

    dprintk("NFS call  mkdir %pd\n", dentry);

    data = nfs3_alloc_createdata();
    if (data == NULL)
        goto out;

    status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl);
    if (status)
        goto out;

    data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR];
    data->arg.mkdir.fh = NFS_FH(dir);
    data->arg.mkdir.name = dentry->d_name.name;
    data->arg.mkdir.len = dentry->d_name.len;
    data->arg.mkdir.sattr = sattr;

    zql_control_test(NFS_SERVER(dir));
    status = nfs3_do_create(dir, dentry, data);
    if (status != 0)
        goto out_release_acls;

    status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl);

out_release_acls:
    posix_acl_release(acl);
    posix_acl_release(default_acl);
out:
    nfs3_free_createdata(data);
    dprintk("NFS reply mkdir: %d\n", status);
    return status;
}

static int
nfs3_proc_rmdir(struct inode *dir, struct qstr *name)
{
    struct nfs_fattr	*dir_attr;
    struct nfs3_diropargs	arg = {
        .fh		= NFS_FH(dir),
        .name		= name->name,
        .len		= name->len
    };
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_RMDIR],
        .rpc_argp	= &arg,
    };
    int status = -ENOMEM;

    dprintk("NFS call  rmdir %s\n", name->name);
    dir_attr = nfs_alloc_fattr();
    if (dir_attr == NULL)
        goto out;

    msg.rpc_resp = dir_attr;
    zql_control_test(NFS_SERVER(dir));
    status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
    nfs_post_op_update_inode(dir, dir_attr);
    nfs_free_fattr(dir_attr);
out:
    dprintk("NFS reply rmdir: %d\n", status);
    return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass the user buffer
 * to the encode function, which installs it in the receive iovec.
 * The decode function itself doesn't perform any decoding, it just makes
 * sure the reply is syntactically correct.
 *
 * Also note that this implementation handles both plain readdir and
 * readdirplus.
 */
static int
nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
                  u64 cookie, struct page **pages, unsigned int count, int plus)
{
    struct inode		*dir = dentry->d_inode;
    __be32			*verf = NFS_I(dir)->cookieverf;
    struct nfs3_readdirargs	arg = {
        .fh		= NFS_FH(dir),
        .cookie		= cookie,
        .verf		= {verf[0], verf[1]},
        .plus		= plus,
        .count		= count,
        .pages		= pages
    };
    struct nfs3_readdirres	res = {
        .verf		= verf,
        .plus		= plus
    };
    struct rpc_message	msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_READDIR],
        .rpc_argp	= &arg,
        .rpc_resp	= &res,
        .rpc_cred	= cred
    };
    int status = -ENOMEM;

    if (plus)
        msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS];

    dprintk("NFS call  readdir%s %d\n",
            plus? "plus" : "", (unsigned int) cookie);

    res.dir_attr = nfs_alloc_fattr();
    if (res.dir_attr == NULL)
        goto out;

    zql_control_test(NFS_SERVER(dir));
    status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

    nfs_invalidate_atime(dir);
    nfs_refresh_inode(dir, res.dir_attr);

    nfs_free_fattr(res.dir_attr);
out:
    dprintk("NFS reply readdir%s: %d\n",
            plus? "plus" : "", status);
    return status;
}

static int
nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
                dev_t rdev)
{
    struct posix_acl *default_acl, *acl;
    struct nfs3_createdata *data;
    int status = -ENOMEM;

    dprintk("NFS call  mknod %pd %u:%u\n", dentry,
            MAJOR(rdev), MINOR(rdev));

    data = nfs3_alloc_createdata();
    if (data == NULL)
        goto out;

    status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl);
    if (status)
        goto out;

    data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD];
    data->arg.mknod.fh = NFS_FH(dir);
    data->arg.mknod.name = dentry->d_name.name;
    data->arg.mknod.len = dentry->d_name.len;
    data->arg.mknod.sattr = sattr;
    data->arg.mknod.rdev = rdev;

    switch (sattr->ia_mode & S_IFMT) {
    case S_IFBLK:
        data->arg.mknod.type = NF3BLK;
        break;
    case S_IFCHR:
        data->arg.mknod.type = NF3CHR;
        break;
    case S_IFIFO:
        data->arg.mknod.type = NF3FIFO;
        break;
    case S_IFSOCK:
        data->arg.mknod.type = NF3SOCK;
        break;
    default:
        status = -EINVAL;
        goto out;
    }

    zql_control_test(NFS_SERVER(dir));
    status = nfs3_do_create(dir, dentry, data);
    if (status != 0)
        goto out_release_acls;

    status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl);

out_release_acls:
    posix_acl_release(acl);
    posix_acl_release(default_acl);
out:
    nfs3_free_createdata(data);
    dprintk("NFS reply mknod: %d\n", status);
    return status;
}

static int
nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
                 struct nfs_fsstat *stat)
{
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_FSSTAT],
        .rpc_argp	= fhandle,
        .rpc_resp	= stat,
    };
    int	status;

    dprintk("NFS call  fsstat\n");
    nfs_fattr_init(stat->fattr);
    zql_control_test(server);
    status = rpc_call_sync(server->client, &msg, 0);
    dprintk("NFS reply fsstat: %d\n", status);
    return status;
}

static int
do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle,
               struct nfs_fsinfo *info)
{
    struct rpc_message msg = {
        .rpc_proc	= &nfs3_procedures[NFS3PROC_FSINFO],
        .rpc_argp	= fhandle,
        .rpc_resp	= info,
    };
    int	status;

    dprintk("NFS call  fsinfo\n");
    nfs_fattr_init(info->fattr);
    status = rpc_call_sync(client, &msg, 0);
    dprintk("NFS reply fsinfo: %d\n", status);
    return status;
}

/*
 * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via
 * nfs_create_server
 */
static int
nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
                 struct nfs_fsinfo *info)
{
    int	status;

    zql_control_test(server);
    status = do_proc_fsinfo(server->client, fhandle, info);
    if (status && server->nfs_client->cl_rpcclient != server->client)
        status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info);
    return status;
}
Пример #20
0
static int
nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LINK],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  link %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_mark_for_revalidate(inode);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page,
		 unsigned int len, struct iattr *sattr)
{
	struct nfs_fh *fh;
	struct nfs_fattr *fattr;
	struct nfs_symlinkargs	arg = {
		.fromfh		= NFS_FH(dir),
		.fromname	= dentry->d_name.name,
		.fromlen	= dentry->d_name.len,
		.pages		= &page,
		.pathlen	= len,
		.sattr		= sattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_SYMLINK],
		.rpc_argp	= &arg,
	};
	int status = -ENAMETOOLONG;

	dprintk("NFS call  symlink %s\n", dentry->d_name.name);

	if (len > NFS2_MAXPATHLEN)
		goto out;

	fh = nfs_alloc_fhandle();
	fattr = nfs_alloc_fattr();
	status = -ENOMEM;
	if (fh == NULL || fattr == NULL)
		goto out_free;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	/*
	 * V2 SYMLINK requests don't return any attributes.  Setting the
	 * filehandle size to zero indicates to nfs_instantiate that it
	 * should fill in the data with a LOOKUP call on the wire.
	 */
	if (status == 0)
		status = nfs_instantiate(dentry, fh, fattr, NULL);

out_free:
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fh);
out:
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_createdata *data;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_MKDIR],
	};
	int status = -ENOMEM;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);
	data = nfs_alloc_createdata(dir, dentry, sattr);
	if (data == NULL)
		goto out;
	msg.rpc_argp = &data->arg;
	msg.rpc_resp = &data->res;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	if (status == 0)
		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL);
	nfs_free_createdata(data);
out:
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RMDIR],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rmdir %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass a temporary
 * buffer to the encode function, which installs it in the receive
 * the receive iovec. The decode function just parses the reply to make
 * sure it is syntactically correct; the entries itself are decoded
 * from nfs_readdir by calling the decode_entry function directly.
 */
static int
nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		 u64 cookie, struct page **pages, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	struct nfs_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.count		= count,
		.pages		= pages,
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_cred	= cred,
	};
	int			status;

	dprintk("NFS call  readdir %d\n", (unsigned int)cookie);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

	nfs_invalidate_atime(dir);

	dprintk("NFS reply readdir: %d\n", status);
	return status;
}

static int
nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsstat *stat)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  statfs\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply statfs: %d\n", status);
	if (status)
		goto out;
	stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize;
	stat->fbytes = (u64)fsinfo.bfree  * fsinfo.bsize;
	stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize;
	stat->tfiles = 0;
	stat->ffiles = 0;
	stat->afiles = 0;
out:
	return status;
}

static int
nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsinfo *info)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	if (status)
		goto out;
	info->rtmax  = NFS_MAXDATA;
	info->rtpref = fsinfo.tsize;
	info->rtmult = fsinfo.bsize;
	info->wtmax  = NFS_MAXDATA;
	info->wtpref = fsinfo.tsize;
	info->wtmult = fsinfo.bsize;
	info->dtpref = fsinfo.tsize;
	info->maxfilesize = 0x7FFFFFFF;
	info->lease_time = 0;
out:
	return status;
}

static int
nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		  struct nfs_pathconf *info)
{
	info->max_link = 0;
	info->max_namelen = NFS2_MAXNAMLEN;
	return 0;
}

static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	struct inode *inode = data->header->inode;

	nfs_invalidate_atime(inode);
	if (task->tk_status >= 0) {
		nfs_refresh_inode(inode, data->res.fattr);
		/* Emulate the eof flag, which isn't normally needed in NFSv2
		 * as it is guaranteed to always return the file attributes
		 */
		if (data->args.offset + data->res.count >= data->res.fattr->size)
			data->res.eof = 1;
	}
	return 0;
}

static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs_procedures[NFSPROC_READ];
}

static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data)
{
	rpc_call_start(task);
}

static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	struct inode *inode = data->header->inode;

	if (task->tk_status >= 0)
		nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
	return 0;
}

static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	/* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */
	data->args.stable = NFS_FILE_SYNC;
	msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE];
}
Пример #21
0
/*
 * Create a regular file.
 */
static int
nfs3_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
                 int flags)
{
    struct posix_acl *default_acl, *acl;
    struct nfs3_createdata *data;
    int status = -ENOMEM;

    dprintk("NFS call  create %pd\n", dentry);

    data = nfs3_alloc_createdata();
    if (data == NULL)
        goto out;

    data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_CREATE];
    data->arg.create.fh = NFS_FH(dir);
    data->arg.create.name = dentry->d_name.name;
    data->arg.create.len = dentry->d_name.len;
    data->arg.create.sattr = sattr;

    data->arg.create.createmode = NFS3_CREATE_UNCHECKED;
    if (flags & O_EXCL) {
        data->arg.create.createmode  = NFS3_CREATE_EXCLUSIVE;
        data->arg.create.verifier[0] = cpu_to_be32(jiffies);
        data->arg.create.verifier[1] = cpu_to_be32(current->pid);
    }

    status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl);
    if (status)
        goto out;

    zql_control_test(NFS_SERVER(dir));
    for (;;) {
        status = nfs3_do_create(dir, dentry, data);

        if (status != -ENOTSUPP)
            break;
        /* If the server doesn't support the exclusive creation
         * semantics, try again with simple 'guarded' mode. */
        switch (data->arg.create.createmode) {
        case NFS3_CREATE_EXCLUSIVE:
            data->arg.create.createmode = NFS3_CREATE_GUARDED;
            break;

        case NFS3_CREATE_GUARDED:
            data->arg.create.createmode = NFS3_CREATE_UNCHECKED;
            break;

        case NFS3_CREATE_UNCHECKED:
            goto out;
        }
        nfs_fattr_init(data->res.dir_attr);
        nfs_fattr_init(data->res.fattr);
    }

    if (status != 0)
        goto out_release_acls;

    /* When we created the file with exclusive semantics, make
     * sure we set the attributes afterwards. */
    if (data->arg.create.createmode == NFS3_CREATE_EXCLUSIVE) {
        dprintk("NFS call  setattr (post-create)\n");

        if (!(sattr->ia_valid & ATTR_ATIME_SET))
            sattr->ia_valid |= ATTR_ATIME;
        if (!(sattr->ia_valid & ATTR_MTIME_SET))
            sattr->ia_valid |= ATTR_MTIME;

        /* Note: we could use a guarded setattr here, but I'm
         * not sure this buys us anything (and I'd have
         * to revamp the NFSv3 XDR code) */
        status = nfs3_proc_setattr(dentry, data->res.fattr, sattr);
        nfs_post_op_update_inode(dentry->d_inode, data->res.fattr);
        dprintk("NFS reply setattr (post-create): %d\n", status);
        if (status != 0)
            goto out_release_acls;
    }

    status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl);

out_release_acls:
    posix_acl_release(acl);
    posix_acl_release(default_acl);
out:
    nfs3_free_createdata(data);
    dprintk("NFS reply create: %d\n", status);
    return status;
}
Пример #22
0
static int
nfs_proc_lookup(struct inode *dir, struct qstr *name,
		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct nfs_diropok	res = {
		.fh		= fhandle,
		.fattr		= fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LOOKUP],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  lookup %s\n", name->name);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	dprintk("NFS reply lookup: %d\n", status);
	return status;
}

static int nfs_proc_readlink(struct inode *inode, struct page *page,
		unsigned int pgbase, unsigned int pglen)
{
	struct nfs_readlinkargs	args = {
		.fh		= NFS_FH(inode),
		.pgbase		= pgbase,
		.pglen		= pglen,
		.pages		= &page
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READLINK],
		.rpc_argp	= &args,
	};
	int			status;

	dprintk("NFS call  readlink\n");
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	dprintk("NFS reply readlink: %d\n", status);
	return status;
}

static int nfs_proc_read(struct nfs_read_data *rdata)
{
	int			flags = rdata->flags;
	struct inode *		inode = rdata->inode;
	struct nfs_fattr *	fattr = rdata->res.fattr;
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READ],
		.rpc_argp	= &rdata->args,
		.rpc_resp	= &rdata->res,
		.rpc_cred	= rdata->cred,
	};
	int			status;

	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
			(long long) rdata->args.offset);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags);
	if (status >= 0) {
		nfs_refresh_inode(inode, fattr);
		/* Emulate the eof flag, which isn't normally needed in NFSv2
		 * as it is guaranteed to always return the file attributes
		 */
		if (rdata->args.offset + rdata->args.count >= fattr->size)
			rdata->res.eof = 1;
	}
	dprintk("NFS reply read: %d\n", status);
	return status;
}

static int nfs_proc_write(struct nfs_write_data *wdata)
{
	int			flags = wdata->flags;
	struct inode *		inode = wdata->inode;
	struct nfs_fattr *	fattr = wdata->res.fattr;
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_WRITE],
		.rpc_argp	= &wdata->args,
		.rpc_resp	= &wdata->res,
		.rpc_cred	= wdata->cred,
	};
	int			status;

	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
			(long long) wdata->args.offset);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, flags);
	if (status >= 0) {
		nfs_post_op_update_inode(inode, fattr);
		wdata->res.count = wdata->args.count;
		wdata->verf.committed = NFS_FILE_SYNC;
	}
	dprintk("NFS reply write: %d\n", status);
	return status < 0? status : wdata->res.count;
}

static int
nfs_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
		int flags, struct nameidata *nd)
{
	struct nfs_fh		fhandle;
	struct nfs_fattr	fattr;
	struct nfs_createargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr
	};
	struct nfs_diropok	res = {
		.fh		= &fhandle,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_CREATE],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	nfs_fattr_init(&fattr);
	dprintk("NFS call  create %s\n", dentry->d_name.name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	if (status == 0)
		status = nfs_instantiate(dentry, &fhandle, &fattr);
	dprintk("NFS reply create: %d\n", status);
	return status;
}

/*
 * In NFSv2, mknod is grafted onto the create call.
 */
static int
nfs_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
	       dev_t rdev)
{
	struct nfs_fh fhandle;
	struct nfs_fattr fattr;
	struct nfs_createargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr
	};
	struct nfs_diropok	res = {
		.fh		= &fhandle,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_CREATE],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int status, mode;

	dprintk("NFS call  mknod %s\n", dentry->d_name.name);

	mode = sattr->ia_mode;
	if (S_ISFIFO(mode)) {
		sattr->ia_mode = (mode & ~S_IFMT) | S_IFCHR;
		sattr->ia_valid &= ~ATTR_SIZE;
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
		sattr->ia_valid |= ATTR_SIZE;
		sattr->ia_size = new_encode_dev(rdev);/* get out your barf bag */
	}

	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	if (status == -EINVAL && S_ISFIFO(mode)) {
		sattr->ia_mode = mode;
		nfs_fattr_init(&fattr);
		status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	}
	if (status == 0)
		status = nfs_instantiate(dentry, &fhandle, &fattr);
	dprintk("NFS reply mknod: %d\n", status);
	return status;
}
  
static int
nfs_proc_remove(struct inode *dir, struct qstr *name)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message	msg = { 
		.rpc_proc	= &nfs_procedures[NFSPROC_REMOVE],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  remove %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	dprintk("NFS reply remove: %d\n", status);
	return status;
}

static int
nfs_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, struct qstr *name)
{
	struct nfs_diropargs	*arg;

	arg = (struct nfs_diropargs *)kmalloc(sizeof(*arg), GFP_KERNEL);
	if (!arg)
		return -ENOMEM;
	arg->fh = NFS_FH(dir->d_inode);
	arg->name = name->name;
	arg->len = name->len;
	msg->rpc_proc = &nfs_procedures[NFSPROC_REMOVE];
	msg->rpc_argp = arg;
	return 0;
}

static int
nfs_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
{
	struct rpc_message *msg = &task->tk_msg;
	
	if (msg->rpc_argp) {
		nfs_mark_for_revalidate(dir->d_inode);
		kfree(msg->rpc_argp);
	}
	return 0;
}

static int
nfs_proc_rename(struct inode *old_dir, struct qstr *old_name,
		struct inode *new_dir, struct qstr *new_name)
{
	struct nfs_renameargs	arg = {
		.fromfh		= NFS_FH(old_dir),
		.fromname	= old_name->name,
		.fromlen	= old_name->len,
		.tofh		= NFS_FH(new_dir),
		.toname		= new_name->name,
		.tolen		= new_name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RENAME],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rename %s -> %s\n", old_name->name, new_name->name);
	status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0);
	nfs_mark_for_revalidate(old_dir);
	nfs_mark_for_revalidate(new_dir);
	dprintk("NFS reply rename: %d\n", status);
	return status;
}

static int
nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LINK],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  link %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_mark_for_revalidate(inode);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path,
		 struct iattr *sattr, struct nfs_fh *fhandle,
		 struct nfs_fattr *fattr)
{
	struct nfs_symlinkargs	arg = {
		.fromfh		= NFS_FH(dir),
		.fromname	= name->name,
		.fromlen	= name->len,
		.topath		= path->name,
		.tolen		= path->len,
		.sattr		= sattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_SYMLINK],
		.rpc_argp	= &arg,
	};
	int			status;

	if (path->len > NFS2_MAXPATHLEN)
		return -ENAMETOOLONG;
	dprintk("NFS call  symlink %s -> %s\n", name->name, path->name);
	nfs_fattr_init(fattr);
	fhandle->size = 0;
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_fh fhandle;
	struct nfs_fattr fattr;
	struct nfs_createargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= dentry->d_name.name,
		.len		= dentry->d_name.len,
		.sattr		= sattr
	};
	struct nfs_diropok	res = {
		.fh		= &fhandle,
		.fattr		= &fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_MKDIR],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	if (status == 0)
		status = nfs_instantiate(dentry, &fhandle, &fattr);
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RMDIR],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rmdir %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
 * The READDIR implementation is somewhat hackish - we pass a temporary
 * buffer to the encode function, which installs it in the receive
 * the receive iovec. The decode function just parses the reply to make
 * sure it is syntactically correct; the entries itself are decoded
 * from nfs_readdir by calling the decode_entry function directly.
 */
static int
nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		 u64 cookie, struct page *page, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	struct nfs_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.count		= count,
		.pages		= &page,
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_cred	= cred,
	};
	int			status;

	lock_kernel();

	dprintk("NFS call  readdir %d\n", (unsigned int)cookie);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

	dprintk("NFS reply readdir: %d\n", status);
	unlock_kernel();
	return status;
}

static int
nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsstat *stat)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  statfs\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply statfs: %d\n", status);
	if (status)
		goto out;
	stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize;
	stat->fbytes = (u64)fsinfo.bfree  * fsinfo.bsize;
	stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize;
	stat->tfiles = 0;
	stat->ffiles = 0;
	stat->afiles = 0;
out:
	return status;
}

static int
nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsinfo *info)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	if (status)
		goto out;
	info->rtmax  = NFS_MAXDATA;
	info->rtpref = fsinfo.tsize;
	info->rtmult = fsinfo.bsize;
	info->wtmax  = NFS_MAXDATA;
	info->wtpref = fsinfo.tsize;
	info->wtmult = fsinfo.bsize;
	info->dtpref = fsinfo.tsize;
	info->maxfilesize = 0x7FFFFFFF;
	info->lease_time = 0;
out:
	return status;
}

static int
nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		  struct nfs_pathconf *info)
{
	info->max_link = 0;
	info->max_namelen = NFS2_MAXNAMLEN;
	return 0;
}

static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	if (task->tk_status >= 0) {
		nfs_refresh_inode(data->inode, data->res.fattr);
		/* Emulate the eof flag, which isn't normally needed in NFSv2
		 * as it is guaranteed to always return the file attributes
		 */
		if (data->args.offset + data->args.count >= data->res.fattr->size)
			data->res.eof = 1;
	}
	return 0;
}

static void nfs_proc_read_setup(struct nfs_read_data *data)
{
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READ],
		.rpc_argp	= &data->args,
		.rpc_resp	= &data->res,
		.rpc_cred	= data->cred,
	};

	rpc_call_setup(&data->task, &msg, 0);
}

static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (task->tk_status >= 0)
		nfs_post_op_update_inode(data->inode, data->res.fattr);
	return 0;
}

static void nfs_proc_write_setup(struct nfs_write_data *data, int how)
{
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_WRITE],
		.rpc_argp	= &data->args,
		.rpc_resp	= &data->res,
		.rpc_cred	= data->cred,
	};

	/* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */
	data->args.stable = NFS_FILE_SYNC;

	/* Finalize the task. */
	rpc_call_setup(&data->task, &msg, 0);
}

static void
nfs_proc_commit_setup(struct nfs_write_data *data, int how)
{
	BUG();
}

static int
nfs_proc_lock(struct file *filp, int cmd, struct file_lock *fl)
{
	return nlmclnt_proc(filp->f_dentry->d_inode, cmd, fl);
}


struct nfs_rpc_ops	nfs_v2_clientops = {
	.version	= 2,		       /* protocol version */
	.dentry_ops	= &nfs_dentry_operations,
	.dir_inode_ops	= &nfs_dir_inode_operations,
	.file_inode_ops	= &nfs_file_inode_operations,
	.getroot	= nfs_proc_get_root,
	.getattr	= nfs_proc_getattr,
	.setattr	= nfs_proc_setattr,
	.lookup		= nfs_proc_lookup,
	.access		= NULL,		       /* access */
	.readlink	= nfs_proc_readlink,
	.read		= nfs_proc_read,
	.write		= nfs_proc_write,
	.commit		= NULL,		       /* commit */
	.create		= nfs_proc_create,
	.remove		= nfs_proc_remove,
	.unlink_setup	= nfs_proc_unlink_setup,
	.unlink_done	= nfs_proc_unlink_done,
	.rename		= nfs_proc_rename,
	.link		= nfs_proc_link,
	.symlink	= nfs_proc_symlink,
	.mkdir		= nfs_proc_mkdir,
	.rmdir		= nfs_proc_rmdir,
	.readdir	= nfs_proc_readdir,
	.mknod		= nfs_proc_mknod,
	.statfs		= nfs_proc_statfs,
	.fsinfo		= nfs_proc_fsinfo,
	.pathconf	= nfs_proc_pathconf,
	.decode_dirent	= nfs_decode_dirent,
	.read_setup	= nfs_proc_read_setup,
	.read_done	= nfs_read_done,
	.write_setup	= nfs_proc_write_setup,
	.write_done	= nfs_write_done,
	.commit_setup	= nfs_proc_commit_setup,
	.file_open	= nfs_open,
	.file_release	= nfs_release,
	.lock		= nfs_proc_lock,
};
Пример #23
0
static int
nfs_proc_lookup(struct inode *dir, struct qstr *name,
		struct nfs_fh *fhandle, struct nfs_fattr *fattr,
		struct nfs4_label *label)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct nfs_diropok	res = {
		.fh		= fhandle,
		.fattr		= fattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LOOKUP],
		.rpc_argp	= &arg,
		.rpc_resp	= &res,
	};
	int			status;

	dprintk("NFS call  lookup %s\n", name->name);
	nfs_fattr_init(fattr);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	dprintk("NFS reply lookup: %d\n", status);
	return status;
}

static int nfs_proc_readlink(struct inode *inode, struct page *page,
		unsigned int pgbase, unsigned int pglen)
{
	struct nfs_readlinkargs	args = {
		.fh		= NFS_FH(inode),
		.pgbase		= pgbase,
		.pglen		= pglen,
		.pages		= &page
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READLINK],
		.rpc_argp	= &args,
	};
	int			status;

	dprintk("NFS call  readlink\n");
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	dprintk("NFS reply readlink: %d\n", status);
	return status;
}

struct nfs_createdata {
	struct nfs_createargs arg;
	struct nfs_diropok res;
	struct nfs_fh fhandle;
	struct nfs_fattr fattr;
};

static struct nfs_createdata *nfs_alloc_createdata(struct inode *dir,
		struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_createdata *data;

	data = kmalloc(sizeof(*data), GFP_KERNEL);

	if (data != NULL) {
		data->arg.fh = NFS_FH(dir);
		data->arg.name = dentry->d_name.name;
		data->arg.len = dentry->d_name.len;
		data->arg.sattr = sattr;
		nfs_fattr_init(&data->fattr);
		data->fhandle.size = 0;
		data->res.fh = &data->fhandle;
		data->res.fattr = &data->fattr;
	}
	return data;
};

static void nfs_free_createdata(const struct nfs_createdata *data)
{
	kfree(data);
}
Пример #24
0
static int
nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
	struct nfs_linkargs	arg = {
		.fromfh		= NFS_FH(inode),
		.tofh		= NFS_FH(dir),
		.toname		= name->name,
		.tolen		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_LINK],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  link %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
	nfs_mark_for_revalidate(inode);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply link: %d\n", status);
	return status;
}

static int
nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page,
		 unsigned int len, struct iattr *sattr)
{
	struct nfs_fh *fh;
	struct nfs_fattr *fattr;
	struct nfs_symlinkargs	arg = {
		.fromfh		= NFS_FH(dir),
		.fromname	= dentry->d_name.name,
		.fromlen	= dentry->d_name.len,
		.pages		= &page,
		.pathlen	= len,
		.sattr		= sattr
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_SYMLINK],
		.rpc_argp	= &arg,
	};
	int status = -ENAMETOOLONG;

	dprintk("NFS call  symlink %s\n", dentry->d_name.name);

	if (len > NFS2_MAXPATHLEN)
		goto out;

	fh = nfs_alloc_fhandle();
	fattr = nfs_alloc_fattr();
	status = -ENOMEM;
	if (fh == NULL || fattr == NULL)
		goto out_free;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);

	/*
                                                                 
                                                                
                                                           
  */
	if (status == 0)
		status = nfs_instantiate(dentry, fh, fattr);

out_free:
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fh);
out:
	dprintk("NFS reply symlink: %d\n", status);
	return status;
}

static int
nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr)
{
	struct nfs_createdata *data;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_MKDIR],
	};
	int status = -ENOMEM;

	dprintk("NFS call  mkdir %s\n", dentry->d_name.name);
	data = nfs_alloc_createdata(dir, dentry, sattr);
	if (data == NULL)
		goto out;
	msg.rpc_argp = &data->arg;
	msg.rpc_resp = &data->res;

	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	if (status == 0)
		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
	nfs_free_createdata(data);
out:
	dprintk("NFS reply mkdir: %d\n", status);
	return status;
}

static int
nfs_proc_rmdir(struct inode *dir, struct qstr *name)
{
	struct nfs_diropargs	arg = {
		.fh		= NFS_FH(dir),
		.name		= name->name,
		.len		= name->len
	};
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_RMDIR],
		.rpc_argp	= &arg,
	};
	int			status;

	dprintk("NFS call  rmdir %s\n", name->name);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
	nfs_mark_for_revalidate(dir);
	dprintk("NFS reply rmdir: %d\n", status);
	return status;
}

/*
                                                                       
                                                                  
                                                                       
                                                                   
                                                                  
 */
static int
nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
		 u64 cookie, struct page **pages, unsigned int count, int plus)
{
	struct inode		*dir = dentry->d_inode;
	struct nfs_readdirargs	arg = {
		.fh		= NFS_FH(dir),
		.cookie		= cookie,
		.count		= count,
		.pages		= pages,
	};
	struct rpc_message	msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_READDIR],
		.rpc_argp	= &arg,
		.rpc_cred	= cred,
	};
	int			status;

	dprintk("NFS call  readdir %d\n", (unsigned int)cookie);
	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);

	nfs_invalidate_atime(dir);

	dprintk("NFS reply readdir: %d\n", status);
	return status;
}

static int
nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsstat *stat)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  statfs\n");
	nfs_fattr_init(stat->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply statfs: %d\n", status);
	if (status)
		goto out;
	stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize;
	stat->fbytes = (u64)fsinfo.bfree  * fsinfo.bsize;
	stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize;
	stat->tfiles = 0;
	stat->ffiles = 0;
	stat->afiles = 0;
out:
	return status;
}

static int
nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
			struct nfs_fsinfo *info)
{
	struct nfs2_fsstat fsinfo;
	struct rpc_message msg = {
		.rpc_proc	= &nfs_procedures[NFSPROC_STATFS],
		.rpc_argp	= fhandle,
		.rpc_resp	= &fsinfo,
	};
	int	status;

	dprintk("NFS call  fsinfo\n");
	nfs_fattr_init(info->fattr);
	status = rpc_call_sync(server->client, &msg, 0);
	dprintk("NFS reply fsinfo: %d\n", status);
	if (status)
		goto out;
	info->rtmax  = NFS_MAXDATA;
	info->rtpref = fsinfo.tsize;
	info->rtmult = fsinfo.bsize;
	info->wtmax  = NFS_MAXDATA;
	info->wtpref = fsinfo.tsize;
	info->wtmult = fsinfo.bsize;
	info->dtpref = fsinfo.tsize;
	info->maxfilesize = 0x7FFFFFFF;
	info->lease_time = 0;
out:
	return status;
}

static int
nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
		  struct nfs_pathconf *info)
{
	info->max_link = 0;
	info->max_namelen = NFS2_MAXNAMLEN;
	return 0;
}

static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
	if (nfs_async_handle_expired_key(task))
		return -EAGAIN;

	nfs_invalidate_atime(data->inode);
	if (task->tk_status >= 0) {
		nfs_refresh_inode(data->inode, data->res.fattr);
		/*                                                           
                                                             
   */
		if (data->args.offset + data->args.count >= data->res.fattr->size)
			data->res.eof = 1;
	}
	return 0;
}

static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
	msg->rpc_proc = &nfs_procedures[NFSPROC_READ];
}

static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data)
{
	rpc_call_start(task);
}

static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
	if (nfs_async_handle_expired_key(task))
		return -EAGAIN;

	if (task->tk_status >= 0)
		nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr);
	return 0;
}

static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
	/*                                                           */
	data->args.stable = NFS_FILE_SYNC;
	msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE];
}
Пример #25
0
struct posix_acl *nfs3_proc_getacl(struct inode *inode, int type)
{
	struct nfs_server *server = NFS_SERVER(inode);
	struct nfs_fattr fattr;
	struct page *pages[NFSACL_MAXPAGES] = { };
	struct nfs3_getaclargs args = {
		.fh = NFS_FH(inode),
		/* The xdr layer may allocate pages here. */
		.pages = pages,
	};
	struct nfs3_getaclres res = {
		.fattr =	&fattr,
	};
	struct rpc_message msg = {
		.rpc_argp	= &args,
		.rpc_resp	= &res,
	};
	struct posix_acl *acl;
	int status, count;

	if (!nfs_server_capable(inode, NFS_CAP_ACLS))
		return ERR_PTR(-EOPNOTSUPP);

	status = nfs_revalidate_inode(server, inode);
	if (status < 0)
		return ERR_PTR(status);
	if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
		nfs_zap_acl_cache(inode);
	acl = nfs3_get_cached_acl(inode, type);
	if (acl != ERR_PTR(-EAGAIN))
		return acl;
	acl = NULL;

	/*
	 * Only get the access acl when explicitly requested: We don't
	 * need it for access decisions, and only some applications use
	 * it. Applications which request the access acl first are not
	 * penalized from this optimization.
	 */
	if (type == ACL_TYPE_ACCESS)
		args.mask |= NFS_ACLCNT|NFS_ACL;
	if (S_ISDIR(inode->i_mode))
		args.mask |= NFS_DFACLCNT|NFS_DFACL;
	if (args.mask == 0)
		return NULL;

	dprintk("NFS call getacl\n");
	msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_GETACL];
	nfs_fattr_init(&fattr);
	status = rpc_call_sync(server->client_acl, &msg, 0);
	dprintk("NFS reply getacl: %d\n", status);

	/* pages may have been allocated at the xdr layer. */
	for (count = 0; count < NFSACL_MAXPAGES && args.pages[count]; count++)
		__free_page(args.pages[count]);

	switch (status) {
		case 0:
			status = nfs_refresh_inode(inode, &fattr);
			break;
		case -EPFNOSUPPORT:
		case -EPROTONOSUPPORT:
			dprintk("NFS_V3_ACL extension not supported; disabling\n");
			server->caps &= ~NFS_CAP_ACLS;
		case -ENOTSUPP:
			status = -EOPNOTSUPP;
		default:
			goto getout;
	}
	if ((args.mask & res.mask) != args.mask) {
		status = -EIO;
		goto getout;
	}

	if (res.acl_access != NULL) {
		if (posix_acl_equiv_mode(res.acl_access, NULL) == 0) {
			posix_acl_release(res.acl_access);
			res.acl_access = NULL;
		}
	}
	nfs3_cache_acls(inode,
		(res.mask & NFS_ACL)   ? res.acl_access  : ERR_PTR(-EINVAL),
		(res.mask & NFS_DFACL) ? res.acl_default : ERR_PTR(-EINVAL));

	switch(type) {
		case ACL_TYPE_ACCESS:
			acl = res.acl_access;
			res.acl_access = NULL;
			break;

		case ACL_TYPE_DEFAULT:
			acl = res.acl_default;
			res.acl_default = NULL;
	}

getout:
	posix_acl_release(res.acl_access);
	posix_acl_release(res.acl_default);

	if (status != 0) {
		posix_acl_release(acl);
		acl = ERR_PTR(status);
	}
	return acl;
}
Пример #26
0
static int nfs_do_call_unlink(struct dentry *parent, struct inode *dir, struct nfs_unlinkdata *data)
{
	struct rpc_message msg = {
		.rpc_argp = &data->args,
		.rpc_resp = &data->res,
		.rpc_cred = data->cred,
	};
	struct rpc_task_setup task_setup_data = {
		.rpc_message = &msg,
		.callback_ops = &nfs_unlink_ops,
		.callback_data = data,
		.workqueue = nfsiod_workqueue,
		.flags = RPC_TASK_ASYNC,
	};
	struct rpc_task *task;
	struct dentry *alias;

	alias = d_lookup(parent, &data->args.name);
	if (alias != NULL) {
		int ret;
		void *devname_garbage = NULL;

		nfs_free_dname(data);
		ret = nfs_copy_dname(alias, data);
		spin_lock(&alias->d_lock);
		if (ret == 0 && alias->d_inode != NULL &&
		    !(alias->d_flags & DCACHE_NFSFS_RENAMED)) {
			devname_garbage = alias->d_fsdata;
			alias->d_fsdata = data;
			alias->d_flags |= DCACHE_NFSFS_RENAMED;
			ret = 1;
		} else
			ret = 0;
		spin_unlock(&alias->d_lock);
		nfs_dec_sillycount(dir);
		dput(alias);
		kfree(devname_garbage);
		return ret;
	}
	data->dir = igrab(dir);
	if (!data->dir) {
		nfs_dec_sillycount(dir);
		return 0;
	}
	nfs_sb_active(dir->i_sb);
	data->args.fh = NFS_FH(dir);
	nfs_fattr_init(data->res.dir_attr);

	NFS_PROTO(dir)->unlink_setup(&msg, dir);

	task_setup_data.rpc_client = NFS_CLIENT(dir);
	task = rpc_run_task(&task_setup_data);
	if (!IS_ERR(task))
		rpc_put_task_async(task);
	return 1;
}

static int nfs_call_unlink(struct dentry *dentry, struct nfs_unlinkdata *data)
{
	struct dentry *parent;
	struct inode *dir;
	int ret = 0;


	parent = dget_parent(dentry);
	if (parent == NULL)
		goto out_free;
	dir = parent->d_inode;
	
	spin_lock(&dir->i_lock);
	if (atomic_inc_not_zero(&NFS_I(dir)->silly_count) == 0) {
		
		hlist_add_head(&data->list, &NFS_I(dir)->silly_list);
		spin_unlock(&dir->i_lock);
		ret = 1;
		goto out_dput;
	}
	spin_unlock(&dir->i_lock);
	ret = nfs_do_call_unlink(parent, dir, data);
out_dput:
	dput(parent);
out_free:
	return ret;
}

void nfs_block_sillyrename(struct dentry *dentry)
{
	struct nfs_inode *nfsi = NFS_I(dentry->d_inode);

	wait_event(nfsi->waitqueue, atomic_cmpxchg(&nfsi->silly_count, 1, 0) == 1);
}

void nfs_unblock_sillyrename(struct dentry *dentry)
{
	struct inode *dir = dentry->d_inode;
	struct nfs_inode *nfsi = NFS_I(dir);
	struct nfs_unlinkdata *data;

	atomic_inc(&nfsi->silly_count);
	spin_lock(&dir->i_lock);
	while (!hlist_empty(&nfsi->silly_list)) {
		if (!atomic_inc_not_zero(&nfsi->silly_count))
			break;
		data = hlist_entry(nfsi->silly_list.first, struct nfs_unlinkdata, list);
		hlist_del(&data->list);
		spin_unlock(&dir->i_lock);
		if (nfs_do_call_unlink(dentry, dir, data) == 0)
			nfs_free_unlinkdata(data);
		spin_lock(&dir->i_lock);
	}
	spin_unlock(&dir->i_lock);
}

static int
nfs_async_unlink(struct inode *dir, struct dentry *dentry)
{
	struct nfs_unlinkdata *data;
	int status = -ENOMEM;
	void *devname_garbage = NULL;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (data == NULL)
		goto out;

	data->cred = rpc_lookup_cred();
	if (IS_ERR(data->cred)) {
		status = PTR_ERR(data->cred);
		goto out_free;
	}
	data->res.dir_attr = &data->dir_attr;

	status = -EBUSY;
	spin_lock(&dentry->d_lock);
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
		goto out_unlock;
	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
	devname_garbage = dentry->d_fsdata;
	dentry->d_fsdata = data;
	spin_unlock(&dentry->d_lock);
	if (devname_garbage)
		kfree(devname_garbage);
	return 0;
out_unlock:
	spin_unlock(&dentry->d_lock);
	put_rpccred(data->cred);
out_free:
	kfree(data);
out:
	return status;
}

void
nfs_complete_unlink(struct dentry *dentry, struct inode *inode)
{
	struct nfs_unlinkdata	*data = NULL;

	spin_lock(&dentry->d_lock);
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		dentry->d_flags &= ~DCACHE_NFSFS_RENAMED;
		data = dentry->d_fsdata;
		dentry->d_fsdata = NULL;
	}
	spin_unlock(&dentry->d_lock);

	if (data != NULL && (NFS_STALE(inode) || !nfs_call_unlink(dentry, data)))
		nfs_free_unlinkdata(data);
}

static void
nfs_cancel_async_unlink(struct dentry *dentry)
{
	spin_lock(&dentry->d_lock);
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		struct nfs_unlinkdata *data = dentry->d_fsdata;

		dentry->d_flags &= ~DCACHE_NFSFS_RENAMED;
		dentry->d_fsdata = NULL;
		spin_unlock(&dentry->d_lock);
		nfs_free_unlinkdata(data);
		return;
	}
	spin_unlock(&dentry->d_lock);
}