int nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device, u32 handle, u32 arg0, u32 arg1, struct nouveau_channel **pchan) { struct nouveau_cli *cli = (void *)nvif_client(&device->base); int ret; ret = nouveau_channel_ind(drm, device, handle, arg0, pchan); if (ret) { NV_PRINTK(debug, cli, "ib channel create, %d\n", ret); ret = nouveau_channel_dma(drm, device, handle, pchan); if (ret) { NV_PRINTK(debug, cli, "dma channel create, %d\n", ret); return ret; } } ret = nouveau_channel_init(*pchan, arg0, arg1); if (ret) { NV_PRINTK(error, cli, "channel failed to initialise, %d\n", ret); nouveau_channel_del(pchan); return ret; } return 0; }
int nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device, u32 handle, u32 arg0, u32 arg1, struct nouveau_channel **pchan) { struct nouveau_cli *cli = (void *)nvif_client(&device->base); bool super; int ret; /* hack until fencenv50 is fixed, and agp access relaxed */ super = cli->base.super; cli->base.super = true; ret = nouveau_channel_ind(drm, device, handle, arg0, pchan); if (ret) { NV_PRINTK(debug, cli, "ib channel create, %d\n", ret); ret = nouveau_channel_dma(drm, device, handle, pchan); if (ret) { NV_PRINTK(debug, cli, "dma channel create, %d\n", ret); goto done; } } ret = nouveau_channel_init(*pchan, arg0, arg1); if (ret) { NV_PRINTK(error, cli, "channel failed to initialise, %d\n", ret); nouveau_channel_del(pchan); } done: cli->base.super = super; return ret; }
int nouveau_channel_idle(struct nouveau_channel *chan) { struct nouveau_cli *cli = (void *)nvif_client(chan->object); struct nouveau_fence *fence = NULL; int ret; ret = nouveau_fence_new(chan, false, &fence); if (!ret) { ret = nouveau_fence_wait(fence, false, false); nouveau_fence_unref(&fence); } if (ret) NV_PRINTK(error, cli, "failed to idle channel 0x%08x [%s]\n", chan->object->handle, nvkm_client(&cli->base)->name); return ret; }
static inline int nvif_notify_put_(struct nvif_notify *notify) { struct nvif_object *object = notify->object; struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_ntfy_put_v0 ntfy; } args = { .ioctl.type = NVIF_IOCTL_V0_NTFY_PUT, .ntfy.index = notify->index, }; if (atomic_inc_return(¬ify->putcnt) != 1) return 0; return nvif_object_ioctl(object, &args, sizeof(args), NULL); } int nvif_notify_put(struct nvif_notify *notify) { if (likely(notify->object) && test_and_clear_bit(NVIF_NOTIFY_USER, ¬ify->flags)) { int ret = nvif_notify_put_(notify); if (test_bit(NVIF_NOTIFY_WORK, ¬ify->flags)) flush_work(¬ify->work); return ret; } return 0; } static inline int nvif_notify_get_(struct nvif_notify *notify) { struct nvif_object *object = notify->object; struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_ntfy_get_v0 ntfy; } args = { .ioctl.type = NVIF_IOCTL_V0_NTFY_GET, .ntfy.index = notify->index, }; if (atomic_dec_return(¬ify->putcnt) != 0) return 0; return nvif_object_ioctl(object, &args, sizeof(args), NULL); } int nvif_notify_get(struct nvif_notify *notify) { if (likely(notify->object) && !test_and_set_bit(NVIF_NOTIFY_USER, ¬ify->flags)) return nvif_notify_get_(notify); return 0; } static inline int nvif_notify_func(struct nvif_notify *notify, bool keep) { int ret = notify->func(notify); if (ret == NVIF_NOTIFY_KEEP || !test_and_clear_bit(NVKM_NOTIFY_USER, ¬ify->flags)) { if (!keep) atomic_dec(¬ify->putcnt); else nvif_notify_get_(notify); } return ret; } static void nvif_notify_work(struct work_struct *work) { struct nvif_notify *notify = container_of(work, typeof(*notify), work); nvif_notify_func(notify, true); } int nvif_notify(const void *header, u32 length, const void *data, u32 size) { struct nvif_notify *notify = NULL; const union { struct nvif_notify_rep_v0 v0; } *args = header; int ret = NVIF_NOTIFY_DROP; if (length == sizeof(args->v0) && args->v0.version == 0) { if (WARN_ON(args->v0.route)) return NVIF_NOTIFY_DROP; notify = (void *)(unsigned long)args->v0.token; } if (!WARN_ON(notify == NULL)) { struct nvif_client *client = nvif_client(notify->object); if (!WARN_ON(notify->size != size)) { atomic_inc(¬ify->putcnt); if (test_bit(NVIF_NOTIFY_WORK, ¬ify->flags)) { memcpy((void *)notify->data, data, size); schedule_work(¬ify->work); return NVIF_NOTIFY_DROP; } notify->data = data; ret = nvif_notify_func(notify, client->driver->keep); notify->data = NULL; } } return ret; } int nvif_notify_fini(struct nvif_notify *notify) { struct nvif_object *object = notify->object; struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_ntfy_del_v0 ntfy; } args = { .ioctl.type = NVIF_IOCTL_V0_NTFY_DEL, .ntfy.index = notify->index, }; int ret = nvif_notify_put(notify); if (ret >= 0 && object) { ret = nvif_object_ioctl(object, &args, sizeof(args), NULL); if (ret == 0) { nvif_object_ref(NULL, ¬ify->object); kfree((void *)notify->data); } } return ret; } int nvif_notify_init(struct nvif_object *object, void (*dtor)(struct nvif_notify *), int (*func)(struct nvif_notify *), bool work, u8 event, void *data, u32 size, u32 reply, struct nvif_notify *notify) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_ntfy_new_v0 ntfy; struct nvif_notify_req_v0 req; } *args; int ret = -ENOMEM; notify->object = NULL; nvif_object_ref(object, ¬ify->object); notify->flags = 0; atomic_set(¬ify->putcnt, 1); notify->dtor = dtor; notify->func = func; notify->data = NULL; notify->size = reply; if (work) { INIT_WORK(¬ify->work, nvif_notify_work); set_bit(NVIF_NOTIFY_WORK, ¬ify->flags); notify->data = kmalloc(notify->size, GFP_KERNEL); if (!notify->data) goto done; } if (!(args = kmalloc(sizeof(*args) + size, GFP_KERNEL))) goto done; args->ioctl.version = 0; args->ioctl.type = NVIF_IOCTL_V0_NTFY_NEW; args->ntfy.version = 0; args->ntfy.event = event; args->req.version = 0; args->req.reply = notify->size; args->req.route = 0; args->req.token = (unsigned long)(void *)notify; memcpy(args->req.data, data, size); ret = nvif_object_ioctl(object, args, sizeof(*args) + size, NULL); notify->index = args->ntfy.index; kfree(args); done: if (ret) nvif_notify_fini(notify); return ret; } static void nvif_notify_del(struct nvif_notify *notify) { nvif_notify_fini(notify); kfree(notify); } void nvif_notify_ref(struct nvif_notify *notify, struct nvif_notify **pnotify) { BUG_ON(notify != NULL); if (*pnotify) (*pnotify)->dtor(*pnotify); *pnotify = notify; }
static int nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device, u32 handle, u32 size, struct nouveau_channel **pchan) { struct nouveau_cli *cli = (void *)nvif_client(&device->base); struct nouveau_vmmgr *vmm = nvkm_vmmgr(device); struct nv_dma_v0 args = {}; struct nouveau_channel *chan; u32 target; int ret; chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; nvif_device_ref(device, &chan->device); chan->drm = drm; /* allocate memory for dma push buffer */ target = TTM_PL_FLAG_TT; if (nouveau_vram_pushbuf) target = TTM_PL_FLAG_VRAM; ret = nouveau_bo_new(drm->dev, size, 0, target, 0, 0, NULL, &chan->push.buffer); if (ret == 0) { ret = nouveau_bo_pin(chan->push.buffer, target); if (ret == 0) ret = nouveau_bo_map(chan->push.buffer); } if (ret) { nouveau_channel_del(pchan); return ret; } /* create dma object covering the *entire* memory space that the * pushbuf lives in, this is because the GEM code requires that * we be able to call out to other (indirect) push buffers */ chan->push.vma.offset = chan->push.buffer->bo.offset; if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { ret = nouveau_bo_vma_add(chan->push.buffer, cli->vm, &chan->push.vma); if (ret) { nouveau_channel_del(pchan); return ret; } args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = cli->vm->vmm->limit - 1; } else if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) { if (device->info.family == NV_DEVICE_INFO_V0_TNT) { /* nv04 vram pushbuf hack, retarget to its location in * the framebuffer bar rather than direct vram access.. * nfi why this exists, it came from the -nv ddx. */ args.target = NV_DMA_V0_TARGET_PCI; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = nv_device_resource_start(nvkm_device(device), 1); args.limit = args.start + device->info.ram_user - 1; } else { args.target = NV_DMA_V0_TARGET_VRAM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = device->info.ram_user - 1; } } else { if (chan->drm->agp.stat == ENABLED) { args.target = NV_DMA_V0_TARGET_AGP; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = chan->drm->agp.base; args.limit = chan->drm->agp.base + chan->drm->agp.size - 1; } else { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = vmm->limit - 1; } } ret = nvif_object_init(nvif_object(device), NULL, NVDRM_PUSH | (handle & 0xffff), NV_DMA_FROM_MEMORY, &args, sizeof(args), &chan->push.ctxdma); if (ret) { nouveau_channel_del(pchan); return ret; } return 0; }
static int nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart) { struct nvif_device *device = chan->device; struct nouveau_cli *cli = (void *)nvif_client(&device->base); struct nouveau_vmmgr *vmm = nvkm_vmmgr(device); struct nouveau_software_chan *swch; struct nv_dma_v0 args = {}; int ret, i; nvif_object_map(chan->object); /* allocate dma objects to cover all allowed vram, and gart */ if (device->info.family < NV_DEVICE_INFO_V0_FERMI) { if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = cli->vm->vmm->limit - 1; } else { args.target = NV_DMA_V0_TARGET_VRAM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = device->info.ram_user - 1; } ret = nvif_object_init(chan->object, NULL, vram, NV_DMA_IN_MEMORY, &args, sizeof(args), &chan->vram); if (ret) return ret; if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = cli->vm->vmm->limit - 1; } else if (chan->drm->agp.stat == ENABLED) { args.target = NV_DMA_V0_TARGET_AGP; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = chan->drm->agp.base; args.limit = chan->drm->agp.base + chan->drm->agp.size - 1; } else { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = vmm->limit - 1; } ret = nvif_object_init(chan->object, NULL, gart, NV_DMA_IN_MEMORY, &args, sizeof(args), &chan->gart); if (ret) return ret; } /* initialise dma tracking parameters */ switch (chan->object->oclass & 0x00ff) { case 0x006b: case 0x006e: chan->user_put = 0x40; chan->user_get = 0x44; chan->dma.max = (0x10000 / 4) - 2; break; default: chan->user_put = 0x40; chan->user_get = 0x44; chan->user_get_hi = 0x60; chan->dma.ib_base = 0x10000 / 4; chan->dma.ib_max = (0x02000 / 8) - 1; chan->dma.ib_put = 0; chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put; chan->dma.max = chan->dma.ib_base; break; } chan->dma.put = 0; chan->dma.cur = chan->dma.put; chan->dma.free = chan->dma.max - chan->dma.cur; ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS); if (ret) return ret; for (i = 0; i < NOUVEAU_DMA_SKIPS; i++) OUT_RING(chan, 0x00000000); /* allocate software object class (used for fences on <= nv05) */ if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) { ret = nvif_object_init(chan->object, NULL, 0x006e, 0x006e, NULL, 0, &chan->nvsw); if (ret) return ret; swch = (void *)nvkm_object(&chan->nvsw)->parent; swch->flip = nouveau_flip_complete; swch->flip_data = chan; ret = RING_SPACE(chan, 2); if (ret) return ret; BEGIN_NV04(chan, NvSubSw, 0x0000, 1); OUT_RING (chan, chan->nvsw.handle); FIRE_RING (chan); } /* initialise synchronisation */ return nouveau_fence(chan->drm)->context_new(chan); }