int main(int argc, char **argv) { MPI_Init(&argc, &argv); int rank, size; MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); int *groups = (int *)malloc(size * sizeof(int)); int *groups2 = (int *)malloc(size * sizeof(int)); int my_type = 1; //This is to be read from a configuration file MPI_Allgather(&my_type, 1, MPI_INT, groups, 1, MPI_INT, MPI_COMM_WORLD); int num_groups = 0; for (int i = 0; i < size; i++) num_groups = num_groups > groups[i] ? num_groups : groups[i]; num_groups++; //The global group MPI_Group global_grp; MPI_Comm_group(MPI_COMM_WORLD, &global_grp); //Create sub-groups and sub-communicators MPI_Group mpigroups[num_groups]; MPI_Comm mpicomms[num_groups]; int count = 0; for (int i = 0; i < num_groups; ++i) { count = 0; for (int j = 0; j < size; ++j) { if (groups[j] == i) { groups2[count++] = j; } } MPI_Group_incl(global_grp, count, groups2, &mpigroups[i]); MPI_Comm_create(MPI_COMM_WORLD, mpigroups[i], &mpicomms[i]); } //coupling procs for (int i = 0; i < 1; ++i) { count = 0; for (int j = 0; j < size; ++j) { if (groups[j] == i) { groups2[count++] = j; } } } // OP initialisation op_mpi_init(argc,argv,2,MPI_COMM_WORLD, mpicomms[1]); int niter; double rms; //timer double cpu_t1, cpu_t2, wall_t1, wall_t2; // set constants and initialise flow field and residual op_printf("initialising flow field \n"); char file[] = "new_grid.h5"; // declare sets, pointers, datasets and global constants op_set nodes = op_decl_set_hdf5(file, "nodes"); op_set edges = op_decl_set_hdf5(file, "edges"); op_set bedges = op_decl_set_hdf5(file, "bedges"); op_set cells = op_decl_set_hdf5(file, "cells"); op_map pedge = op_decl_map_hdf5(edges, nodes, 2, file, "pedge"); op_map pecell = op_decl_map_hdf5(edges, cells,2, file, "pecell"); op_map pbedge = op_decl_map_hdf5(bedges,nodes,2, file, "pbedge"); op_map pbecell = op_decl_map_hdf5(bedges,cells,1, file, "pbecell"); op_map pcell = op_decl_map_hdf5(cells, nodes,4, file, "pcell"); op_map pbndbnd = op_decl_map_hdf5(bedges, bedges,1, file, "pbndbnd"); op_map m_test = op_decl_map_hdf5(cells, nodes,4, file, "m_test"); if (m_test == NULL) printf("m_test not found\n"); op_dat p_bound = op_decl_dat_hdf5(bedges,1,"int" ,file,"p_bound"); op_dat p_x = op_decl_dat_hdf5(nodes ,2,"double",file,"p_x"); op_dat p_q = op_decl_dat_hdf5(cells ,4,"double",file,"p_q"); op_dat p_qold = op_decl_dat_hdf5(cells ,4,"double",file,"p_qold"); op_dat p_adt = op_decl_dat_hdf5(cells ,1,"double",file,"p_adt"); op_dat p_res = op_decl_dat_hdf5(cells ,4,"double",file,"p_res"); op_dat p_test = op_decl_dat_hdf5(cells ,4,"double",file,"p_test"); if (p_test == NULL) printf("p_test not found\n"); op_get_const_hdf5("gam", 1, "double", (char *)&gam, "new_grid.h5"); op_get_const_hdf5("gm1", 1, "double", (char *)&gm1, "new_grid.h5"); op_get_const_hdf5("cfl", 1, "double", (char *)&cfl, "new_grid.h5"); op_get_const_hdf5("eps", 1, "double", (char *)&eps, "new_grid.h5"); op_get_const_hdf5("mach", 1, "double", (char *)&mach, "new_grid.h5"); op_get_const_hdf5("alpha", 1, "double", (char *)&alpha, "new_grid.h5"); op_get_const_hdf5("qinf", 4, "double", (char *)&qinf, "new_grid.h5"); op_decl_const(1,"double",&gam ); op_decl_const(1,"double",&gm1 ); op_decl_const(1,"double",&cfl ); op_decl_const(1,"double",&eps ); op_decl_const(1,"double",&mach ); op_decl_const(1,"double",&alpha); op_decl_const(4,"double",qinf ); op_diagnostic_output(); //write back original data just to compare you read the file correctly //do an h5diff between new_grid_out.h5 and new_grid.h5 to //compare two hdf5 files op_dump_to_hdf5("new_grid_out.h5"); op_write_const_hdf5("gam",1,"double",(char *)&gam, "new_grid_out.h5"); op_write_const_hdf5("gm1",1,"double",(char *)&gm1, "new_grid_out.h5"); op_write_const_hdf5("cfl",1,"double",(char *)&cfl, "new_grid_out.h5"); op_write_const_hdf5("eps",1,"double",(char *)&eps, "new_grid_out.h5"); op_write_const_hdf5("mach",1,"double",(char *)&mach, "new_grid_out.h5"); op_write_const_hdf5("alpha",1,"double",(char *)&alpha, "new_grid_out.h5"); op_write_const_hdf5("qinf",4,"double",(char *)qinf, "new_grid_out.h5"); //trigger partitioning and halo creation routines op_partition("PTSCOTCH", "KWAY", edges, pecell, p_x); //op_partition("PARMETIS", "KWAY", edges, pecell, p_x); int g_ncell = op_get_size(cells); //create some temporaries so we can exchange data defined on the boundary double *ptr = NULL; op_dat center = op_decl_dat_temp(bedges, 3, "double", ptr, "center"); op_dat pres = op_decl_dat_temp(bedges, 1, "double", ptr, "pres"); int *ptr2 = NULL; op_dat p_bound2 = op_decl_dat_temp(bedges, 1, "int", ptr2, "p_bound2"); op_dat center2 = op_decl_dat_temp(bedges, 3, "double", ptr, "center2"); op_dat pres2 = op_decl_dat_temp(bedges, 1, "double", ptr, "pres2"); //create import and export handles op_export_handle handle = op_export_init(count, groups2, pbndbnd); op_import_handle handle2 = op_import_init(count, groups2, center); //initialise timers for total execution wall time op_timers(&cpu_t1, &wall_t1); // main time-marching loop niter = 1000; for(int iter=1; iter<=niter; iter++) { // save old flow solution op_par_loop(save_soln,"save_soln", cells, op_arg_dat(p_q, -1,OP_ID, 4,"double",OP_READ ), op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_WRITE)); // predictor/corrector update loop for(int k=0; k<2; k++) { // calculate area/timstep op_par_loop(adt_calc,"adt_calc",cells, op_arg_dat(p_x, 0,pcell, 2,"double",OP_READ ), op_arg_dat(p_x, 1,pcell, 2,"double",OP_READ ), op_arg_dat(p_x, 2,pcell, 2,"double",OP_READ ), op_arg_dat(p_x, 3,pcell, 2,"double",OP_READ ), op_arg_dat(p_q, -1,OP_ID, 4,"double",OP_READ ), op_arg_dat(p_adt,-1,OP_ID, 1,"double",OP_WRITE)); // calculate flux residual op_par_loop(res_calc,"res_calc",edges, op_arg_dat(p_x, 0,pedge, 2,"double",OP_READ), op_arg_dat(p_x, 1,pedge, 2,"double",OP_READ), op_arg_dat(p_q, 0,pecell,4,"double",OP_READ), op_arg_dat(p_q, 1,pecell,4,"double",OP_READ), op_arg_dat(p_adt, 0,pecell,1,"double",OP_READ), op_arg_dat(p_adt, 1,pecell,1,"double",OP_READ), op_arg_dat(p_res, 0,pecell,4,"double",OP_INC ), op_arg_dat(p_res, 1,pecell,4,"double",OP_INC )); op_par_loop(bres_calc,"bres_calc",bedges, op_arg_dat(p_x, 0,pbedge, 2,"double",OP_READ), op_arg_dat(p_x, 1,pbedge, 2,"double",OP_READ), op_arg_dat(p_q, 0,pbecell,4,"double",OP_READ), op_arg_dat(p_adt, 0,pbecell,1,"double",OP_READ), op_arg_dat(p_res, 0,pbecell,4,"double",OP_INC ), op_arg_dat(p_bound,-1,OP_ID ,1,"int", OP_READ), op_arg_dat(center, -1, OP_ID, 3, "double", OP_WRITE), op_arg_dat(pres, -1, OP_ID, 1, "double", OP_WRITE)); // update flow field rms = 0.0; op_par_loop(update,"update",cells, op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_READ ), op_arg_dat(p_q, -1,OP_ID, 4,"double",OP_WRITE), op_arg_dat(p_res, -1,OP_ID, 4,"double",OP_RW ), op_arg_dat(p_adt, -1,OP_ID, 1,"double",OP_READ ), op_arg_gbl(&rms,1,"double",OP_INC)); } // print iteration history rms = sqrt(rms/(double)g_ncell); if (iter%100 == 0) { op_printf(" %d %10.5e \n",iter,rms); //Export data op_dat arr[] = {p_bound, center, pres}; op_export_data(handle, 3, arr); //Import data op_dat arr2[] = {p_bound2, center2, pres2}; op_import_data(handle2, 3, arr2); //check whether the two are the same op_par_loop(comparethem, "comparethem", bedges, op_arg_dat(p_bound,-1, OP_ID, 1, "int", OP_READ), op_arg_dat(p_bound2,-1, OP_ID, 1, "int", OP_READ), op_arg_dat(center,-1, OP_ID, 3, "double", OP_READ), op_arg_dat(center2,-1, OP_ID, 3, "double", OP_READ), op_arg_dat(pres,-1, OP_ID, 1, "double", OP_READ), op_arg_dat(pres2,-1, OP_ID, 1, "double", OP_READ)); } } op_timers(&cpu_t2, &wall_t2); double* q = (double *)malloc(sizeof(double)*op_get_size(cells)*4); op_fetch_data_hdf5(p_q, q, 0, op_get_size(cells)-1); free(q); op_fetch_data_hdf5_file(p_q, "file_name.h5"); //printf("Root process = %d\n",op_is_root()); //output the result dat array to files //op_write_hdf5("new_grid_out.h5"); //compress using // ~/hdf5/bin/h5repack -f GZIP=9 new_grid.h5 new_grid_pack.h5 op_timing_output(); op_printf("Max total runtime = \n%f\n",wall_t2-wall_t1); op_exit(); }
int main(int argc, char **argv) { // OP initialisation op_init(argc,argv,2); //MPI for user I/O int my_rank; int comm_size; MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); MPI_Comm_size(MPI_COMM_WORLD, &comm_size); //timer double cpu_t1, cpu_t2, wall_t1, wall_t2; int *becell, *ecell, *bound, *bedge, *edge, *cell; double *x, *q, *qold, *adt, *res; int nnode,ncell,nedge,nbedge,niter; double rms; /**------------------------BEGIN I/O and PARTITIONING -------------------**/ op_timers(&cpu_t1, &wall_t1); /* read in grid from disk on root processor */ FILE *fp; if ( (fp = fopen("new_grid.dat","r")) == NULL) { op_printf("can't open file new_grid.dat\n"); exit(-1); } int g_nnode,g_ncell,g_nedge,g_nbedge; check_scan(fscanf(fp,"%d %d %d %d \n",&g_nnode, &g_ncell, &g_nedge, &g_nbedge), 4); int *g_becell = 0, *g_ecell = 0, *g_bound = 0, *g_bedge = 0, *g_edge = 0, *g_cell = 0; double *g_x = 0,*g_q = 0, *g_qold = 0, *g_adt = 0, *g_res = 0; // set constants op_printf("initialising flow field\n"); gam = 1.4f; gm1 = gam - 1.0f; cfl = 0.9f; eps = 0.05f; double mach = 0.4f; double alpha = 3.0f*atan(1.0f)/45.0f; double p = 1.0f; double r = 1.0f; double u = sqrt(gam*p/r)*mach; double e = p/(r*gm1) + 0.5f*u*u; qinf[0] = r; qinf[1] = r*u; qinf[2] = 0.0f; qinf[3] = r*e; op_printf("reading in grid \n"); op_printf("Global number of nodes, cells, edges, bedges = %d, %d, %d, %d\n" ,g_nnode,g_ncell,g_nedge,g_nbedge); if(my_rank == MPI_ROOT) { g_cell = (int *) malloc(4*g_ncell*sizeof(int)); g_edge = (int *) malloc(2*g_nedge*sizeof(int)); g_ecell = (int *) malloc(2*g_nedge*sizeof(int)); g_bedge = (int *) malloc(2*g_nbedge*sizeof(int)); g_becell = (int *) malloc( g_nbedge*sizeof(int)); g_bound = (int *) malloc( g_nbedge*sizeof(int)); g_x = (double *) malloc(2*g_nnode*sizeof(double)); g_q = (double *) malloc(4*g_ncell*sizeof(double)); g_qold = (double *) malloc(4*g_ncell*sizeof(double)); g_res = (double *) malloc(4*g_ncell*sizeof(double)); g_adt = (double *) malloc( g_ncell*sizeof(double)); for (int n=0; n<g_nnode; n++){ check_scan(fscanf(fp,"%lf %lf \n",&g_x[2*n], &g_x[2*n+1]), 2); } for (int n=0; n<g_ncell; n++) { check_scan(fscanf(fp,"%d %d %d %d \n",&g_cell[4*n ], &g_cell[4*n+1], &g_cell[4*n+2], &g_cell[4*n+3]), 4); } for (int n=0; n<g_nedge; n++) { check_scan(fscanf(fp,"%d %d %d %d \n",&g_edge[2*n],&g_edge[2*n+1], &g_ecell[2*n],&g_ecell[2*n+1]), 4); } for (int n=0; n<g_nbedge; n++) { check_scan(fscanf(fp,"%d %d %d %d \n",&g_bedge[2*n],&g_bedge[2*n+1], &g_becell[n],&g_bound[n]), 4); } //initialise flow field and residual for (int n=0; n<g_ncell; n++) { for (int m=0; m<4; m++) { g_q[4*n+m] = qinf[m]; g_res[4*n+m] = 0.0f; } } } fclose(fp); nnode = compute_local_size (g_nnode, comm_size, my_rank); ncell = compute_local_size (g_ncell, comm_size, my_rank); nedge = compute_local_size (g_nedge, comm_size, my_rank); nbedge = compute_local_size (g_nbedge, comm_size, my_rank); op_printf("Number of nodes, cells, edges, bedges on process %d = %d, %d, %d, %d\n" ,my_rank,nnode,ncell,nedge,nbedge); /*Allocate memory to hold local sets, mapping tables and data*/ cell = (int *) malloc(4*ncell*sizeof(int)); edge = (int *) malloc(2*nedge*sizeof(int)); ecell = (int *) malloc(2*nedge*sizeof(int)); bedge = (int *) malloc(2*nbedge*sizeof(int)); becell = (int *) malloc( nbedge*sizeof(int)); bound = (int *) malloc( nbedge*sizeof(int)); x = (double *) malloc(2*nnode*sizeof(double)); q = (double *) malloc(4*ncell*sizeof(double)); qold = (double *) malloc(4*ncell*sizeof(double)); res = (double *) malloc(4*ncell*sizeof(double)); adt = (double *) malloc( ncell*sizeof(double)); /* scatter sets, mappings and data on sets*/ scatter_int_array(g_cell, cell, comm_size, g_ncell,ncell, 4); scatter_int_array(g_edge, edge, comm_size, g_nedge,nedge, 2); scatter_int_array(g_ecell, ecell, comm_size, g_nedge,nedge, 2); scatter_int_array(g_bedge, bedge, comm_size, g_nbedge,nbedge, 2); scatter_int_array(g_becell, becell, comm_size, g_nbedge,nbedge, 1); scatter_int_array(g_bound, bound, comm_size, g_nbedge,nbedge, 1); scatter_double_array(g_x, x, comm_size, g_nnode,nnode, 2); scatter_double_array(g_q, q, comm_size, g_ncell,ncell, 4); scatter_double_array(g_qold, qold, comm_size, g_ncell,ncell, 4); scatter_double_array(g_res, res, comm_size, g_ncell,ncell, 4); scatter_double_array(g_adt, adt, comm_size, g_ncell,ncell, 1); /*Freeing memory allocated to gloabal arrays on rank 0 after scattering to all processes*/ if(my_rank == MPI_ROOT) { free(g_cell); free(g_edge); free(g_ecell); free(g_bedge); free(g_becell); free(g_bound); free(g_x ); free(g_q); free(g_qold); free(g_adt); free(g_res); } op_timers(&cpu_t2, &wall_t2); op_printf("Max total file read time = %f\n", wall_t2-wall_t1); /**------------------------END I/O and PARTITIONING -----------------------**/ // declare sets, pointers, datasets and global constants op_set nodes = op_decl_set(nnode, "nodes"); op_set edges = op_decl_set(nedge, "edges"); op_set bedges = op_decl_set(nbedge, "bedges"); op_set cells = op_decl_set(ncell, "cells"); op_map pedge = op_decl_map(edges, nodes,2,edge, "pedge"); op_map pecell = op_decl_map(edges, cells,2,ecell, "pecell"); op_map pbedge = op_decl_map(bedges,nodes,2,bedge, "pbedge"); op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell"); op_map pcell = op_decl_map(cells, nodes,4,cell, "pcell"); op_dat p_bound = op_decl_dat(bedges,1,"int" ,bound,"p_bound"); op_dat p_x = op_decl_dat(nodes ,2,"double",x ,"p_x"); op_dat p_q = op_decl_dat(cells ,4,"double",q ,"p_q"); //op_dat p_qold = op_decl_dat(cells ,4,"double",qold ,"p_qold"); //op_dat p_adt = op_decl_dat(cells ,1,"double",adt ,"p_adt"); //op_dat p_res = op_decl_dat(cells ,4,"double",res ,"p_res"); // p_res, p_adt and p_qold now declared as a temp op_dats during // the execution of the time-marching loop op_decl_const2("gam",1,"double",&gam ); op_decl_const2("gm1",1,"double",&gm1 ); op_decl_const2("cfl",1,"double",&cfl ); op_decl_const2("eps",1,"double",&eps ); op_decl_const2("mach",1,"double",&mach ); op_decl_const2("alpha",1,"double",&alpha); op_decl_const2("qinf",4,"double",qinf ); op_diagnostic_output(); //trigger partitioning and halo creation routines op_partition("PTSCOTCH", "KWAY", cells, pecell, p_x); //initialise timers for total execution wall time op_timers(&cpu_t1, &wall_t1); niter = 1000; for(int iter=1; iter<=niter; iter++) { double* tmp_elem = NULL; op_dat p_res = op_decl_dat_temp(cells ,4,"double",tmp_elem,"p_res"); op_dat p_adt = op_decl_dat_temp(cells ,1,"double",tmp_elem,"p_adt"); op_dat p_qold = op_decl_dat_temp(cells ,4,"double",qold ,"p_qold"); //save old flow solution op_par_loop_save_soln("save_soln",cells, op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_WRITE)); // predictor/corrector update loop for(int k=0; k<2; k++) { // calculate area/timstep op_par_loop_adt_calc("adt_calc",cells, op_arg_dat(p_x,0,pcell,2,"double",OP_READ), op_arg_dat(p_x,1,pcell,2,"double",OP_READ), op_arg_dat(p_x,2,pcell,2,"double",OP_READ), op_arg_dat(p_x,3,pcell,2,"double",OP_READ), op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_WRITE)); // calculate flux residual op_par_loop_res_calc("res_calc",edges, op_arg_dat(p_x,0,pedge,2,"double",OP_READ), op_arg_dat(p_x,1,pedge,2,"double",OP_READ), op_arg_dat(p_q,0,pecell,4,"double",OP_READ), op_arg_dat(p_q,1,pecell,4,"double",OP_READ), op_arg_dat(p_adt,0,pecell,1,"double",OP_READ), op_arg_dat(p_adt,1,pecell,1,"double",OP_READ), op_arg_dat(p_res,0,pecell,4,"double",OP_INC), op_arg_dat(p_res,1,pecell,4,"double",OP_INC)); op_par_loop_bres_calc("bres_calc",bedges, op_arg_dat(p_x,0,pbedge,2,"double",OP_READ), op_arg_dat(p_x,1,pbedge,2,"double",OP_READ), op_arg_dat(p_q,0,pbecell,4,"double",OP_READ), op_arg_dat(p_adt,0,pbecell,1,"double",OP_READ), op_arg_dat(p_res,0,pbecell,4,"double",OP_INC), op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ)); // update flow field rms = 0.0; op_par_loop_update("update",cells, op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_q,-1,OP_ID,4,"double",OP_WRITE), op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW), op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_READ), op_arg_gbl(&rms,1,"double",OP_INC)); } //print iteration history rms = sqrt(rms/(double) g_ncell); if (iter%100 == 0) op_printf("%d %10.5e \n",iter,rms); if (op_free_dat_temp(p_res) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_res->name); if (op_free_dat_temp(p_adt) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_adt->name); if (op_free_dat_temp(p_qold) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_qold->name); } op_timers(&cpu_t2, &wall_t2); op_timing_output(); //print total time for niter interations op_printf("Max total runtime = %f\n",wall_t2-wall_t1); op_exit(); free(cell); free(edge); free(ecell); free(bedge); free(becell); free(bound); free(x); free(q); free(qold); free(res); free(adt); }
int main(int argc, char **argv) { // OP initialisation op_init(argc,argv,2); int *becell, *ecell, *bound, *bedge, *edge, *cell; double *x, *q, *qold, *adt, *res; int nnode,ncell,nedge,nbedge,niter; double rms; //timer double cpu_t1, cpu_t2, wall_t1, wall_t2; // read in grid op_printf("reading in grid \n"); FILE *fp; if ( (fp = fopen("./new_grid.dat","r")) == NULL) { op_printf("can't open file new_grid.dat\n"); exit(-1); } if (fscanf(fp,"%d %d %d %d \n",&nnode, &ncell, &nedge, &nbedge) != 4) { op_printf("error reading from new_grid.dat\n"); exit(-1); } cell = (int *) malloc(4*ncell*sizeof(int)); edge = (int *) malloc(2*nedge*sizeof(int)); ecell = (int *) malloc(2*nedge*sizeof(int)); bedge = (int *) malloc(2*nbedge*sizeof(int)); becell = (int *) malloc( nbedge*sizeof(int)); bound = (int *) malloc( nbedge*sizeof(int)); x = (double *) malloc(2*nnode*sizeof(double)); q = (double *) malloc(4*ncell*sizeof(double)); qold = (double *) malloc(4*ncell*sizeof(double)); res = (double *) malloc(4*ncell*sizeof(double)); adt = (double *) malloc( ncell*sizeof(double)); for (int n=0; n<nnode; n++) { if (fscanf(fp,"%lf %lf \n",&x[2*n], &x[2*n+1]) != 2) { op_printf("error reading from new_grid.dat\n"); exit(-1); } } for (int n=0; n<ncell; n++) { if (fscanf(fp,"%d %d %d %d \n",&cell[4*n ], &cell[4*n+1], &cell[4*n+2], &cell[4*n+3]) != 4) { op_printf("error reading from new_grid.dat\n"); exit(-1); } } for (int n=0; n<nedge; n++) { if (fscanf(fp,"%d %d %d %d \n",&edge[2*n], &edge[2*n+1], &ecell[2*n],&ecell[2*n+1]) != 4) { op_printf("error reading from new_grid.dat\n"); exit(-1); } } for (int n=0; n<nbedge; n++) { if (fscanf(fp,"%d %d %d %d \n",&bedge[2*n],&bedge[2*n+1], &becell[n], &bound[n]) != 4) { op_printf("error reading from new_grid.dat\n"); exit(-1); } } fclose(fp); // set constants and initialise flow field and residual op_printf("initialising flow field \n"); gam = 1.4f; gm1 = gam - 1.0f; cfl = 0.9f; eps = 0.05f; double mach = 0.4f; double alpha = 3.0f*atan(1.0f)/45.0f; double p = 1.0f; double r = 1.0f; double u = sqrt(gam*p/r)*mach; double e = p/(r*gm1) + 0.5f*u*u; qinf[0] = r; qinf[1] = r*u; qinf[2] = 0.0f; qinf[3] = r*e; for (int n=0; n<ncell; n++) { for (int m=0; m<4; m++) { q[4*n+m] = qinf[m]; res[4*n+m] = 0.0f; } } // declare sets, pointers, datasets and global constants op_set nodes = op_decl_set(nnode, "nodes"); op_set edges = op_decl_set(nedge, "edges"); op_set bedges = op_decl_set(nbedge, "bedges"); op_set cells = op_decl_set(ncell, "cells"); op_map pedge = op_decl_map(edges, nodes,2,edge, "pedge"); op_map pecell = op_decl_map(edges, cells,2,ecell, "pecell"); op_map pbedge = op_decl_map(bedges,nodes,2,bedge, "pbedge"); op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell"); op_map pcell = op_decl_map(cells, nodes,4,cell, "pcell"); op_dat p_bound = op_decl_dat(bedges,1,"int" ,bound,"p_bound"); op_dat p_x = op_decl_dat(nodes ,2,"double",x ,"p_x"); op_dat p_q = op_decl_dat(cells ,4,"double",q ,"p_q"); //op_dat p_qold = op_decl_dat(cells ,4,"double",qold ,"p_qold"); //op_dat p_adt = op_decl_dat(cells ,1,"double",adt ,"p_adt"); //op_dat p_res = op_decl_dat(cells ,4,"double",res ,"p_res"); // p_res, p_adt and p_qold now declared as a temp op_dats during // the execution of the time-marching loop op_decl_const2("gam",1,"double",&gam); op_decl_const2("gm1",1,"double",&gm1); op_decl_const2("cfl",1,"double",&cfl); op_decl_const2("eps",1,"double",&eps); op_decl_const2("mach",1,"double",&mach); op_decl_const2("alpha",1,"double",&alpha); op_decl_const2("qinf",4,"double",qinf); op_diagnostic_output(); double g_ncell = op_get_size(cells); //initialise timers for total execution wall time op_timers(&cpu_t1, &wall_t1); // main time-marching loop niter = 1000; for(int iter=1; iter<=niter; iter++) { double* tmp_elem = NULL; op_dat p_res = op_decl_dat_temp(cells ,4,"double",tmp_elem,"p_res"); op_dat p_adt = op_decl_dat_temp(cells ,1,"double",tmp_elem,"p_adt"); op_dat p_qold = op_decl_dat_temp(cells ,4,"double",qold ,"p_qold"); // save old flow solution op_par_loop_save_soln("save_soln",cells, op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_WRITE)); // predictor/corrector update loop for(int k=0; k<2; k++) { // calculate area/timstep op_par_loop_adt_calc("adt_calc",cells, op_arg_dat(p_x,0,pcell,2,"double",OP_READ), op_arg_dat(p_x,1,pcell,2,"double",OP_READ), op_arg_dat(p_x,2,pcell,2,"double",OP_READ), op_arg_dat(p_x,3,pcell,2,"double",OP_READ), op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_WRITE)); // calculate flux residual op_par_loop_res_calc("res_calc",edges, op_arg_dat(p_x,0,pedge,2,"double",OP_READ), op_arg_dat(p_x,1,pedge,2,"double",OP_READ), op_arg_dat(p_q,0,pecell,4,"double",OP_READ), op_arg_dat(p_q,1,pecell,4,"double",OP_READ), op_arg_dat(p_adt,0,pecell,1,"double",OP_READ), op_arg_dat(p_adt,1,pecell,1,"double",OP_READ), op_arg_dat(p_res,0,pecell,4,"double",OP_INC), op_arg_dat(p_res,1,pecell,4,"double",OP_INC)); op_par_loop_bres_calc("bres_calc",bedges, op_arg_dat(p_x,0,pbedge,2,"double",OP_READ), op_arg_dat(p_x,1,pbedge,2,"double",OP_READ), op_arg_dat(p_q,0,pbecell,4,"double",OP_READ), op_arg_dat(p_adt,0,pbecell,1,"double",OP_READ), op_arg_dat(p_res,0,pbecell,4,"double",OP_INC), op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ)); // update flow field rms = 0.0; op_par_loop_update("update",cells, op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_READ), op_arg_dat(p_q,-1,OP_ID,4,"double",OP_WRITE), op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW), op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_READ), op_arg_gbl(&rms,1,"double",OP_INC)); } // print iteration history rms = sqrt(rms/(double)g_ncell ); if (iter%100 == 0) op_printf(" %d %10.5e \n",iter,rms); if (iter%1000 == 0 && g_ncell == 720000){ //defailt mesh -- for validation testing //op_printf(" %d %3.16f \n",iter,rms); double diff=fabs((100.0*(rms/0.0001060114637578))-100.0); op_printf("\n\nTest problem with %d cells is within %3.15E %% of the expected solution\n",720000, diff); if(diff < 0.00001) { op_printf("This test is considered PASSED\n"); } else { op_printf("This test is considered FAILED\n"); } } if (op_free_dat_temp(p_res) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_res->name); if (op_free_dat_temp(p_adt) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_adt->name); if (op_free_dat_temp(p_qold) < 0) op_printf("Error: temporary op_dat %s cannot be removed\n",p_qold->name); } op_timers(&cpu_t2, &wall_t2); op_timing_output(); op_printf("Max total runtime = %f\n",wall_t2-wall_t1); op_exit(); free(cell); free(edge); free(ecell); free(bedge); free(becell); free(bound); free(x); free(q); free(qold); free(res); free(adt); }