int main(int argc, const char **argv) { ops_init(argc, argv, 5); ops_init_backend(); ops_printf("Hello world from OPS!\n\n"); ops_block block = ops_decl_block_hdf5(3, "grid0", "write_data.h5"); ops_dat single = ops_decl_dat_hdf5(block, 1, "double", "single", "write_data.h5"); ops_dat multi = ops_decl_dat_hdf5(block, 2, "double", "multi", "write_data.h5"); ops_dat integ = ops_decl_dat_hdf5(block, 1, "int", "integ", "write_data.h5"); ops_partition("empty_string_that_does_nothing_yet"); ops_diagnostic_output(); ops_fetch_block_hdf5_file(block, "read_data.h5"); ops_fetch_dat_hdf5_file(multi, "read_data.h5"); ops_fetch_dat_hdf5_file(single, "read_data.h5"); ops_fetch_dat_hdf5_file(integ, "read_data.h5"); int my_const; ops_get_const_hdf5("my_const", 1, "int", (char *)&my_const, "write_data.h5"); printf("Read const: %d\n", my_const); char buffer[50]; ops_get_const_hdf5("my_text", 11, "char", buffer, "write_data.h5"); printf("Read text: %s\n", buffer); ops_write_const_hdf5("my_const", 1, "int", (char *)&my_const, "read_data.h5"); ops_write_const_hdf5("my_text", 11, "char", (char *)buffer, "read_data.h5"); ops_timing_output(stdout); ops_printf("\nSucessful exit from OPS!\n"); ops_exit(); }
int main(int argc, char *args[]) { if(argc != 5) { printf("Insufficient arguments. Need 4 arguments. %d\n", argc); exit(1); } time_t t; srand((unsigned) time(&t)); int m = 10000; int n = 1000; int n_threads = atoi(args[1]); Ops ops; ops_init(&ops, m, atof(args[2]), atof(args[3]), atof(args[4])); // Workout the number of operations of each type Byte *opsList = malloc(sizeof(Byte) * m); runDummyThreads(n_threads); buildOpsList(opsList, &ops, m); // Build a randomly ordered list of operations to be carried out int sample_size = 0; int test_samples = 20; float mutex_std = 0; float rwlock_std = 0; float serial_std = 0; // arrays for test sample memory size float *mutext_time = malloc(sizeof(float) * test_samples); float *rwlock_time = malloc(sizeof(float) * test_samples); //=malloc(sizeof(float)*test_samples) float *serial_time = malloc(sizeof(float) * test_samples); //all three linked list impletation run for (int i = 0; i < test_samples; i++) { mutext_time[i] = linkedListMutex(opsList, n_threads, m, n); rwlock_time[i] = linkedListRWLock(opsList, n_threads, m, n); serial_time[i] = serialLinkedList(opsList, m, n); } //finding standard deviation of each linked list implementation mutex_std = std(mutext_time, test_samples); rwlock_std = std(rwlock_time, test_samples); serial_std = std(serial_time, test_samples); //find average of each linked list implementation float mutex_avg = findAverage(mutext_time, test_samples); float rwlock_avg = findAverage(rwlock_time, test_samples); float serial_avg = findAverage(serial_time, test_samples); //find sample size with 5% accurary and 95% confident interval int mutext_ss = findSampleSize(mutex_std, mutex_avg); printf("mutex sample_size %d\n", mutext_ss); int rwlock_ss = findSampleSize(rwlock_std, rwlock_avg); printf("rwlock sample_size %d\n", rwlock_ss); int serial_ss = findSampleSize(serial_std, serial_avg); printf("serial sample_size %d\n", serial_ss); // array with sample size float *mutext_time_case = malloc(sizeof(float) * mutext_ss); float *rwlock_time_case = malloc(sizeof(float) * rwlock_ss); //=malloc(sizeof(float)*test_samples) float *serial_time_case = malloc(sizeof(float) * serial_ss); //mutex linked list implementation for (int i = 0; i < mutext_ss; i++) { mutext_time_case[i] = linkedListMutex(opsList, n_threads, m, n); } //rwlock linked list implementation for (int i = 0; i < rwlock_ss; i++) { rwlock_time_case[i] = linkedListRWLock(opsList, n_threads, m, n); } //serial linked list implementation for (int i = 0; i < serial_ss; i++) { serial_time_case[i] = serialLinkedList(opsList, m, n); } // final average time of each linked list implementation float final_mutex_avg = findAverage(mutext_time_case, mutext_ss); float final_rwlock_avg = findAverage(rwlock_time_case, rwlock_ss); float final_serial_avg = findAverage(serial_time_case, serial_ss); // final standard deviation values of each linked list implementation float final_mutex_std = std(mutext_time_case, mutext_ss); float final_rwlock_std = std(rwlock_time_case, rwlock_ss); float final_serial_std = std(serial_time_case, serial_ss); printf("mutex linked list average %f : std %f\n", final_mutex_avg, final_mutex_std); printf("rwlock linked list average %f : std %f\n", final_rwlock_avg, final_rwlock_std); printf("serial linked list average %f : std %f\n", final_serial_avg, final_serial_std); return 0; }
int main(int argc, const char **argv) { c0 = 0.500000000000000; rc0 = 1.0 / 280.0; rc1 = 4.0 / 105.0; rc2 = 1.0 / 5.0; rc3 = 4.0 / 5.0; nx0 = 1000; deltai0 = 0.00100000000000000; deltat = 0.000400000000000000; rkold[0] = 1.0 / 4.0; rkold[1] = 3.0 / 20.0; rkold[2] = 3.0 / 5.0; rknew[0] = 2.0 / 3.0; rknew[1] = 5.0 / 12.0; rknew[2] = 3.0 / 5.0; ops_init(argc, argv, 1); ops_init_backend(); ops_decl_const2("c0", 1, "double", &c0); ops_decl_const2("rc0", 1, "double", &rc0); ops_decl_const2("rc1", 1, "double", &rc1); ops_decl_const2("rc2", 1, "double", &rc2); ops_decl_const2("rc3", 1, "double", &rc3); ops_decl_const2("nx0", 1, "int", &nx0); ops_decl_const2("deltai0", 1, "double", &deltai0); ops_decl_const2("deltat", 1, "double", &deltat); ops_block complex_numbers_block; complex_numbers_block = ops_decl_block(1, "complex_numbers_block"); ops_dat phi; ops_dat phi_old; ops_dat wk0; ops_dat wk1; int halo_p[] = {4}; int halo_m[] = {-4}; int size[] = {nx0}; int base[] = {0}; double *val = NULL; phi = ops_decl_dat(complex_numbers_block, 1, size, base, halo_m, halo_p, val, "double", "phi"); phi_old = ops_decl_dat(complex_numbers_block, 1, size, base, halo_m, halo_p, val, "double", "phi_old"); wk0 = ops_decl_dat(complex_numbers_block, 1, size, base, halo_m, halo_p, val, "double", "wk0"); wk1 = ops_decl_dat(complex_numbers_block, 1, size, base, halo_m, halo_p, val, "double", "wk1"); int stencil1_temp[] = {0}; ops_stencil stencil1 = ops_decl_stencil(1, 1, stencil1_temp, "0"); int stencil0_temp[] = {-4, -3, -2, -1, 1, 2, 3, 4}; ops_stencil stencil0 = ops_decl_stencil(1, 8, stencil0_temp, "-4,-3,-2,-1,1,2,3,4"); ops_reduction real = ops_decl_reduction_handle(sizeof(double), "double", "reduction_real"); ops_reduction imaginary = ops_decl_reduction_handle(sizeof(double), "double", "reduction_imaginary"); ops_halo_group halo_exchange0; { int halo_iter[] = {4}; int from_base[] = {0}; int to_base[] = {nx0}; int dir[] = {1}; ops_halo halo0 = ops_decl_halo(phi, phi, halo_iter, from_base, to_base, dir, dir); ops_halo grp[] = {halo0}; halo_exchange0 = ops_decl_halo_group(1, grp); } ops_halo_group halo_exchange1; { int halo_iter[] = {4}; int from_base[] = {nx0 - 4}; int to_base[] = {-4}; int dir[] = {1}; ops_halo halo0 = ops_decl_halo(phi, phi, halo_iter, from_base, to_base, dir, dir); ops_halo grp[] = {halo0}; halo_exchange1 = ops_decl_halo_group(1, grp); } ops_partition(""); int iter_range5[] = {-4, nx0 + 4}; ops_par_loop_complex_numbers_block0_5_kernel( "Initialisation", complex_numbers_block, 1, iter_range5, ops_arg_dat(phi, 1, stencil1, "double", OPS_WRITE), ops_arg_idx()); ops_halo_transfer(halo_exchange0); ops_halo_transfer(halo_exchange1); double cpu_start, elapsed_start; ops_timers(&cpu_start, &elapsed_start); for (int iteration = 0; iteration < 1; iteration++) { int iter_range4[] = {-4, nx0 + 4}; ops_par_loop_complex_numbers_block0_4_kernel( "Save equations", complex_numbers_block, 1, iter_range4, ops_arg_dat(phi, 1, stencil1, "double", OPS_READ), ops_arg_dat(phi_old, 1, stencil1, "double", OPS_WRITE)); for (int stage = 0; stage < 3; stage++) { int iter_range0[] = {0, nx0}; ops_par_loop_complex_numbers_block0_0_kernel( "D(phi[x0 t] x0)", complex_numbers_block, 1, iter_range0, ops_arg_dat(phi, 1, stencil0, "double", OPS_READ), ops_arg_dat(wk0, 1, stencil1, "double", OPS_WRITE)); int iter_range1[] = {0, nx0}; ops_par_loop_complex_numbers_block0_1_kernel( "Residual of equation", complex_numbers_block, 1, iter_range1, ops_arg_dat(wk0, 1, stencil1, "double", OPS_READ), ops_arg_dat(wk1, 1, stencil1, "double", OPS_WRITE)); int iter_range2[] = {-4, nx0 + 4}; ops_par_loop_complex_numbers_block0_2_kernel( "RK new (subloop) update", complex_numbers_block, 1, iter_range2, ops_arg_dat(phi_old, 1, stencil1, "double", OPS_READ), ops_arg_dat(wk1, 1, stencil1, "double", OPS_READ), ops_arg_dat(phi, 1, stencil1, "double", OPS_WRITE), ops_arg_gbl(&rknew[stage], 1, "double", OPS_READ)); int iter_range3[] = {-4, nx0 + 4}; ops_par_loop_complex_numbers_block0_3_kernel( "RK old update", complex_numbers_block, 1, iter_range3, ops_arg_dat(wk1, 1, stencil1, "double", OPS_READ), ops_arg_dat(phi_old, 1, stencil1, "double", OPS_RW), ops_arg_gbl(&rkold[stage], 1, "double", OPS_READ)); ops_halo_transfer(halo_exchange0); ops_halo_transfer(halo_exchange1); } int iter_range0[] = {0, nx0}; ops_par_loop_complex_numbers_block0_cn_kernel( "Complex numbers", complex_numbers_block, 1, iter_range0, ops_arg_dat(phi, 1, stencil0, "double", OPS_READ), ops_arg_reduce(real, 1, "double", OPS_INC), ops_arg_reduce(imaginary, 1, "double", OPS_INC)); } double cpu_end, elapsed_end; ops_timers(&cpu_end, &elapsed_end); ops_printf("\nTimings are:\n"); ops_printf("-----------------------------------------\n"); ops_printf("Total Wall time %lf\n", elapsed_end - elapsed_start); ops_fetch_block_hdf5_file(complex_numbers_block, "complex_numbers_2500.h5"); ops_fetch_dat_hdf5_file(phi, "complex_numbers_2500.h5"); ops_exit(); }
int main(int argc,char **argv) { const char *keyfile; const char *plainfile; const char *user_id; const char *hashstr; const char *sigfile; ops_secret_key_t *skey; ops_create_signature_t *sig; ops_hash_algorithm_t alg; int fd; ops_create_info_t *info; unsigned char keyid[OPS_KEY_ID_SIZE]; if(argc != 6) { fprintf(stderr,"%s <secret key file> <user_id> <hash> <plaintext file>" " <signature file>\n",argv[0]); exit(1); } keyfile=argv[1]; user_id=argv[2]; hashstr=argv[3]; plainfile=argv[4]; sigfile=argv[5]; ops_init(); skey=get_secret_key(keyfile); assert(skey); alg=ops_hash_algorithm_from_text(hashstr); if(alg == OPS_HASH_UNKNOWN) { fprintf(stderr,"Unkonwn hash algorithm: %s\n",hashstr); exit(2); } sig=ops_create_signature_new(); ops_signature_start_cleartext_signature(sig,skey,alg,OPS_SIG_BINARY); fd=open(plainfile,O_RDONLY); if(fd < 0) { perror(plainfile); exit(3); } for( ; ; ) { unsigned char buf[8192]; int n; n=read(fd,buf,sizeof buf); if(!n) break; if(n < 0) { perror(plainfile); exit(4); } ops_signature_add_data(sig,buf,n); } close(fd); ops_signature_add_creation_time(sig,time(NULL)); ops_keyid(keyid,&skey->public_key); ops_signature_add_issuer_key_id(sig,keyid); ops_signature_hashed_subpackets_end(sig); fd=open(sigfile,O_CREAT|O_TRUNC|O_WRONLY,0666); if(fd < 0) { perror(sigfile); exit(5); } info=ops_create_info_new(); ops_writer_set_fd(info,fd); ops_write_signature(sig,&skey->public_key,skey,info); ops_secret_key_free(skey); return 0; }
int main(int argc, char **argv) { /**-------------------------- Initialisation --------------------------**/ // OPS initialisation ops_init(argc,argv,6); int logical_size_x = 200; int logical_size_y = 200; int ngrid_x = 1; int ngrid_y = 1; int n_iter = 10000; dx = 0.01; dy = 0.01; ops_decl_const("dx",1,"double",&dx); ops_decl_const("dy",1,"double",&dy); //declare blocks ops_block *blocks = (ops_block *)malloc(ngrid_x*ngrid_y*sizeof(ops_block*)); char buf[50]; for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { sprintf(buf,"block %d,%d",i,j); blocks[i+ngrid_x*j] = ops_decl_block(2,buf); } } //declare stencils int s2D_00[] = {0,0}; ops_stencil S2D_00 = ops_decl_stencil( 2, 1, s2D_00, "00"); int s2D_00_P10_M10_0P1_0M1[] = {0,0, 1,0, -1,0, 0,1, 0,-1}; ops_stencil S2D_00_P10_M10_0P1_0M1 = ops_decl_stencil( 2, 5, s2D_00_P10_M10_0P1_0M1, "00:10:-10:01:0-1"); ops_reduction red_err = ops_decl_reduction_handle(sizeof(double), "double", "err"); //declare datasets int d_p[2] = {1,1}; //max halo depths for the dat in the possitive direction int d_m[2] = {-1,-1}; //max halo depths for the dat in the negative direction int base[2] = {0,0}; int uniform_size[2] = {(logical_size_x-1)/ngrid_x+1,(logical_size_y-1)/ngrid_y+1}; double* temp = NULL; ops_dat *coordx = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); ops_dat *coordy = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); ops_dat *u = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); ops_dat *u2 = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); ops_dat *f = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); ops_dat *ref = (ops_dat *)malloc(ngrid_x*ngrid_y*sizeof(ops_dat*)); int *sizes = (int*)malloc(2*ngrid_x*ngrid_y*sizeof(int)); int *disps = (int*)malloc(2*ngrid_x*ngrid_y*sizeof(int)); for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int size[2] = {uniform_size[0], uniform_size[1]}; if ((i+1)*size[0]>logical_size_x) size[0] = logical_size_x - i*size[0]; if ((j+1)*size[1]>logical_size_y) size[1] = logical_size_y - j*size[1]; sprintf(buf,"coordx %d,%d",i,j); coordx[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sprintf(buf,"coordy %d,%d",i,j); coordy[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sprintf(buf,"u %d,%d",i,j); u[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sprintf(buf,"u2 %d,%d",i,j); u2[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sprintf(buf,"f %d,%d",i,j); f[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sprintf(buf,"ref %d,%d",i,j); ref[i+ngrid_x*j] = ops_decl_dat(blocks[i+ngrid_x*j], 1, size, base, d_m, d_p, temp, "double", buf); sizes[2*(i+ngrid_x*j)] = size[0]; sizes[2*(i+ngrid_x*j)+1] = size[1]; disps[2*(i+ngrid_x*j)] = i*uniform_size[0]; disps[2*(i+ngrid_x*j)+1] = j*uniform_size[1]; } } ops_halo *halos = (ops_halo *)malloc(2*(ngrid_x*(ngrid_y-1)+(ngrid_x-1)*ngrid_y)*sizeof(ops_halo *)); int off = 0; for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { if (i > 0) { int halo_iter[] = {1,sizes[2*(i+ngrid_x*j)+1]}; int base_from[] = {sizes[2*(i-1+ngrid_x*j)]-1,0}; int base_to[] = {-1,0}; int dir[] = {1,2}; halos[off++] = ops_decl_halo(u[i-1+ngrid_x*j], u[i+ngrid_x*j], halo_iter, base_from, base_to, dir, dir); base_from[0] = 0; base_to[0] = sizes[2*(i+ngrid_x*j)]; halos[off++] = ops_decl_halo(u[i+ngrid_x*j], u[i-1+ngrid_x*j], halo_iter, base_from, base_to, dir, dir); } if (j > 0) { int halo_iter[] = {sizes[2*(i+ngrid_x*j)],1}; int base_from[] = {0,sizes[2*(i+ngrid_x*(j-1))+1]-1}; int base_to[] = {0,-1}; int dir[] = {1,2}; halos[off++] = ops_decl_halo(u[i+ngrid_x*(j-1)], u[i+ngrid_x*j], halo_iter, base_from, base_to, dir, dir); base_from[1] = 0; base_to[1] = sizes[2*(i+ngrid_x*j)+1]; halos[off++] = ops_decl_halo(u[i+ngrid_x*j], u[i+ngrid_x*(j-1)], halo_iter, base_from, base_to, dir, dir); } } } if (off != 2*(ngrid_x*(ngrid_y-1)+(ngrid_x-1)*ngrid_y)) printf("Something is not right\n"); ops_halo_group u_halos = ops_decl_halo_group(off,halos); ops_partition(""); ops_checkpointing_init("check.h5", 5.0); /**-------------------------- Computations --------------------------**/ double ct0, ct1, et0, et1; ops_timers_core(&ct0, &et0); //populate forcing, reference solution and boundary conditions for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int iter_range[] = {-1,sizes[2*(i+ngrid_x*j)]+1,-1,sizes[2*(i+ngrid_x*j)+1]+1}; ops_par_loop(poisson_kernel_populate, "poisson_kernel_populate", blocks[i+ngrid_x*j], 2, iter_range, ops_arg_gbl(&disps[2*(i+ngrid_x*j)], 1, "int", OPS_READ), ops_arg_gbl(&disps[2*(i+ngrid_x*j)+1], 1, "int", OPS_READ), ops_arg_idx(), ops_arg_dat(u[i+ngrid_x*j], S2D_00, "double", OPS_WRITE), ops_arg_dat(f[i+ngrid_x*j], S2D_00, "double", OPS_WRITE), ops_arg_dat(ref[i+ngrid_x*j], S2D_00, "double", OPS_WRITE)); } } //initial guess 0 for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int iter_range[] = {0,sizes[2*(i+ngrid_x*j)],0,sizes[2*(i+ngrid_x*j)+1]}; ops_par_loop(poisson_kernel_initialguess, "poisson_kernel_initialguess", blocks[i+ngrid_x*j], 2, iter_range, ops_arg_dat(u[i+ngrid_x*j], S2D_00, "double", OPS_WRITE)); } } for (int iter = 0; iter < n_iter; iter++) { ops_halo_transfer(u_halos); for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int iter_range[] = {0,sizes[2*(i+ngrid_x*j)],0,sizes[2*(i+ngrid_x*j)+1]}; ops_par_loop(poisson_kernel_stencil, "poisson_kernel_stencil", blocks[i+ngrid_x*j], 2, iter_range, ops_arg_dat(u[i+ngrid_x*j], S2D_00_P10_M10_0P1_0M1, "double", OPS_READ), ops_arg_dat(f[i+ngrid_x*j], S2D_00, "double", OPS_READ), ops_arg_dat(u2[i+ngrid_x*j], S2D_00, "double", OPS_WRITE)); } } for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int iter_range[] = {0,sizes[2*(i+ngrid_x*j)],0,sizes[2*(i+ngrid_x*j)+1]}; ops_par_loop(poisson_kernel_update, "poisson_kernel_update", blocks[i+ngrid_x*j], 2, iter_range, ops_arg_dat(u2[i+ngrid_x*j], S2D_00, "double", OPS_READ), ops_arg_dat(u[i+ngrid_x*j] , S2D_00, "double", OPS_WRITE)); } } } double err = 0.0; for (int j = 0; j < ngrid_y; j++) { for (int i = 0; i < ngrid_x; i++) { int iter_range[] = {0,sizes[2*(i+ngrid_x*j)],0,sizes[2*(i+ngrid_x*j)+1]}; ops_par_loop(poisson_kernel_error, "poisson_kernel_error", blocks[i+ngrid_x*j], 2, iter_range, ops_arg_dat(u[i+ngrid_x*j], S2D_00, "double", OPS_READ), ops_arg_dat(ref[i+ngrid_x*j] , S2D_00, "double", OPS_READ), ops_arg_reduce(red_err, 1, "double", OPS_INC)); } } ops_reduction_result(red_err,&err); ops_printf("Total error: %g\n",err); ops_timers_core(&ct1, &et1); ops_timing_output(); ops_printf("\nTotal Wall time %lf\n",et1-et0); ops_exit(); }