Пример #1
0
	virtual void	GetWheelOrientationQuaternion(int wheelIndex,float& quatX,float& quatY,float& quatZ,float& quatW) const
	{
		SimdTransform	trans = m_vehicle->GetWheelTransformWS(wheelIndex);
		SimdQuaternion quat = trans.getRotation();
		SimdMatrix3x3 orn2(quat);

		quatX = trans.getRotation().x();
		quatY = trans.getRotation().y();
		quatZ = trans.getRotation().z();
		quatW = trans.getRotation()[3];


		//printf("test");


	}
	virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
	{
		//skip self-collisions
		if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex))
			return;

		//skip duplicates (disabled for now)
		//if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex))
		//	return;

		//search for shared vertices and edges
		int numshared = 0;
		int sharedVertsA[3]={-1,-1,-1};
		int sharedVertsB[3]={-1,-1,-1};

		///skip degenerate triangles
		btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2();
		if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold)
			return;


		btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2();
		///skip degenerate triangles
		if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold)
			return;

#if 0
		printf("triangle A[0]	=	(%f,%f,%f)\ntriangle A[1]	=	(%f,%f,%f)\ntriangle A[2]	=	(%f,%f,%f)\n",
			m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(),
			m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(),
			m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ());

		printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex);
		printf("triangle B[0]	=	(%f,%f,%f)\ntriangle B[1]	=	(%f,%f,%f)\ntriangle B[2]	=	(%f,%f,%f)\n",
			triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(),
			triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(),
			triangle[2].getX(),triangle[2].getY(),triangle[2].getZ());
#endif

		for (int i=0;i<3;i++)
		{
			for (int j=0;j<3;j++)
			{
				if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold)
				{
					sharedVertsA[numshared] = i;
					sharedVertsB[numshared] = j;
					numshared++;
					///degenerate case
					if(numshared >= 3)
						return;
				}
			}
			///degenerate case
			if(numshared >= 3)
				return;
		}
		switch (numshared)
		{
		case 0:
			{
				break;
			}
		case 1:
			{
				//shared vertex
				break;
			}
		case 2:
			{
				//shared edge
				//we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct
				if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2)
				{
					sharedVertsA[0] = 2;
					sharedVertsA[1] = 0;
					int tmp = sharedVertsB[1];
					sharedVertsB[1] = sharedVertsB[0];
					sharedVertsB[0] = tmp;
				}

				int hash = btGetHash(m_partIdA,m_triangleIndexA);

				btTriangleInfo* info = m_triangleInfoMap->find(hash);
				if (!info)
				{
					btTriangleInfo tmp;
					m_triangleInfoMap->insert(hash,tmp);
					info = m_triangleInfoMap->find(hash);
				}

				int sumvertsA = sharedVertsA[0]+sharedVertsA[1];
				int otherIndexA = 3-sumvertsA;

				
				btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]);

				btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]);
				int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]);

				btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]);
				//btTriangleShape tB(triangle[0],triangle[1],triangle[2]);

				btVector3 normalA;
				btVector3 normalB;
				tA.calcNormal(normalA);
				tB.calcNormal(normalB);
				edge.normalize();
				btVector3 edgeCrossA = edge.cross(normalA).normalize();

				{
					btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]];
					if (edgeCrossA.dot(tmp) < 0)
					{
						edgeCrossA*=-1;
					}
				}

				btVector3 edgeCrossB = edge.cross(normalB).normalize();

				{
					btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]];
					if (edgeCrossB.dot(tmp) < 0)
					{
						edgeCrossB*=-1;
					}
				}

				btScalar	angle2 = 0;
				btScalar	ang4 = 0.f;


				btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB);
				btScalar len2 = calculatedEdge.length2();

				btScalar correctedAngle(0);
				btVector3 calculatedNormalB = normalA;
				bool isConvex = false;

				if (len2<m_triangleInfoMap->m_planarEpsilon)
				{
					angle2 = 0.f;
					ang4 = 0.f;
				} else
				{

					calculatedEdge.normalize();
					btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
					calculatedNormalA.normalize();
					angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB);
					ang4 = SIMD_PI-angle2;
					btScalar dotA = normalA.dot(edgeCrossB);
					///@todo: check if we need some epsilon, due to floating point imprecision
					isConvex = (dotA<0.);

					correctedAngle = isConvex ? ang4 : -ang4;
					btQuaternion orn2(calculatedEdge,-correctedAngle);
					calculatedNormalB = btMatrix3x3(orn2)*normalA;


				}

				

				
							
				//alternatively use 
				//btVector3 calculatedNormalB2 = quatRotate(orn,normalA);


				switch (sumvertsA)
				{
				case 1:
					{
						btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						btScalar bla = computedNormalB.dot(normalB);
						if (bla<0)
						{
							computedNormalB*=-1;
							info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB;
						}
#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif//DEBUG_INTERNAL_EDGE

						info->m_edgeV0V1Angle = -correctedAngle;

						if (isConvex)
							info->m_flags |= TRI_INFO_V0V1_CONVEX;
						break;
					}
				case 2:
					{
						btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						if (computedNormalB.dot(normalB)<0)
						{
							computedNormalB*=-1;
							info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB;
						}

#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif //DEBUG_INTERNAL_EDGE
						info->m_edgeV2V0Angle = -correctedAngle;
						if (isConvex)
							info->m_flags |= TRI_INFO_V2V0_CONVEX;
						break;	
					}
				case 3:
					{
						btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						if (computedNormalB.dot(normalB)<0)
						{
							info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB;
							computedNormalB*=-1;
						}
#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif //DEBUG_INTERNAL_EDGE
						info->m_edgeV1V2Angle = -correctedAngle;

						if (isConvex)
							info->m_flags |= TRI_INFO_V1V2_CONVEX;
						break;
					}
				}

				break;
			}
		default:
			{
				//				printf("warning: duplicate triangle\n");
			}

		}
	}