Пример #1
0
//--------------------------------------------------------------------------------------------------
PointCloud::Ptr generatePointCloudOfChessboard( const cv::Mat& cameraWorldMtx, const cv::Mat& cameraCalibMtx,
        int32_t imageWidth, int32_t imageHeight, const cv::Mat& chessboardPoseMtx )
{
    double focalLengthPixels = cameraCalibMtx.at<double>( 0, 0 );
    PointCloud::Ptr pCloud( new PointCloud( imageWidth, imageHeight, (float)focalLengthPixels ) );

    std::vector<PointData> points = generateImagePoints(
        cameraWorldMtx, cameraCalibMtx, imageWidth, imageHeight, chessboardPoseMtx );

    for ( uint32_t pointIdx = 0; pointIdx < points.size(); pointIdx++ )
    {
        const PointData& point = points[ pointIdx ];

        uint8_t r, g, b, a;
        if ( ePC_Black == point.mPixelColour )
        {
            r = 0;
            g = 0;
            b = 0;
            a = 255;
        }
        else if ( ePC_White == point.mPixelColour )
        {
            r = 255;
            g = 255;
            b = 255;
            a = 255;
        }
        else
        {
            // Unrecognised colour
            continue;
        }

        pCloud->addPoint( Eigen::Vector3f( (float)point.mWorldX, (float)point.mWorldY, (float)point.mWorldZ ), r, g, b, a );
    }

    return pCloud;
}
int
main (int argc, char ** argv)
{
    typedef pcl::PointXYZRGB PointT;

    std::string scene_dir, input_mask_dir, output_dir = "/tmp/dol/";
    bool visualize = false;
    bool save_views = false;
    size_t min_mask_points = 50;
    bool first_frame_only=false; // used for evaluation when only using the first view

    v4r::object_modelling::IOL m;

    po::options_description desc("Evaluation Dynamic Object Learning with Ground Truth\n======================================\n **Allowed options");
    desc.add_options()
            ("help,h", "produce help message")
            ("scenes_dir,s", po::value<std::string>(&scene_dir)->required(), "input directory with .pcd files of the scenes. Each folder is considered as seperate sequence. Views are sorted alphabetically and object mask is applied on first view.")
            ("input_mask_dir,m", po::value<std::string>(&input_mask_dir)->required(), "directory containing the object masks used as a seed to learn the object in the first cloud")
            ("output_dir,o", po::value<std::string>(&output_dir)->default_value(output_dir), "Output directory where the model, training data, timing information and parameter values will be stored")

            ("save_views", po::bool_switch(&save_views), "if true, also saves point clouds, camera pose and object masks for each training views. This is necessary for recognition.")

            ("radius,r", po::value<double>(&m.param_.radius_)->default_value(m.param_.radius_), "Radius used for region growing. Neighboring points within this distance are candidates for clustering it to the object model.")
            ("dot_product", po::value<double>(&m.param_.eps_angle_)->default_value(m.param_.eps_angle_), "Threshold for the normals dot product used for region growing. Neighboring points with a surface normal within this threshold are candidates for clustering it to the object model.")
            ("dist_threshold_growing", po::value<double>(&m.param_.dist_threshold_growing_)->default_value(m.param_.dist_threshold_growing_), "")
            ("seed_res", po::value<double>(&m.param_.seed_resolution_)->default_value(m.param_.seed_resolution_), "")
            ("voxel_res", po::value<double>(&m.param_.voxel_resolution_)->default_value(m.param_.voxel_resolution_), "")
            ("ratio", po::value<double>(&m.param_.ratio_supervoxel_)->default_value(m.param_.ratio_supervoxel_), "")
            ("do_erosion", po::value<bool>(&m.param_.do_erosion_)->default_value(m.param_.do_erosion_), "")
            ("do_mst_refinement", po::value<bool>(&m.param_.do_mst_refinement_)->default_value(m.param_.do_mst_refinement_), "")
            ("do_sift_based_camera_pose_estimation", po::value<bool>(&m.param_.do_sift_based_camera_pose_estimation_)->default_value(m.param_.do_sift_based_camera_pose_estimation_), "")
            ("transfer_latest_only", po::value<bool>(&m.param_.transfer_indices_from_latest_frame_only_)->default_value(m.param_.transfer_indices_from_latest_frame_only_), "")
            ("chop_z,z", po::value<double>(&m.param_.chop_z_)->default_value(m.param_.chop_z_), "Cut-off distance of the input clouds with respect to the camera. Points further away than this distance will be ignored.")
            ("normal_method,n", po::value<int>(&m.param_.normal_method_)->default_value(m.param_.normal_method_), "")
            ("ratio_cluster_obj_supported", po::value<double>(&m.param_.ratio_cluster_obj_supported_)->default_value(m.param_.ratio_cluster_obj_supported_), "")
            ("ratio_cluster_occluded", po::value<double>(&m.param_.ratio_cluster_occluded_)->default_value(m.param_.ratio_cluster_occluded_), "")

            ("stat_outlier_removal_meanK", po::value<int>(&m.sor_params_.meanK_)->default_value(m.sor_params_.meanK_), "MeanK used for statistical outlier removal (see PCL documentation)")
            ("stat_outlier_removal_std_mul", po::value<double>(&m.sor_params_.std_mul_)->default_value(m.sor_params_.std_mul_), "Standard Deviation multiplier used for statistical outlier removal (see PCL documentation)")
            ("inlier_threshold_plane_seg", po::value<double>(&m.p_param_.inlDist)->default_value(m.p_param_.inlDist), "")
            ("min_points_smooth_cluster", po::value<int>(&m.p_param_.minPointsSmooth)->default_value(m.p_param_.minPointsSmooth), "Minimum number of points for a cluster")
            ("min_plane_points", po::value<int>(&m.p_param_.minPoints)->default_value(m.p_param_.minPoints), "Minimum number of points for a cluster to be a candidate for a plane")
            ("smooth_clustering", po::value<bool>(&m.p_param_.smooth_clustering)->default_value(m.p_param_.smooth_clustering), "If true, does smooth clustering. Otherwise only plane clustering.")

            ("visualize,v", po::bool_switch(&visualize), "turn visualization on")
     ;

    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    if (vm.count("help"))
    {
        std::cout << desc << std::endl;
        return false;
    }

    try { po::notify(vm); }
    catch(std::exception& e)
    {
        std::cerr << "Error: " << e.what() << std::endl << std::endl << desc << std::endl;
        return false;
    }

    m.initSIFT();

    v4r::io::createDirIfNotExist(output_dir);

    ofstream param_file;
    param_file.open ((output_dir + "/param.nfo").c_str());
    m.printParams(param_file);
    param_file    << "stat_outlier_removal_meanK" << m.sor_params_.meanK_ << std::endl
                  << "stat_outlier_removal_std_mul" << m.sor_params_.std_mul_ << std::endl
                  << "inlier_threshold_plane_seg" << m.p_param_.inlDist << std::endl
                  << "min_points_smooth_cluster" << m.p_param_.minPointsSmooth << std::endl
                  << "min_plane_points" << m.p_param_.minPoints << std::endl;
    param_file.close();

    std::vector< std::string> sub_folder_names = v4r::io::getFoldersInDirectory( scene_dir );
    if( sub_folder_names.empty() )
        sub_folder_names.push_back("");

    v4r::io::createDirIfNotExist(output_dir + "/models");

    for (const std::string &sub_folder_name : sub_folder_names)
    {
        const std::string output_rec_model = output_dir + "/" + sub_folder_name + "/models";
        v4r::io::createDirIfNotExist(output_rec_model);

        const std::string annotations_dir = input_mask_dir + "/" + sub_folder_name;
        std::vector< std::string > mask_file_v = v4r::io::getFilesInDirectory(annotations_dir, ".*.txt", false);

        for (size_t o_id=0; o_id<mask_file_v.size(); o_id++)
        {
            const std::string mask_file = annotations_dir + "/" + mask_file_v[o_id];

            size_t idx_tmp;
            std::vector<size_t> mask;
            std::ifstream initial_mask_file ( mask_file.c_str() );
            while (initial_mask_file >> idx_tmp)
                mask.push_back(idx_tmp);

            initial_mask_file.close();

            if ( mask.size() < min_mask_points) // not enough points to grow an object
                continue;

            const std::string scene_path = scene_dir + "/" + sub_folder_name;
            std::vector< std::string > views = v4r::io::getFilesInDirectory(scene_path, ".*.pcd", false);

            std::cout << "Learning object from mask " << mask_file << " for scene " << scene_path << std::endl;

            timeval start, stop;

            gettimeofday(&start, NULL);
            for(size_t v_id=0; v_id<views.size(); v_id++)
            {
                const std::string view_file = scene_path + "/" + views[ v_id ];
                pcl::PointCloud<PointT>::Ptr pCloud(new pcl::PointCloud<PointT>());
                pcl::io::loadPCDFile(view_file, *pCloud);
                const Eigen::Matrix4f trans = v4r::RotTrans2Mat4f(pCloud->sensor_orientation_, pCloud->sensor_origin_);

                pCloud->sensor_origin_ = Eigen::Vector4f::Zero();   // for correct visualization
                pCloud->sensor_orientation_ = Eigen::Quaternionf::Identity();

                if (v_id==0)
                    m.learn_object(*pCloud, trans, mask);
                else
                {
                    if(!first_frame_only)
                        m.learn_object(*pCloud, trans);
                }
            }
            gettimeofday(&stop, NULL);

            std::string out_fn = mask_file_v[o_id];
            boost::replace_last (out_fn, "mask.txt", "dol");
            m.save_model(output_rec_model, out_fn, save_views);
            if (visualize)
                m.visualize();
            m.clear();

            // write running time to file
            const std::string timing_fn = output_dir+"/"+sub_folder_name+"/timing.nfo";
            double learning_time = getTimeDiff(stop, start);
            ofstream f( timing_fn.c_str() );
            f << learning_time;
            f.close();
        }
    }
    return 0;
}