Пример #1
0
int main()
{
    pal_init(/*numberof_threads*/);
    /*{ for _ in thread_syscalls }*/
    pal_start_thread(&ec_thread_/*loop.index0*/);
    /*{ endfor }*/
    pal_run();
    return 0;
}
Пример #2
0
void pbpal_init(pubnub_t *pb)
{
    if (PUBNUB_BLOCKING_IO_SETTABLE) {
        pb->options.use_blocking_io = true;
    }
    pal_init();
    pb->pal.socket = SOCKET_INVALID;
    pb->sock_state = STATE_NONE;
    pb->readlen = 0;
    buf_setup(pb);
}
Пример #3
0
END_TEST

START_TEST(c_pal_recognize_empty)
{
  pal_init();

  stroke_t stroke = { 0, 0, NULL };
  ck_assert(PAL_TYPE_INDET == pal_recognize(&stroke));

  pal_deinit();
}
Пример #4
0
END_TEST

START_TEST(c_pal_recognize_40_points)
{
  pal_init();

  stroke_t stroke = { 40, 40, calloc(40, sizeof(point_t)) };
  ck_assert(PAL_TYPE_INDET == pal_recognize(&stroke));
  ck_assert(PAL_TYPE_INDET == pal_last_type());

  pal_deinit();
}
Пример #5
0
} END_TEST


////////////////////////////////////////////////////////////////////////////////
// ----------------------------- Simple Checks ------------------------------ //
////////////////////////////////////////////////////////////////////////////////

START_TEST(c_pal_init_deinit)
{ // Just making sure things don't break out of the gate.
  pal_init();
  ck_assert(PAL_TYPE_UNRUN == pal_last_type());
  pal_deinit();
}
M2MConnectionHandlerPimpl::M2MConnectionHandlerPimpl(M2MConnectionHandler* base, M2MConnectionObserver &observer,
                                                     M2MConnectionSecurity* sec,
                                                     M2MInterface::BindingMode mode,
                                                     M2MInterface::NetworkStack stack)
:_base(base),
 _observer(observer),
 _security_impl(sec),
 _security(NULL),
 _use_secure_connection(false),
 _binding_mode(mode),
 _socket(0),
 _is_handshaking(false),
 _listening(true),
 _server_type(M2MConnectionObserver::LWM2MServer),
 _server_port(0),
 _listen_port(0),
 _running(false),
 _net_iface(0),
_socket_state(ESocketStateDisconnected)
{
#ifndef PAL_NET_TCP_AND_TLS_SUPPORT
    if (is_tcp_connection()) {
        tr_error("ConnectionHandler: TCP support not available.");
        return;
    }
#endif

    if(PAL_SUCCESS != pal_init()){
        tr_error("PAL init failed.");
    }

    memset(&_address, 0, sizeof _address);
    memset(&_socket_address, 0, sizeof _socket_address);
    memset(&_ipV4Addr, 0, sizeof(palIpV4Addr_t));
    memset(&_ipV6Addr, 0, sizeof(palIpV6Addr_t));
    memset(&_recv_buffer, 0, BUFFER_LENGTH);

    connection_handler = this;
    eventOS_scheduler_mutex_wait();
    if (M2MConnectionHandlerPimpl::_tasklet_id == -1) {
        M2MConnectionHandlerPimpl::_tasklet_id = eventOS_event_handler_create(&connection_event_handler, ESocketIdle);
    }
    eventOS_scheduler_mutex_release();
}
Пример #7
0
int main(int argc, char** argv) {
	int rc;
	const char* port = "80";
	struct engine* eng;

	while ((rc = getopt(argc, argv, "hp:")) != -1) {
		switch (rc) {
		case 'p':
			port = optarg;
			break;
		case 'h':
			usage(0);
			break;
		default:
			usage(2);
			break;
		}
	}

	if (pal_init(&pal))
		return -1;

	eng = engine_init(&pal);
	rc = web_init(eng, port);
	if (rc) {
		LOG(("Web server failed to start: (%d) %s\n", rc, strerror(rc)));
		return rc;
	}

	LOG(("Running engine\n"));

	web_run();
	engine_run();

	web_destroy();
	engine_destroy();
	pal_destroy(&pal);

	LOG(("Exited gracefully\n"));

	return 0;
}
Пример #8
0
/**
 * @brief Initializes the TAL
 *
 * This function is called to initialize the TAL. The transceiver is
 * initialized, the TAL PIBs are set to their default values, and the TAL state
 * machine is set to TAL_IDLE state.
 *
 * @return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF and the
 *                 current device part number and version number are correct;
 *         FAILURE otherwise
 */
retval_t tal_init(void)
{
    /* Init the PAL and by this means also the transceiver interface */
    if (pal_init() != MAC_SUCCESS)
    {
        return FAILURE;
    }

    if (trx_init() != MAC_SUCCESS)
    {
        return FAILURE;
    }

#if (EXTERN_EEPROM_AVAILABLE == 1)
    pal_ps_get(EXTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress);
#else
    pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress);
#endif

    /*
     * Do the reset stuff.
     * Set the default PIBs.
     * Generate random seed.
     */
    if (internal_tal_reset(true) != MAC_SUCCESS)
    {
        return FAILURE;
    }

#ifndef DISABLE_IEEE_ADDR_CHECK
    /* Check if a valid IEEE address is available. */
    /*
     * This while loop is on purpose, since just in the
     * rare case that such an address is randomly
     * generated again, we must repeat this.
     */
    while ((tal_pib.IeeeAddress == 0x0000000000000000) ||
            (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF)
          )
    {
        /*
         * In case no valid IEEE address is available, a random
         * IEEE address will be generated to be able to run the
         * applications for demonstration purposes.
         * In production code this can be omitted.
         */
        /*
         * The proper seed for function rand() has already been generated
         * in function tal_generate_rand_seed().
         */
        uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress;

        for (uint8_t i = 0; i < 8; i++)
        {
            *ptr_pib++ = (uint8_t)rand();
            /*
             * Note:
             * Even if casting the 16 bit rand value back to 8 bit,
             * and running the loop 8 timers (instead of only 4 times)
             * may look cumbersome, it turns out that the code gets
             * smaller using 8-bit here.
             * And timing is not an issue at this place...
             */
        }
    }
#endif  /* #ifndef DISABLE_IEEE_ADDR_CHECK */

    /*
     * Configure interrupt handling.
     * Install handlers for the transceiver interrupts.
     */
    pal_trx_irq_init_rx_end((FUNC_PTR)trx_rx_end_handler_cb);
    pal_trx_irq_init_tx_end((FUNC_PTR)trx_tx_end_handler_cb);
    pal_trx_irq_init_awake((FUNC_PTR)trx_awake_handler_cb);

#if (defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP)
    /* Configure time stamp interrupt. */
    pal_trx_irq_init_tstamp((FUNC_PTR)trx_irq_timestamp_handler_cb);
#endif /* (defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP) */

    /* Initialize the buffer management module and get a buffer to store reveived frames. */
    bmm_buffer_init();
    tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE);

    /* Init incoming frame queue */
#ifdef ENABLE_QUEUE_CAPACITY
    qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY);
#else
    qmm_queue_init(&tal_incoming_frame_queue);
#endif  /* ENABLE_QUEUE_CAPACITY */

#ifdef ENABLE_TFA
    tfa_init();
#endif

    return MAC_SUCCESS;
} /* tal_init() */
/**
 * @brief Initializes the TAL
 *
 * This function is called to initialize the TAL. The transceiver is
 * initialized, the TAL PIBs are set to their default values, and the TAL state
 * machine is set to TAL_IDLE state.
 *
 * @return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF and the
 *                 current device part number and version number are correct;
 *         FAILURE otherwise
 */
retval_t tal_init(void)
{
    /* Init the PAL and by this means also the transceiver interface */
#ifdef ENABLE_RP
    /*
     * The ranging processor (RP) only performs a minimalistic
     * initialization here.
     */
    pal_basic_init();
#else  /* !ENABLE_RP */
    if (pal_init() != MAC_SUCCESS)
    {
        return FAILURE;
    }

    if (trx_init() != MAC_SUCCESS)
    {
        return FAILURE;
    }

#if (EXTERN_EEPROM_AVAILABLE == 1)
    pal_ps_get(EXTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress);
#else
    #if (USER_SIGN_AVAILABLE == 1)
        pal_ps_get(USER_SIGNATURE, USER_SIGNATURES_START + 2, 8, &tal_pib.IeeeAddress);
        //http://www.atmel.com/Images/Atmel-42172-Wireless-ZigBit-ATZB-X0-256-3-0-C_Datasheet.pdf
    #else
        pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress);
    #endif
#endif

    /*
     * Do the reset stuff.
     * Set the default PIBs.
     * Generate random seed.
     */
    if (internal_tal_reset(true) != MAC_SUCCESS)
    {
        return FAILURE;
    }

#ifndef DISABLE_IEEE_ADDR_CHECK
    /* Check if a valid IEEE address is available. */
    /*
     * This while loop is on purpose, since just in the
     * rare case that such an address is randomly
     * generated again, we must repeat this.
     */
    while ((tal_pib.IeeeAddress == 0x0000000000000000) ||
           (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF))
    {
        /*
         * In case no valid IEEE address is available, a random
         * IEEE address will be generated to be able to run the
         * applications for demonstration purposes.
         * In production code this can be omitted.
         */
        /*
         * The proper seed for function rand() has already been generated
         * in function tal_generate_rand_seed().
         */
        uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress;

        for (uint8_t i = 0; i < 8; i++)
        {
            *ptr_pib++ = (uint8_t)rand();
            /*
             * Note:
             * Even if casting the 16 bit rand value back to 8 bit,
             * and running the loop 8 timers (instead of only 4 times)
             * may look cumbersome, it turns out that the code gets
             * smaller using 8-bit here.
             * And timing is not an issue at this place...
             */
        }
    }
#endif  /* #ifndef DISABLE_IEEE_ADDR_CHECK */
#endif  /* ENABLE_RP */

    /*
     * Configure interrupt handling.
     * Install a handler for the transceiver interrupt.
     */
    pal_trx_irq_init(trx_irq_handler_cb);
#ifndef ENABLE_RP
    pal_trx_irq_en();   /* Enable transceiver main interrupt. */
#endif

#if ((defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP)) && (DISABLE_TSTAMP_IRQ == 0)
    /* Configure time stamp interrupt. */
    pal_trx_irq_init_tstamp(trx_irq_timestamp_handler_cb);
#ifndef ENABLE_RP
    pal_trx_irq_en_tstamp();    /* Enable timestamp interrupt. */
#endif
#endif

    /* Initialize the buffer management module and get a buffer to store received frames. */
    bmm_buffer_init();
    tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE);
#if DEBUG > 0
    if (tal_rx_buffer == NULL)
    {
        return FAILURE;
    }
#endif

    /* Init incoming frame queue */
#ifdef ENABLE_QUEUE_CAPACITY
    qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY);
#else
    qmm_queue_init(&tal_incoming_frame_queue);
#endif  /* ENABLE_QUEUE_CAPACITY */

#ifdef ENABLE_TFA
    tfa_init();
#endif

    return MAC_SUCCESS;
} /* tal_init() */
Пример #10
0
/*
 * \brief Initializes the TAL
 *
 * This function is called to initialize the TAL. The transceiver is
 * initialized, the TAL PIBs are set to their default values, and the TAL state
 * machine is set to TAL_IDLE state.
 *
 * \return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF and the
 *                 current device part number and version number are correct;
 *         FAILURE otherwise
 */
retval_t tal_init(void)
{
    /* Init the PAL and by this means also the transceiver interface */
    if (pal_init() != MAC_SUCCESS) {
        return FAILURE;
    }

    if (trx_init() != MAC_SUCCESS) {
        return FAILURE;
    }

    if (tal_timer_init() != MAC_SUCCESS) {
        return FAILURE;
    }

#ifdef ENABLE_STACK_NVM
    pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress);
#endif

    /*
     * For systems including the AT86RF230B the random seed generation
     * cannot be done using a dedicated hardware feature.
     * Therefore all random seed generation needs to be done by special
     * means (e.g. utilization of ADC) that generate a random value only
     * within a certain range.
     *
     * In case the node already has a valid IEEE address (i.e. an IEEE
     * address which is different from 0x0000000000000000 or
     * 0xFFFFFFFFFFFFFFFF), this IEEE address (the lower 16 bit)
     * shall be used as seed for srand(), since each node should have a
     *unique
     * IEEE address.
     * In this case srand() is called directly and function
     *tal_generate_rand_seed()
     * is not called.
     *
     * Note: This behaviour is different in all other TALs, since in these
     * cases the seed for srand() is always generated based on transceiver
     * hardware support.
     */

#ifndef DISABLE_IEEE_ADDR_CHECK
    if ((tal_pib.IeeeAddress == 0x0000000000000000) ||
            (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF)
       ) {
        /*
         * Generate a seed for the random number generator in function
         *rand().
         * This is required (for example) as seed for the CSMA-CA
         *algorithm.
         */
        tal_generate_rand_seed();

        /*
         * Now that we have generated a random seed, we can generate a
         *random
         * IEEE address for this node.
         */
        do {
            /*
             * In case no valid IEEE address is available, a random
             * IEEE address will be generated to be able to run the
             * applications for demonstration purposes.
             * In production code this can be omitted.
             */

            /*
             * The proper seed for function rand() has already been
             *generated
             * in function tal_generate_rand_seed().
             */
            uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress;

            for (uint8_t i = 0; i < 8; i++) {
                *ptr_pib++ = (uint8_t)rand();

                /*
                 * Note:
                 * Even if casting the 16 bit rand value back to
                 *8 bit,
                 * and running the loop 8 timers (instead of
                 *only 4 times)
                 * may look cumbersome, it turns out that the
                 *code gets
                 * smaller using 8-bit here.
                 * And timing is not an issue at this place...
                 */
            }
        }
        /* Check if a valid IEEE address is available. */
        while ((tal_pib.IeeeAddress == 0x0000000000000000) ||
                (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF)
              );
    } else {
        /* Valid IEEE address, so no need to generate a new random seed.
         **/
        uint16_t cur_rand_seed = (uint16_t)tal_pib.IeeeAddress;
        srand(cur_rand_seed);
    }

#else

    /*
     * No check for a valid IEEE address done, so directly create a seed
     * for srand().
     */
    tal_generate_rand_seed();
#endif

    /*
     * Do the reset stuff.
     * Set the default PIBs.
     */
    if (internal_tal_reset(true) != MAC_SUCCESS) {
        return FAILURE;
    }

    pal_trx_reg_read(RG_IRQ_STATUS); /* clear pending irqs, dummy read */

    /*
     * Configure interrupt handling.
     * Install a handler for the transceiver interrupt.
     */
    pal_trx_irq_init((FUNC_PTR)trx_irq_handler_cb);
    pal_trx_irq_en(); /* Enable transceiver main interrupt. */

    /* Initialize the buffer management module and get a buffer to store
     *reveived frames. */
    bmm_buffer_init();
    tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE);

    /* Init incoming frame queue */
#ifdef ENABLE_QUEUE_CAPACITY
    qmm_queue_init(&tal_incoming_frame_queue,
                   TAL_INCOMING_FRAME_QUEUE_CAPACITY);
#else
    qmm_queue_init(&tal_incoming_frame_queue);
#endif  /* ENABLE_QUEUE_CAPACITY */

    return MAC_SUCCESS;
} /* tal_init() */
Пример #11
0
void main_init(int argc, char *argv[])
{
        char t[512], *p;
        int c;
        int tapenext = 0, discnext = 0;

        startblit();

        log_open();
        log_info("main: starting %s", VERSION_STR);

        vid_fskipmax = 1;

        al_init_main(argc, argv);

        append_filename(t, exedir, "roms/tube/ReCo6502ROM_816", 511);
        if (!file_exists(t,FA_ALL,NULL) && selecttube == 4) selecttube = -1;

        curtube = selecttube;
        model_check();

        for (c = 1; c < argc; c++)
        {
//                log_debug("%i : %s",c,argv[c]);
/*                if (!strcasecmp(argv[c],"-1770"))
                {
                        I8271=0;
                        WD1770=1;
                }
                else*/
//#ifndef WIN32
                if (!strcasecmp(argv[c], "--help"))
                {
                        printf("%s command line options :\n\n", VERSION_STR);
                        printf("-mx             - start as model x (see readme.txt for models)\n");
                        printf("-tx             - start with tube x (see readme.txt for tubes)\n");
                        printf("-disc disc.ssd  - load disc.ssd into drives :0/:2\n");
                        printf("-disc1 disc.ssd - load disc.ssd into drives :1/:3\n");
                        printf("-autoboot       - boot disc in drive :0\n");
                        printf("-tape tape.uef  - load tape.uef\n");
                        printf("-fasttape       - set tape speed to fast\n");
                        printf("-s              - scanlines display mode\n");
                        printf("-i              - interlace display mode\n");
                        printf("-debug          - start debugger\n");
                        printf("-allegro        - use Allegro for video rendering\n");
                        exit(-1);
                }
                else
//#endif
                if (!strcasecmp(argv[c], "-tape"))
                {
                        tapenext = 2;
                }
                else if (!strcasecmp(argv[c], "-disc") || !strcasecmp(argv[c], "-disk"))
                {
                        discnext = 1;
                }
                else if (!strcasecmp(argv[c], "-disc1"))
                {
                        discnext = 2;
                }
                else if (argv[c][0] == '-' && (argv[c][1] == 'm' || argv[c][1] == 'M'))
                {
                        sscanf(&argv[c][2], "%i", &curmodel);
                }
                else if (argv[c][0] == '-' && (argv[c][1] == 't' || argv[c][1] == 'T'))
                {
                        sscanf(&argv[c][2], "%i", &curtube);
                }
                else if (!strcasecmp(argv[c], "-fasttape"))
                {
                        fasttape = 1;
                }
                else if (!strcasecmp(argv[c], "-autoboot"))
                {
                        autoboot = 150;
                }
                else if (argv[c][0] == '-' && (argv[c][1] == 'f' || argv[c][1]=='F'))
                {
                        sscanf(&argv[c][2], "%i", &vid_fskipmax);
            if (vid_fskipmax < 1) vid_fskipmax = 1;
            if (vid_fskipmax > 9) vid_fskipmax = 9;
                }
                else if (argv[c][0] == '-' && (argv[c][1] == 's' || argv[c][1] == 'S'))
                {
                        vid_scanlines = 1;
                }
                else if (!strcasecmp(argv[c], "-debug"))
                {
                        debug_core = 1;
                }
                else if (!strcasecmp(argv[c], "-debugtube"))
                {
                        debug_tube = 1;
                }
                else if (argv[c][0] == '-' && (argv[c][1] == 'i' || argv[c][1] == 'I'))
                {
                        vid_interlace = 1;
            vid_linedbl = vid_scanlines = 0;
                }
                else if (tapenext)
                   strcpy(tape_fn, argv[c]);
                else if (discnext)
                {
                        strcpy(discfns[discnext-1], argv[c]);
                        discnext = 0;
                }
                else
                {
                    if ((p = strrchr(argv[c], '.')) && (!strcasecmp(p, ".uef") || !strcasecmp(p, ".csw"))) {
                        strncpy(tape_fn, argv[c], sizeof tape_fn);
                        tapenext = 0;
                    }
                    else {
                        strncpy(discfns[0], argv[c], sizeof discfns[0]);
                        discnext = 0;
                        autoboot = 150;
                    }
                }
                if (tapenext) tapenext--;
        }

        video_init();
        mode7_makechars();

#ifndef WIN32
        install_keyboard();
#endif
        install_timer();

        mem_init();
        ddnoise_init();
        tapenoise_init();

        sound_init();
        al_init();
        sid_init();
        sid_settype(sidmethod, cursid);
        music5000_init();

    adc_init();
#ifdef WIN32
        pal_init();
#endif
        disc_init();
        fdi_init();

        scsi_init();
        ide_init();
        vdfs_init();

        model_init();

        midi_init();
        main_reset();

        install_int_ex(secint, MSEC_TO_TIMER(1000));
        install_int_ex(int50,  MSEC_TO_TIMER(20));

        set_display_switch_mode(SWITCH_BACKGROUND);
#ifdef WIN32
                timeBeginPeriod(1);
#endif
        oldmodel = curmodel;

        if (curtube == 3 || mouse_amx) install_mouse();

        disc_load(0, discfns[0]);
        disc_load(1, discfns[1]);
        tape_load(tape_fn);
        if (defaultwriteprot) writeprot[0] = writeprot[1] = 1;

        endblit();

        debug_start();
}
Пример #12
0
/**
 * @brief Initializes the TAL
 *
 * This function is called to initialize the TAL. The transceiver is
 * initialized, the TAL PIBs are set to their default values, and the TAL state
 * machine is set to TAL_IDLE state.
 *
 * @return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF and the
 *                 current device part number and version number are correct;
 *         FAILURE otherwise
 */
retval_t tal_init(void)
{
	/* Init the PAL and by this means also the transceiver interface */
	if (pal_init() != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Reset trx */
	if (trx_reset(RFBOTH) != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Check if RF215 is connected */
	if ((trx_reg_read( RG_RF_PN) != 0x34) ||
			(trx_reg_read( RG_RF_VN) != 0x01)) {
		return FAILURE;
	}

	/* Initialize trx */
	trx_init();

	if (tal_timer_init() != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Initialize the buffer management */
	bmm_buffer_init();

	/* Configure both trx and set default PIB values */
	for (uint8_t trx_id = 0; trx_id < NUM_TRX; trx_id++) {
		/* Configure transceiver */
		trx_config((trx_id_t)trx_id);
#ifdef RF215V1
		/* Calibrate LO */
		calibrate_LO((trx_id_t)trx_id);
#endif

		/* Set the default PIB values */
		init_tal_pib((trx_id_t)trx_id); /* see 'tal_pib.c' */
		calculate_pib_values((trx_id_t)trx_id);

		/*
		 * Write all PIB values to the transceiver
		 * that are needed by the transceiver itself.
		 */
		write_all_tal_pib_to_trx((trx_id_t)trx_id); /* see 'tal_pib.c'
		                                             **/
		config_phy((trx_id_t)trx_id);

		tal_rx_buffer[trx_id] = bmm_buffer_alloc(LARGE_BUFFER_SIZE);
		if (tal_rx_buffer[trx_id] == NULL) {
			return FAILURE;
		}

		/* Init incoming frame queue */
		qmm_queue_init(&tal_incoming_frame_queue[trx_id]);

		tal_state[trx_id] = TAL_IDLE;
		tx_state[trx_id] = TX_IDLE;
	}

	/* Init seed of rand() */
	tal_generate_rand_seed();

#ifndef DISABLE_IEEE_ADDR_CHECK
	for (uint8_t trx_id = 0; trx_id < 2; trx_id++) {
		/* Check if a valid IEEE address is available. */

		/*
		 * This while loop is on purpose, since just in the
		 * rare case that such an address is randomly
		 * generated again, we must repeat this.
		 */
		while ((tal_pib[trx_id].IeeeAddress == 0x0000000000000000) ||
				(tal_pib[trx_id].IeeeAddress ==
				((uint64_t)-1))) {
			/*
			 * In case no valid IEEE address is available, a random
			 * IEEE address will be generated to be able to run the
			 * applications for demonstration purposes.
			 * In production code this can be omitted.
			 */

			/*
			 * The proper seed for function rand() has already been
			 *generated
			 * in function tal_generate_rand_seed().
			 */
			uint8_t *ptr_pib
				= (uint8_t *)&tal_pib[trx_id].IeeeAddress;

			for (uint8_t i = 0; i < 8; i++) {
				*ptr_pib++ = (uint8_t)rand();

				/*
				 * Note:
				 * Even if casting the 16 bit rand value back to
				 *8 bit,
				 * and running the loop 8 timers (instead of
				 *only 4 times)
				 * may look cumbersome, it turns out that the
				 *code gets
				 * smaller using 8-bit here.
				 * And timing is not an issue at this place...
				 */
			}
		}
	}
#endif

#ifdef IQ_RADIO
	/* Init BB IRQ handler */
	pal_trx_irq_flag_clr(RF215_BB);
	trx_irq_init(RF215_BB, bb_irq_handler_cb);
	pal_trx_irq_en(RF215_BB);

	/* Init RF IRQ handler */
	pal_trx_irq_flag_clr(RF215_RF);
	trx_irq_init(RF215_RF, rf_irq_handler_cb);
	pal_trx_irq_en(RF215_RF);
#else

	/*
	 * Configure interrupt handling.
	 * Install a handler for the radio and the baseband interrupt.
	 */
	pal_trx_irq_flag_clr();
	trx_irq_init((FUNC_PTR)trx_irq_handler_cb);
	pal_trx_irq_en(); /* Enable transceiver main interrupt. */
#endif

#if ((defined SUPPORT_FSK) && (defined SUPPORT_MODE_SWITCH))
	init_mode_switch();
#endif

	return MAC_SUCCESS;
} /* tal_init() */