Пример #1
0
/*
 *  Set various globals based on contents of boot_args
 *
 *  Note that this routine must NOT trash boot_args, as
 *  it is scanned by later routines.
 */
static void
process_kernel_args(void)
{
#ifdef RB_QUIET
	int value;
#endif
	
#if defined(RB_QUIET) && defined(BOOT_QUIETLY)
	boothowto |= RB_QUIET;
#endif

	/* Process all the generic ARM boot options */
	parse_mi_bootargs(boot_args);

#ifdef RB_QUIET
	if (get_bootconf_option(args, "noquiet", BOOTOPT_TYPE_BOOLEAN, &value)) {
		if (!value)
			boothowto |= RB_QUIET;
		else
			boothowto &= ~RB_QUIET;
	}
	if (get_bootconf_option(args, "quiet", BOOTOPT_TYPE_BOOLEAN, &value)) {
		if (value)
			boothowto |= RB_QUIET;
		else
			boothowto &= ~RB_QUIET;
	}
#endif

	/* Check for ofwgencfg-specific args here. */
}
void
process_kernel_args(char *args)
{

	boothowto = 0;

	/* Make a local copy of the bootargs */
	strncpy(bootargs, args, MAX_BOOT_STRING);

	args = bootargs;
	boot_file = bootargs;

	/* Skip the kernel image filename */
	while (*args != ' ' && *args != 0)
		++args;

	if (*args != 0)
		*args++ = 0;

	while (*args == ' ')
		++args;

	boot_args = args;

	printf("bootfile: %s\n", boot_file);
	printf("bootargs: %s\n", boot_args);

	parse_mi_bootargs(boot_args);
}
static void
process_kernel_args(void)
{
	char *args;

	/* Ok now we will check the arguments for interesting parameters. */
	args = bootconfig.args;

#ifdef BOOTHOWTO
	boothowto = BOOTHOWTO;
#else
	boothowto = 0;
#endif

	/* Only arguments itself are passed from the bootloader */
	while (*args == ' ')
		++args;

	boot_args = args;
	parse_mi_bootargs(boot_args);
	parse_iyonix_bootargs(boot_args);
}
Пример #4
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	/*
	 * When we enter here, we are using a temporary first level
	 * translation table with section entries in it to cover the TIPB
	 * peripherals and SDRAM.  The temporary first level translation table
	 * is at the end of SDRAM.
	 */

	/* Heads up ... Setup the CPU / MMU / TLB functions. */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	init_clocks();

	/* The console is going to try to map things.  Give pmap a devmap. */
	pmap_devmap_register(devmap);
	consinit();
#ifdef KGDB
	kgdb_port_init();
#endif

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
	printf("\nNetBSD/evbarm (OSK5912) booting ...\n");
#endif

#ifdef BOOT_ARGS
	char mi_bootargs[] = BOOT_ARGS;
	parse_mi_bootargs(mi_bootargs);
#endif

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");
#endif

	/*
	 * Set up the variables that define the availability of physical
	 * memory.
	 */
	physical_start = KERNEL_BASE_PHYS;
	physical_end = physical_start + MEMSIZE_BYTES;
	physmem = MEMSIZE_BYTES / PAGE_SIZE;

	/* Fake bootconfig structure for the benefit of pmap.c. */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = physical_start;
	bootconfig.dram[0].pages = physmem;

	/*
	 * Our kernel is at the beginning of memory, so set our free space to
	 * all the memory after the kernel.
	 */
	physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
	physical_freeend = physical_end;
	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

	/*
	 * This is going to do all the hard work of setting up the first and
	 * and second level page tables.  Pages of memory will be allocated
	 * and mapped for other structures that are required for system
	 * operation.  When it returns, physical_freestart and free_pages will
	 * have been updated to reflect the allocations that were made.  In
	 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
	 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
	 * the memory that was allocated for them.
	 */
	setup_real_page_tables();

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init.
	 */
	proc0paddr = (struct user *)kernelstack.pv_va;
	lwp0.l_addr = proc0paddr;

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef KGDB
	if (boothowto & RB_KDB) {
		kgdb_debug_init = 1;
		kgdb_connect(1);
	}
#endif

#ifdef DDB
	db_machine_init();

	/* Firmware doesn't load symbols. */
	ddb_init(0, NULL, NULL);

	if (boothowto & RB_KDB)
		Debugger();
#endif

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
Пример #5
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	pmap_devmap_register(devmap);
	awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA);

	/* Heads up ... Setup the CPU / MMU / TLB functions. */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/* The console is going to try to map things.  Give pmap a devmap. */
	consinit();

#ifdef VERBOSE_INIT_ARM
	printf("\nuboot arg = %#x, %#x, %#x, %#x\n",
	    uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]);
#endif

#ifdef KGDB
	kgdb_port_init();
#endif

	cpu_reset_address = awin_wdog_reset;

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
	printf("\nNetBSD/evbarm (cubie) booting ...\n");
#endif

#ifdef BOOT_ARGS
	char mi_bootargs[] = BOOT_ARGS;
	parse_mi_bootargs(mi_bootargs);
#endif

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");

#if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15)
	printf("initarm: cbar=%#x\n", armreg_cbar_read());
#endif
#endif

	/*
	 * Set up the variables that define the availability of physical
	 * memory.
	 */
	psize_t ram_size = awin_memprobe();

	/*
	 * If MEMSIZE specified less than what we really have, limit ourselves
	 * to that.
	 */
#ifdef MEMSIZE
	if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024)
		ram_size = (unsigned)MEMSIZE * 1024 * 1024;
#else
	KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined");
#endif

	/* Fake bootconfig structure for the benefit of pmap.c. */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = AWIN_SDRAM_PBASE;
	bootconfig.dram[0].pages = ram_size / PAGE_SIZE;

#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
	const bool mapallmem_p = true;
	KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE);
#else
	const bool mapallmem_p = false;
#endif
	KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);

	arm32_bootmem_init(bootconfig.dram[0].address, ram_size,
	    KERNEL_BASE_PHYS);
	arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0, devmap,
	    mapallmem_p);

	if (mapallmem_p) {
		/*
		 * "bootargs" env variable is passed as 4th argument
		 * to kernel but it's using the physical address and
		 * we to convert that to a virtual address.
		 */
		if (uboot_args[3] - AWIN_SDRAM_PBASE < ram_size) {
			const char * const args = (const char *)
			     (uboot_args[3] + KERNEL_PHYS_VOFFSET);
			strlcpy(bootargs, args, sizeof(bootargs));
		}
	}

	boot_args = bootargs;
	parse_mi_bootargs(boot_args);

	/* we've a specific device_register routine */
	evbarm_device_register = cubie_device_register;

#if NAWIN_FB > 0
	char *ptr;
	if (get_bootconf_option(boot_args, "console",
		    BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) {
		use_fb_console = true;
	}
#endif
	
	return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0);

}
Пример #6
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	pmap_devmap_register(devmap);
	awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA);

	/* Heads up ... Setup the CPU / MMU / TLB functions. */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/* The console is going to try to map things.  Give pmap a devmap. */
	consinit();

#ifdef VERBOSE_INIT_ARM
	printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n",
	    uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]);
#endif

#ifdef KGDB
	kgdb_port_init();
#endif

	cpu_reset_address = awin_wdog_reset;

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
	printf("\nNetBSD/evbarm (" BOARDTYPE ") booting ...\n");
#endif

#ifdef BOOT_ARGS
	char mi_bootargs[] = BOOT_ARGS;
	parse_mi_bootargs(mi_bootargs);
#endif

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");

#if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15)
	if (!CPU_ID_CORTEX_A8_P(curcpu()->ci_arm_cpuid)) {
		printf("initarm: cbar=%#x\n", armreg_cbar_read());
	}
#endif
#endif

	/*
	 * Set up the variables that define the availability of physical
	 * memory.
	 */
	psize_t ram_size = awin_memprobe();

#if AWIN_board == AWIN_cubieboard
	/* the cubietruck has 2GB whereas the cubieboards only has 1GB */
	cubietruck_p = (ram_size == 0x80000000);
#endif

	/*
	 * If MEMSIZE specified less than what we really have, limit ourselves
	 * to that.
	 */
#ifdef MEMSIZE
	if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024)
		ram_size = (unsigned)MEMSIZE * 1024 * 1024;
#else
	KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined");
#endif

	/*
	 * Configure DMA tags
	 */
	awin_dma_bootstrap(ram_size);

	/* Fake bootconfig structure for the benefit of pmap.c. */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = AWIN_SDRAM_PBASE;
	bootconfig.dram[0].pages = ram_size / PAGE_SIZE;

#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
	const bool mapallmem_p = true;
#ifndef PMAP_NEED_ALLOC_POOLPAGE
	if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) {
		printf("%s: dropping RAM size from %luMB to %uMB\n",
		   __func__, (unsigned long) (ram_size >> 20),
		   (KERNEL_VM_BASE - KERNEL_BASE) >> 20);
		ram_size = KERNEL_VM_BASE - KERNEL_BASE;
	}
Пример #7
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/* map some peripheral registers */
	pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE,
	    netwalker_devmap);

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);

	/* Register devmap for devices we mapped in start */
	pmap_devmap_register(netwalker_devmap);
	setup_ioports();

	consinit();

#ifdef	NO_POWERSAVE
	cpu_do_powersave=0;
#endif

	init_clocks();

#ifdef KGDB
	kgdb_port_init();
#endif

	/* Talk to the user */
	printf("\nNetBSD/evbarm (" ___STRING(EVBARM_BOARDTYPE) ") booting ...\n");

#ifdef BOOT_ARGS
	char mi_bootargs[] = BOOT_ARGS;
	parse_mi_bootargs(mi_bootargs);
#endif
	bootargs[0] = '\0';

#if defined(VERBOSE_INIT_ARM) || 1
	printf("initarm: Configuring system");
	printf(", CLIDR=%010o CTR=%#x",
	    armreg_clidr_read(), armreg_ctr_read());
	printf("\n");
#endif
	/*
	 * Ok we have the following memory map
	 *
	 * Physical Address Range     Description
	 * -----------------------    ----------------------------------
	 *
	 * 0x90000000 - 0xAFFFFFFF    DDR SDRAM (512MByte)
	 *
	 * The initarm() has the responsibility for creating the kernel
	 * page tables.
	 * It must also set up various memory pointers that are used
	 * by pmap etc.
	 */

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");
#endif
	/* Fake bootconfig structure for the benefit of pmap.c */
	/* XXX must make the memory description h/w independent */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = MEMSTART;
	bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024) / PAGE_SIZE;

	psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE;

#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
	if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) {
		printf("%s: dropping RAM size from %luMB to %uMB\n",
		    __func__, (unsigned long) (ram_size >> 20),
		    (KERNEL_VM_BASE - KERNEL_BASE) >> 20);
		ram_size = KERNEL_VM_BASE - KERNEL_BASE;
	}
u_int
initarm(void *arg)
{
	const struct pmap_devmap const *devmap;
	bus_addr_t rambase;
	const psize_t ram_reserve = 0x200000;
	psize_t ram_size;

	/* allocate/map our basic memory mapping */
    	switch (EXYNOS_PRODUCT_FAMILY(exynos_soc_id)) {
#if defined(EXYNOS4)
	case EXYNOS4_PRODUCT_FAMILY:
		devmap = e4_devmap;
		rambase = EXYNOS4_SDRAM_PBASE;
		break;
#endif
#if defined(EXYNOS5)
	case EXYNOS5_PRODUCT_FAMILY:
		devmap = e5_devmap;
		rambase = EXYNOS5_SDRAM_PBASE;
		break;
#endif
	default:
		/* Won't work, but... */
		panic("Unknown product family %llx",
		   EXYNOS_PRODUCT_FAMILY(exynos_soc_id));
	}
	pmap_devmap_register(devmap);

	/* bootstrap soc. uart_address is determined in odroid_start */
	paddr_t uart_address = armreg_tpidruro_read();
	exynos_bootstrap(EXYNOS_CORE_VBASE, EXYNOS_IOPHYSTOVIRT(uart_address));

	/* set up CPU / MMU / TLB functions */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/* get normal console working */
 	consinit();

#ifdef KGDB
	kgdb_port_init();
#endif

#ifdef VERBOSE_INIT_ARM
	printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n",
	    uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]);
	printf("Exynos SoC ID %08x\n", exynos_soc_id);

	printf("initarm: cbar=%#x\n", armreg_cbar_read());
#endif

	/* determine cpu0 clock rate */
	exynos_clocks_bootstrap();
#ifdef VERBOSE_INIT_ARM
	printf("CPU0 now running on %"PRIu64" Mhz\n", exynos_get_cpufreq()/(1000*1000));
#endif

#if NARML2CC > 0
	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
		/* probe and enable the PL310 L2CC */
		const bus_space_handle_t pl310_bh =
			EXYNOS_IOPHYSTOVIRT(armreg_cbar_read());

#ifdef ARM_TRUSTZONE_FIRMWARE
		exynos4_l2cc_init();
#endif
		arml2cc_init(&exynos_bs_tag, pl310_bh, 0x2000);
	}
#endif

	cpu_reset_address = exynos_wdt_reset;

#ifdef VERBOSE_INIT_ARM
	printf("\nNetBSD/evbarm (odroid) booting ...\n");
#endif

#ifdef BOOT_ARGS
	char mi_bootargs[] = BOOT_ARGS;
	parse_mi_bootargs(mi_bootargs);
#endif
	boot_args = bootargs;
	parse_mi_bootargs(boot_args);
	exynos_extract_mac_adress();

	/*
	 * Determine physical memory by looking at the PoP package. This PoP
	 * package ID seems to be only available on Exynos4
	 *
	 * First assume the default 2Gb of memory, dictated by mapping too
	 */
	ram_size = (psize_t) 0xC0000000 - 0x40000000;

#if defined(EXYNOS4)
	switch (exynos_pop_id) {
	case EXYNOS_PACKAGE_ID_2_GIG:
		KASSERT(ram_size <= 2UL*1024*1024*1024);
		break;
	default:
		printf("Unknown PoP package id 0x%08x, assuming 1Gb\n",
			exynos_pop_id);
		ram_size = (psize_t) 0x10000000;
	}
#endif

	/* Fake bootconfig structure for the benefit of pmap.c. */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = rambase;
	bootconfig.dram[0].pages = ram_size / PAGE_SIZE;

#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
	const bool mapallmem_p = true;
#ifndef PMAP_NEED_ALLOC_POOLPAGE
	if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) {
		printf("%s: dropping RAM size from %luMB to %uMB\n",
		   __func__, (unsigned long) (ram_size >> 20),
		   (KERNEL_VM_BASE - KERNEL_BASE) >> 20);
		ram_size = KERNEL_VM_BASE - KERNEL_BASE;
	}
Пример #9
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	extern char _end[];
	extern vaddr_t startup_pagetable;
	extern struct btinfo_common bootinfo;
	struct btinfo_common *btinfo = &bootinfo;
	struct btinfo_model *model = NULL;
	struct btinfo_memory *memory = NULL;
	struct btinfo_video *video = NULL;
	struct btinfo_bootargs *args = NULL;
	u_int l1pagetable, _end_physical;
	int loop, loop1, n, i;

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/* map some peripheral registers at static I/O area. */
	pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap);

	bootconfig.dramblocks = 0;
	while (btinfo->type != BTINFO_NONE) {
		switch (btinfo->type) {
		case BTINFO_MODEL:
			model = (struct btinfo_model *)btinfo;
			btinfo = &(model + 1)->common;
			strncpy(epoc32_model, model->model,
			    sizeof(epoc32_model));
			break;

		case BTINFO_MEMORY:
			memory = (struct btinfo_memory *)btinfo;
			btinfo = &(memory + 1)->common;

			/*
			 * Fake bootconfig structure for the benefit of pmap.c
			 */
			i = bootconfig.dramblocks;
			bootconfig.dram[i].address = memory->address;
			bootconfig.dram[i].pages = memory->size / PAGE_SIZE;
			bootconfig.dramblocks++;
			break;

		case BTINFO_VIDEO:
			video = (struct btinfo_video *)btinfo;
			btinfo = &(video + 1)->common;
			epoc32_fb_width = video->width;
			epoc32_fb_height = video->height;
			break;

		case BTINFO_BOOTARGS:
			args = (struct btinfo_bootargs *)btinfo;
			btinfo = &(args + 1)->common;
			memcpy(bootargs, args->bootargs,
			    min(sizeof(bootargs), sizeof(args->bootargs)));
			bootargs[sizeof(bootargs) - 1] = '\0';
			boot_args = bootargs;
			break;

		default:
#define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len)

			btinfo = NEXT_BOOTINFO(btinfo);
		}
	}
	if (bootconfig.dramblocks == 0)
		panic("BTINFO_MEMORY not found");

	consinit();

	if (boot_args != NULL)
		parse_mi_bootargs(boot_args);

	physical_start = bootconfig.dram[0].address;
	physical_freestart = bootconfig.dram[0].address;
	physical_freeend = KERNEL_TEXT_BASE;

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

	/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa ||
	    (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000,
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
	    &kernel_pt_table[KERNEL_PT_KERNEL]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr = KERNEL_VM_BASE;

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		size_t datasize;
		PhysMem *dram = bootconfig.dram;
		u_int logical, physical, size;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
		datasize = totalsize - textsize;	/* data and bss */

		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
		physical = KERNEL_OFFSET;
		i = 0;
		size = dram[i].pages * PAGE_SIZE - physical;
		/* Map kernel text section. */
		while (1 /*CONSTINT*/) {
			size = pmap_map_chunk(l1pagetable,
			    KERNEL_BASE + logical, dram[i].address + physical,
			    textsize < size ? textsize : size,
			    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
			logical += size;
			physical += size;
			textsize -= size;
			if (physical >= dram[i].pages * PAGE_SIZE) {
				i++;
				size = dram[i].pages * PAGE_SIZE;
				physical = 0;
			}
			if (textsize == 0)
				break;
		}
		size = dram[i].pages * PAGE_SIZE - physical;
		/* Map data and bss section. */
		while (1 /*CONSTINT*/) {
			size = pmap_map_chunk(l1pagetable,
			    KERNEL_BASE + logical, dram[i].address + physical,
			    datasize < size ? datasize : size,
			    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
			logical += size;
			physical += size;
			datasize -= size;
			if (physical >= dram[i].pages * PAGE_SIZE) {
				i++;
				size = dram[i].pages * PAGE_SIZE;
				physical = 0;
			}
			if (datasize == 0)
				break;
		}
		_end_physical = dram[i].address + physical;
		n = i;
		physical_end = dram[n].address + dram[n].pages * PAGE_SIZE;
		n++;
	}

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

        pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_devmap_bootstrap(l1pagetable, epoc32_devmap);
	pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap);
	epoc32_fb_addr = ARM7XX_FB_VBASE;

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler. Until then we will use a handler that just panics but
	 * tells us why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
	undefined_init();

        /* Load memory into UVM. */
	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(
	    atop(_end_physical), atop(physical_end),
	    atop(_end_physical), atop(physical_end),
	    VM_FREELIST_DEFAULT);
	physmem = bootconfig.dram[0].pages;
	for (i = 1; i < n; i++)
		physmem += bootconfig.dram[i].pages;
	if (physmem < 0x400000)
		physical_end = 0;
	for (loop = n; loop < bootconfig.dramblocks; loop++) {
		size_t start = bootconfig.dram[loop].address;
		size_t size = bootconfig.dram[loop].pages * PAGE_SIZE;

		uvm_page_physload(atop(start), atop(start + size),
		    atop(start), atop(start + size), VM_FREELIST_DEFAULT);
		physmem += bootconfig.dram[loop].pages;

		if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE)
			/* Fixup physical_end for Series5. */
			physical_end = start + size;
	}

	/* Boot strap pmap telling it where the kernel page table is */
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

#ifdef __HAVE_MEMORY_DISK__
	md_root_setconf(memory_disk, sizeof memory_disk);
#endif

#if NKSYMS || defined(DDB) || defined(MODULAR)
	/* Firmware doesn't load symbols. */
	ddb_init(0, NULL, NULL);
#endif

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif

	/* We return the new stack pointer address */
	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}
Пример #10
0
/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Initialising interrupt controllers to a sane default state
 */
u_int
initarm(void *arg)
{
	int loop;
	int loop1;
	u_int l1pagetable;
	struct bootparam_tag *bootparam_p;
	unsigned long devcfg;

	/*
	 * Since we map the on-board devices VA==PA, and the kernel
	 * is running VA==PA, it's possible for us to initialize
	 * the console now.
	 */
	consinit();

	/* identify model */
	devcfg = *((volatile unsigned long*)(EP93XX_APB_HWBASE 
					     + EP93XX_APB_SYSCON
					     + EP93XX_SYSCON_DeviceCfg));
	for (armadillo_model = &armadillo_model_table[0];
				armadillo_model->devcfg; armadillo_model++)
		if (devcfg == armadillo_model->devcfg)
			break;

	/* Talk to the user */
	printf("\nNetBSD/%s booting ...\n", armadillo_model->name);

	/* set some informations from bootloader */
	bootparam_p = (struct bootparam_tag *)bootparam;
	bootconfig.dramblocks = 0;
	while (bootparam_p->hdr.tag != BOOTPARAM_TAG_NONE) {
		switch (bootparam_p->hdr.tag) {
		case BOOTPARAM_TAG_MEM:
			if (bootconfig.dramblocks < DRAM_BLOCKS) {
#ifdef VERBOSE_INIT_ARM
			printf("dram[%d]: address=0x%08lx, size=0x%08lx\n",
						bootconfig.dramblocks,
						bootparam_p->u.mem.start,
						bootparam_p->u.mem.size);
#endif
				bootconfig.dram[bootconfig.dramblocks].address =
					bootparam_p->u.mem.start;
				bootconfig.dram[bootconfig.dramblocks].pages =
					bootparam_p->u.mem.size / PAGE_SIZE;
				bootconfig.dramblocks++;
			}
			break;
		case BOOTPARAM_TAG_CMDLINE:
#ifdef VERBOSE_INIT_ARM
			printf("cmdline: %s\n", bootparam_p->u.cmdline.cmdline);
#endif
			parse_mi_bootargs(bootparam_p->u.cmdline.cmdline);
			break;
		}
		bootparam_p = bootparam_tag_next(bootparam_p);
	}

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");
#endif
	/*
	 * Set up the variables that define the availablilty of
	 * physical memory.  For now, we're going to set
	 * physical_freestart to 0xc0200000 (where the kernel
	 * was loaded), and allocate the memory we need downwards.
	 * If we get too close to the L1 table that we set up, we
	 * will panic.  We will update physical_freestart and
	 * physical_freeend later to reflect what pmap_bootstrap()
	 * wants to see.
	 *
	 * XXX pmap_bootstrap() needs an enema.
	 */
	physical_start = bootconfig.dram[0].address;
	physical_end = bootconfig.dram[0].address
			+ (bootconfig.dram[0].pages * PAGE_SIZE);

	physical_freestart = 0xc0018000UL;
	physical_freeend = 0xc0200000UL;

	physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	/* Tell the user about the memory */
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	    physical_start, physical_end - 1);
#endif

	/*
	 * Okay, the kernel starts 2MB in from the bottom of physical
	 * memory.  We are going to allocate our bootstrap pages downwards
	 * from there.
	 *
	 * We need to allocate some fixed page tables to get the kernel
	 * going.  We allocate one page directory and a number of page
	 * tables and store the physical addresses in the kernel_pt_table
	 * array.
	 *
	 * The kernel page directory must be on a 16K boundary.  The page
	 * tables must be on 4K bounaries.  What we do is allocate the
	 * page directory on the first 16K boundary that we encounter, and
	 * the page tables on 4K boundaries otherwise.  Since we allocate
	 * at least 3 L2 page tables, we are guaranteed to encounter at
	 * least one 16K aligned region.
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Allocating page tables\n");
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif

	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system vectors page
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables.  Save physical_freeend for when we give whats left 
	 * of memory below 2Mbyte to UVM.
	 */

	physical_freeend_low = physical_freeend;

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;

		logical = 0x00200000;	/* offset of kernel in RAM */
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, armadillo9_devmap);

	/*
	 * Update the physical_freestart/physical_freeend/free_pages
	 * variables.
	 */
	{
		extern char _end[];

		physical_freestart = physical_start +
		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
		     KERNEL_BASE);
		physical_freeend = physical_end;
		free_pages =
		    (physical_freeend - physical_freestart) / PAGE_SIZE;
	}

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
	printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);
	uvm_page_physload(atop(0xc0000000), atop(physical_freeend_low),
	    atop(0xc0000000), atop(physical_freeend_low),
	    VM_FREELIST_DEFAULT);
	physmem = bootconfig.dram[0].pages;
	for (loop = 1; loop < bootconfig.dramblocks; ++loop) {
		size_t start = bootconfig.dram[loop].address;
		size_t size = bootconfig.dram[loop].pages * PAGE_SIZE;
		uvm_page_physload(atop(start), atop(start + size),
				  atop(start), atop(start + size),
				  VM_FREELIST_DEFAULT);
		physmem += bootconfig.dram[loop].pages;
	}

	/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	ep93xx_intr_init();
#if NISA > 0
	isa_intr_init();

#ifdef VERBOSE_INIT_ARM
	printf("isa ");
#endif
	isa_armadillo9_init(ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAIO,
		ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAMEM);	
#endif

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef BOOTHOWTO
	boothowto = BOOTHOWTO;
#endif

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif

	/* We have our own device_register() */
	evbarm_device_register = armadillo9_device_register;

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}