/* * Set various globals based on contents of boot_args * * Note that this routine must NOT trash boot_args, as * it is scanned by later routines. */ static void process_kernel_args(void) { #ifdef RB_QUIET int value; #endif #if defined(RB_QUIET) && defined(BOOT_QUIETLY) boothowto |= RB_QUIET; #endif /* Process all the generic ARM boot options */ parse_mi_bootargs(boot_args); #ifdef RB_QUIET if (get_bootconf_option(args, "noquiet", BOOTOPT_TYPE_BOOLEAN, &value)) { if (!value) boothowto |= RB_QUIET; else boothowto &= ~RB_QUIET; } if (get_bootconf_option(args, "quiet", BOOTOPT_TYPE_BOOLEAN, &value)) { if (value) boothowto |= RB_QUIET; else boothowto &= ~RB_QUIET; } #endif /* Check for ofwgencfg-specific args here. */ }
void process_kernel_args(char *args) { boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, args, MAX_BOOT_STRING); args = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; if (*args != 0) *args++ = 0; while (*args == ' ') ++args; boot_args = args; printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); parse_mi_bootargs(boot_args); }
static void process_kernel_args(void) { char *args; /* Ok now we will check the arguments for interesting parameters. */ args = bootconfig.args; #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #else boothowto = 0; #endif /* Only arguments itself are passed from the bootloader */ while (*args == ' ') ++args; boot_args = args; parse_mi_bootargs(boot_args); parse_iyonix_bootargs(boot_args); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { /* * When we enter here, we are using a temporary first level * translation table with section entries in it to cover the TIPB * peripherals and SDRAM. The temporary first level translation table * is at the end of SDRAM. */ /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); init_clocks(); /* The console is going to try to map things. Give pmap a devmap. */ pmap_devmap_register(devmap); consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (OSK5912) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* * Set up the variables that define the availability of physical * memory. */ physical_start = KERNEL_BASE_PHYS; physical_end = physical_start + MEMSIZE_BYTES; physmem = MEMSIZE_BYTES / PAGE_SIZE; /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = physical_start; bootconfig.dram[0].pages = physmem; /* * Our kernel is at the beginning of memory, so set our free space to * all the memory after the kernel. */ physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end)); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* * This is going to do all the hard work of setting up the first and * and second level page tables. Pages of memory will be allocated * and mapped for other structures that are required for system * operation. When it returns, physical_freestart and free_pages will * have been updated to reflect the allocations that were made. In * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, * abtstack, undstack, kernelstack, msgbufphys will be set to point to * the memory that was allocated for them. */ setup_real_page_tables(); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init. */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#x, %#x, %#x, %#x\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (cubie) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE); #else const bool mapallmem_p = false; #endif KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0); arm32_bootmem_init(bootconfig.dram[0].address, ram_size, KERNEL_BASE_PHYS); arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0, devmap, mapallmem_p); if (mapallmem_p) { /* * "bootargs" env variable is passed as 4th argument * to kernel but it's using the physical address and * we to convert that to a virtual address. */ if (uboot_args[3] - AWIN_SDRAM_PBASE < ram_size) { const char * const args = (const char *) (uboot_args[3] + KERNEL_PHYS_VOFFSET); strlcpy(bootargs, args, sizeof(bootargs)); } } boot_args = bootargs; parse_mi_bootargs(boot_args); /* we've a specific device_register routine */ evbarm_device_register = cubie_device_register; #if NAWIN_FB > 0 char *ptr; if (get_bootconf_option(boot_args, "console", BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) { use_fb_console = true; } #endif return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (" BOARDTYPE ") booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) if (!CPU_ID_CORTEX_A8_P(curcpu()->ci_arm_cpuid)) { printf("initarm: cbar=%#x\n", armreg_cbar_read()); } #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); #if AWIN_board == AWIN_cubieboard /* the cubietruck has 2GB whereas the cubieboards only has 1GB */ cubietruck_p = (ram_size == 0x80000000); #endif /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* * Configure DMA tags */ awin_dma_bootstrap(ram_size); /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers */ pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE, netwalker_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); /* Register devmap for devices we mapped in start */ pmap_devmap_register(netwalker_devmap); setup_ioports(); consinit(); #ifdef NO_POWERSAVE cpu_do_powersave=0; #endif init_clocks(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (" ___STRING(EVBARM_BOARDTYPE) ") booting ...\n"); #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif bootargs[0] = '\0'; #if defined(VERBOSE_INIT_ARM) || 1 printf("initarm: Configuring system"); printf(", CLIDR=%010o CTR=%#x", armreg_clidr_read(), armreg_ctr_read()); printf("\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * * 0x90000000 - 0xAFFFFFFF DDR SDRAM (512MByte) * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024) / PAGE_SIZE; psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
u_int initarm(void *arg) { const struct pmap_devmap const *devmap; bus_addr_t rambase; const psize_t ram_reserve = 0x200000; psize_t ram_size; /* allocate/map our basic memory mapping */ switch (EXYNOS_PRODUCT_FAMILY(exynos_soc_id)) { #if defined(EXYNOS4) case EXYNOS4_PRODUCT_FAMILY: devmap = e4_devmap; rambase = EXYNOS4_SDRAM_PBASE; break; #endif #if defined(EXYNOS5) case EXYNOS5_PRODUCT_FAMILY: devmap = e5_devmap; rambase = EXYNOS5_SDRAM_PBASE; break; #endif default: /* Won't work, but... */ panic("Unknown product family %llx", EXYNOS_PRODUCT_FAMILY(exynos_soc_id)); } pmap_devmap_register(devmap); /* bootstrap soc. uart_address is determined in odroid_start */ paddr_t uart_address = armreg_tpidruro_read(); exynos_bootstrap(EXYNOS_CORE_VBASE, EXYNOS_IOPHYSTOVIRT(uart_address)); /* set up CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* get normal console working */ consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); printf("Exynos SoC ID %08x\n", exynos_soc_id); printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif /* determine cpu0 clock rate */ exynos_clocks_bootstrap(); #ifdef VERBOSE_INIT_ARM printf("CPU0 now running on %"PRIu64" Mhz\n", exynos_get_cpufreq()/(1000*1000)); #endif #if NARML2CC > 0 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) { /* probe and enable the PL310 L2CC */ const bus_space_handle_t pl310_bh = EXYNOS_IOPHYSTOVIRT(armreg_cbar_read()); #ifdef ARM_TRUSTZONE_FIRMWARE exynos4_l2cc_init(); #endif arml2cc_init(&exynos_bs_tag, pl310_bh, 0x2000); } #endif cpu_reset_address = exynos_wdt_reset; #ifdef VERBOSE_INIT_ARM printf("\nNetBSD/evbarm (odroid) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif boot_args = bootargs; parse_mi_bootargs(boot_args); exynos_extract_mac_adress(); /* * Determine physical memory by looking at the PoP package. This PoP * package ID seems to be only available on Exynos4 * * First assume the default 2Gb of memory, dictated by mapping too */ ram_size = (psize_t) 0xC0000000 - 0x40000000; #if defined(EXYNOS4) switch (exynos_pop_id) { case EXYNOS_PACKAGE_ID_2_GIG: KASSERT(ram_size <= 2UL*1024*1024*1024); break; default: printf("Unknown PoP package id 0x%08x, assuming 1Gb\n", exynos_pop_id); ram_size = (psize_t) 0x10000000; } #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = rambase; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern char _end[]; extern vaddr_t startup_pagetable; extern struct btinfo_common bootinfo; struct btinfo_common *btinfo = &bootinfo; struct btinfo_model *model = NULL; struct btinfo_memory *memory = NULL; struct btinfo_video *video = NULL; struct btinfo_bootargs *args = NULL; u_int l1pagetable, _end_physical; int loop, loop1, n, i; /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers at static I/O area. */ pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap); bootconfig.dramblocks = 0; while (btinfo->type != BTINFO_NONE) { switch (btinfo->type) { case BTINFO_MODEL: model = (struct btinfo_model *)btinfo; btinfo = &(model + 1)->common; strncpy(epoc32_model, model->model, sizeof(epoc32_model)); break; case BTINFO_MEMORY: memory = (struct btinfo_memory *)btinfo; btinfo = &(memory + 1)->common; /* * Fake bootconfig structure for the benefit of pmap.c */ i = bootconfig.dramblocks; bootconfig.dram[i].address = memory->address; bootconfig.dram[i].pages = memory->size / PAGE_SIZE; bootconfig.dramblocks++; break; case BTINFO_VIDEO: video = (struct btinfo_video *)btinfo; btinfo = &(video + 1)->common; epoc32_fb_width = video->width; epoc32_fb_height = video->height; break; case BTINFO_BOOTARGS: args = (struct btinfo_bootargs *)btinfo; btinfo = &(args + 1)->common; memcpy(bootargs, args->bootargs, min(sizeof(bootargs), sizeof(args->bootargs))); bootargs[sizeof(bootargs) - 1] = '\0'; boot_args = bootargs; break; default: #define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len) btinfo = NEXT_BOOTINFO(btinfo); } } if (bootconfig.dramblocks == 0) panic("BTINFO_MEMORY not found"); consinit(); if (boot_args != NULL) parse_mi_bootargs(boot_args); physical_start = bootconfig.dram[0].address; physical_freestart = bootconfig.dram[0].address; physical_freeend = KERNEL_TEXT_BASE; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE; /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; size_t datasize; PhysMem *dram = bootconfig.dram; u_int logical, physical, size; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; datasize = totalsize - textsize; /* data and bss */ logical = KERNEL_OFFSET; /* offset of kernel in RAM */ physical = KERNEL_OFFSET; i = 0; size = dram[i].pages * PAGE_SIZE - physical; /* Map kernel text section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, textsize < size ? textsize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; textsize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (textsize == 0) break; } size = dram[i].pages * PAGE_SIZE - physical; /* Map data and bss section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, datasize < size ? datasize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; datasize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (datasize == 0) break; } _end_physical = dram[i].address + physical; n = i; physical_end = dram[n].address + dram[n].pages * PAGE_SIZE; n++; } /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, epoc32_devmap); pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap); epoc32_fb_addr = ARM7XX_FB_VBASE; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ undefined_init(); /* Load memory into UVM. */ uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload( atop(_end_physical), atop(physical_end), atop(_end_physical), atop(physical_end), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (i = 1; i < n; i++) physmem += bootconfig.dram[i].pages; if (physmem < 0x400000) physical_end = 0; for (loop = n; loop < bootconfig.dramblocks; loop++) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE) /* Fixup physical_end for Series5. */ physical_end = start + size; } /* Boot strap pmap telling it where the kernel page table is */ pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return kernelstack.pv_va + USPACE_SVC_STACK_TOP; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Initialising interrupt controllers to a sane default state */ u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; struct bootparam_tag *bootparam_p; unsigned long devcfg; /* * Since we map the on-board devices VA==PA, and the kernel * is running VA==PA, it's possible for us to initialize * the console now. */ consinit(); /* identify model */ devcfg = *((volatile unsigned long*)(EP93XX_APB_HWBASE + EP93XX_APB_SYSCON + EP93XX_SYSCON_DeviceCfg)); for (armadillo_model = &armadillo_model_table[0]; armadillo_model->devcfg; armadillo_model++) if (devcfg == armadillo_model->devcfg) break; /* Talk to the user */ printf("\nNetBSD/%s booting ...\n", armadillo_model->name); /* set some informations from bootloader */ bootparam_p = (struct bootparam_tag *)bootparam; bootconfig.dramblocks = 0; while (bootparam_p->hdr.tag != BOOTPARAM_TAG_NONE) { switch (bootparam_p->hdr.tag) { case BOOTPARAM_TAG_MEM: if (bootconfig.dramblocks < DRAM_BLOCKS) { #ifdef VERBOSE_INIT_ARM printf("dram[%d]: address=0x%08lx, size=0x%08lx\n", bootconfig.dramblocks, bootparam_p->u.mem.start, bootparam_p->u.mem.size); #endif bootconfig.dram[bootconfig.dramblocks].address = bootparam_p->u.mem.start; bootconfig.dram[bootconfig.dramblocks].pages = bootparam_p->u.mem.size / PAGE_SIZE; bootconfig.dramblocks++; } break; case BOOTPARAM_TAG_CMDLINE: #ifdef VERBOSE_INIT_ARM printf("cmdline: %s\n", bootparam_p->u.cmdline.cmdline); #endif parse_mi_bootargs(bootparam_p->u.cmdline.cmdline); break; } bootparam_p = bootparam_tag_next(bootparam_p); } /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xc0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = bootconfig.dram[0].address + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xc0018000UL; physical_freeend = 0xc0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K bounaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system vectors page */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables. Save physical_freeend for when we give whats left * of memory below 2Mbyte to UVM. */ physical_freeend_low = physical_freeend; #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, armadillo9_devmap); /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); uvm_page_physload(atop(0xc0000000), atop(physical_freeend_low), atop(0xc0000000), atop(physical_freeend_low), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (loop = 1; loop < bootconfig.dramblocks; ++loop) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; } /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ep93xx_intr_init(); #if NISA > 0 isa_intr_init(); #ifdef VERBOSE_INIT_ARM printf("isa "); #endif isa_armadillo9_init(ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAIO, ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAMEM); #endif #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We have our own device_register() */ evbarm_device_register = armadillo9_device_register; /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }