Пример #1
0
int expkey_parse(struct cache_detail *cd, char *mesg, int mlen)
{
	/* client fsidtype fsid [path] */
	char *buf;
	int len;
	struct auth_domain *dom = NULL;
	int err;
	int fsidtype;
	char *ep;
	struct svc_expkey key;

	if (mesg[mlen-1] != '\n')
		return -EINVAL;
	mesg[mlen-1] = 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	err = -ENOMEM;
	if (!buf) goto out;

	err = -EINVAL;
	if ((len=qword_get(&mesg, buf, PAGE_SIZE)) <= 0)
		goto out;

	err = -ENOENT;
	dom = auth_domain_find(buf);
	if (!dom)
		goto out;
	dprintk("found domain %s\n", buf);

	err = -EINVAL;
	if ((len=qword_get(&mesg, buf, PAGE_SIZE)) <= 0)
		goto out;
	fsidtype = simple_strtoul(buf, &ep, 10);
	if (*ep)
		goto out;
	dprintk("found fsidtype %d\n", fsidtype);
	if (fsidtype > 2)
		goto out;
	if ((len=qword_get(&mesg, buf, PAGE_SIZE)) <= 0)
		goto out;
	dprintk("found fsid length %d\n", len);
	if (len != key_len(fsidtype))
		goto out;

	/* OK, we seem to have a valid key */
	key.h.flags = 0;
	key.h.expiry_time = get_expiry(&mesg);
	if (key.h.expiry_time == 0)
		goto out;

	key.ek_client = dom;	
	key.ek_fsidtype = fsidtype;
	memcpy(key.ek_fsid, buf, len);

	/* now we want a pathname, or empty meaning NEGATIVE  */
	if ((len=qword_get(&mesg, buf, PAGE_SIZE)) < 0)
		goto out;
	dprintk("Path seems to be <%s>\n", buf);
	err = 0;
	if (len == 0) {
		struct svc_expkey *ek;
		set_bit(CACHE_NEGATIVE, &key.h.flags);
		ek = svc_expkey_lookup(&key, 1);
		if (ek)
			expkey_put(&ek->h, &svc_expkey_cache);
	} else {
		struct nameidata nd;
		struct svc_expkey *ek;
		struct svc_export *exp;
		err = path_lookup(buf, 0, &nd);
		if (err)
			goto out;

		dprintk("Found the path %s\n", buf);
		exp = exp_get_by_name(dom, nd.mnt, nd.dentry, NULL);

		err = -ENOENT;
		if (!exp)
			goto out_nd;
		key.ek_export = exp;
		dprintk("And found export\n");
		
		ek = svc_expkey_lookup(&key, 1);
		if (ek)
			expkey_put(&ek->h, &svc_expkey_cache);
		exp_put(exp);
		err = 0;
	out_nd:
		path_release(&nd);
	}
	cache_flush();
 out:
	if (dom)
		auth_domain_put(dom);
	if (buf)
		kfree(buf);
	return err;
}
Пример #2
0
/*
 * xfs_find_handle maps from userspace xfs_fsop_handlereq structure to
 * a file or fs handle.
 *
 * XFS_IOC_PATH_TO_FSHANDLE
 *    returns fs handle for a mount point or path within that mount point
 * XFS_IOC_FD_TO_HANDLE
 *    returns full handle for a FD opened in user space
 * XFS_IOC_PATH_TO_HANDLE
 *    returns full handle for a path
 */
STATIC int
xfs_find_handle(
	unsigned int		cmd,
	void			__user *arg)
{
	int			hsize;
	xfs_handle_t		handle;
	xfs_fsop_handlereq_t	hreq;
	struct inode		*inode;
	struct vnode		*vp;

	if (copy_from_user(&hreq, arg, sizeof(hreq)))
		return -XFS_ERROR(EFAULT);

	memset((char *)&handle, 0, sizeof(handle));

	switch (cmd) {
	case XFS_IOC_PATH_TO_FSHANDLE:
	case XFS_IOC_PATH_TO_HANDLE: {
		struct nameidata	nd;
		int			error;

		error = user_path_walk_link((const char __user *)hreq.path, &nd);
		if (error)
			return error;

		ASSERT(nd.dentry);
		ASSERT(nd.dentry->d_inode);
		inode = igrab(nd.dentry->d_inode);
		path_release(&nd);
		break;
	}

	case XFS_IOC_FD_TO_HANDLE: {
		struct file	*file;

		file = fget(hreq.fd);
		if (!file)
		    return -EBADF;

		ASSERT(file->f_dentry);
		ASSERT(file->f_dentry->d_inode);
		inode = igrab(file->f_dentry->d_inode);
		fput(file);
		break;
	}

	default:
		ASSERT(0);
		return -XFS_ERROR(EINVAL);
	}

	if (inode->i_sb->s_magic != XFS_SB_MAGIC) {
		/* we're not in XFS anymore, Toto */
		iput(inode);
		return -XFS_ERROR(EINVAL);
	}

	switch (inode->i_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		break;
	default:
		iput(inode);
		return -XFS_ERROR(EBADF);
	}

	/* we need the vnode */
	vp = vn_from_inode(inode);

	/* now we can grab the fsid */
	memcpy(&handle.ha_fsid, vp->v_vfsp->vfs_altfsid, sizeof(xfs_fsid_t));
	hsize = sizeof(xfs_fsid_t);

	if (cmd != XFS_IOC_PATH_TO_FSHANDLE) {
		xfs_inode_t	*ip;
		int		lock_mode;

		/* need to get access to the xfs_inode to read the generation */
		ip = xfs_vtoi(vp);
		ASSERT(ip);
		lock_mode = xfs_ilock_map_shared(ip);

		/* fill in fid section of handle from inode */
		handle.ha_fid.xfs_fid_len = sizeof(xfs_fid_t) -
					    sizeof(handle.ha_fid.xfs_fid_len);
		handle.ha_fid.xfs_fid_pad = 0;
		handle.ha_fid.xfs_fid_gen = ip->i_d.di_gen;
		handle.ha_fid.xfs_fid_ino = ip->i_ino;

		xfs_iunlock_map_shared(ip, lock_mode);

		hsize = XFS_HSIZE(handle);
	}

	/* now copy our handle into the user buffer & write out the size */
	if (copy_to_user(hreq.ohandle, &handle, hsize) ||
	    copy_to_user(hreq.ohandlen, &hsize, sizeof(__s32))) {
		iput(inode);
		return -XFS_ERROR(EFAULT);
	}

	iput(inode);
	return 0;
}
Пример #3
0
static int jffs2_get_sb(struct file_system_type *fs_type,
			int flags, const char *dev_name,
			void *data, struct vfsmount *mnt)
{
	int err;
	struct nameidata nd;
	int mtdnr;

	if (!dev_name)
		return -EINVAL;

	D1(printk(KERN_DEBUG "jffs2_get_sb(): dev_name \"%s\"\n", dev_name));

	/* The preferred way of mounting in future; especially when
	   CONFIG_BLK_DEV is implemented - we specify the underlying
	   MTD device by number or by name, so that we don't require
	   block device support to be present in the kernel. */

	/* FIXME: How to do the root fs this way? */

	if (dev_name[0] == 'm' && dev_name[1] == 't' && dev_name[2] == 'd') {
		/* Probably mounting without the blkdev crap */
		if (dev_name[3] == ':') {
			struct mtd_info *mtd;

			/* Mount by MTD device name */
			D1(printk(KERN_DEBUG "jffs2_get_sb(): mtd:%%s, name \"%s\"\n", dev_name+4));
			for (mtdnr = 0; mtdnr < MAX_MTD_DEVICES; mtdnr++) {
				mtd = get_mtd_device(NULL, mtdnr);
				if (!IS_ERR(mtd)) {
					if (!strcmp(mtd->name, dev_name+4))
						return jffs2_get_sb_mtd(fs_type, flags, dev_name, data, mtd, mnt);
					put_mtd_device(mtd);
				}
			}
			printk(KERN_NOTICE "jffs2_get_sb(): MTD device with name \"%s\" not found.\n", dev_name+4);
		} else if (isdigit(dev_name[3])) {
			/* Mount by MTD device number name */
			char *endptr;

			mtdnr = simple_strtoul(dev_name+3, &endptr, 0);
			if (!*endptr) {
				/* It was a valid number */
				D1(printk(KERN_DEBUG "jffs2_get_sb(): mtd%%d, mtdnr %d\n", mtdnr));
				return jffs2_get_sb_mtdnr(fs_type, flags, dev_name, data, mtdnr, mnt);
			}
		}
	}

	/* Try the old way - the hack where we allowed users to mount
	   /dev/mtdblock$(n) but didn't actually _use_ the blkdev */

	err = path_lookup(dev_name, LOOKUP_FOLLOW, &nd);

	D1(printk(KERN_DEBUG "jffs2_get_sb(): path_lookup() returned %d, inode %p\n",
		  err, nd.dentry->d_inode));

	if (err)
		return err;

	err = -EINVAL;

	if (!S_ISBLK(nd.dentry->d_inode->i_mode))
		goto out;

	if (nd.mnt->mnt_flags & MNT_NODEV) {
		err = -EACCES;
		goto out;
	}

	if (imajor(nd.dentry->d_inode) != MTD_BLOCK_MAJOR) {
		if (!(flags & MS_SILENT))
			printk(KERN_NOTICE "Attempt to mount non-MTD device \"%s\" as JFFS2\n",
			       dev_name);
		goto out;
	}

	mtdnr = iminor(nd.dentry->d_inode);
	path_release(&nd);

	return jffs2_get_sb_mtdnr(fs_type, flags, dev_name, data, mtdnr, mnt);

out:
	path_release(&nd);
	return err;
}
Пример #4
0
/*
 * parse the dirs= mount argument
 *
 * We don't need to lock the superblock private data's rwsem, as we get
 * called only by unionfs_read_super - it is still a long time before anyone
 * can even get a reference to us.
 */
static int parse_dirs_option(struct super_block *sb, struct unionfs_dentry_info
                             *lower_root_info, char *options)
{
    struct nameidata nd;
    char *name;
    int err = 0;
    int branches = 1;
    int bindex = 0;
    int i = 0;
    int j = 0;
    struct dentry *dent1;
    struct dentry *dent2;

    if (options[0] == '\0') {
        printk(KERN_ERR "unionfs: no branches specified\n");
        err = -EINVAL;
        goto out;
    }

    /*
     * Each colon means we have a separator, this is really just a rough
     * guess, since strsep will handle empty fields for us.
     */
    for (i = 0; options[i]; i++)
        if (options[i] == ':')
            branches++;

    /* allocate space for underlying pointers to lower dentry */
    UNIONFS_SB(sb)->data =
        kcalloc(branches, sizeof(struct unionfs_data), GFP_KERNEL);
    if (unlikely(!UNIONFS_SB(sb)->data)) {
        err = -ENOMEM;
        goto out;
    }

    lower_root_info->lower_paths =
        kcalloc(branches, sizeof(struct path), GFP_KERNEL);
    if (unlikely(!lower_root_info->lower_paths)) {
        err = -ENOMEM;
        goto out;
    }

    /* now parsing a string such as "b1:b2=rw:b3=ro:b4" */
    branches = 0;
    while ((name = strsep(&options, ":")) != NULL) {
        int perms;
        char *mode = strchr(name, '=');

        if (!name)
            continue;
        if (!*name) {	/* bad use of ':' (extra colons) */
            err = -EINVAL;
            goto out;
        }

        branches++;

        /* strip off '=' if any */
        if (mode)
            *mode++ = '\0';

        err = parse_branch_mode(mode, &perms);
        if (err) {
            printk(KERN_ERR "unionfs: invalid mode \"%s\" for "
                   "branch %d\n", mode, bindex);
            goto out;
        }
        /* ensure that leftmost branch is writeable */
        if (!bindex && !(perms & MAY_WRITE)) {
            printk(KERN_ERR "unionfs: leftmost branch cannot be "
                   "read-only (use \"-o ro\" to create a "
                   "read-only union)\n");
            err = -EINVAL;
            goto out;
        }

        err = path_lookup(name, LOOKUP_FOLLOW, &nd);
        if (err) {
            printk(KERN_ERR "unionfs: error accessing "
                   "lower directory '%s' (error %d)\n",
                   name, err);
            goto out;
        }

        err = check_branch(&nd);
        if (err) {
            printk(KERN_ERR "unionfs: lower directory "
                   "'%s' is not a valid branch\n", name);
            path_release(&nd);
            goto out;
        }

        lower_root_info->lower_paths[bindex].dentry = nd.dentry;
        lower_root_info->lower_paths[bindex].mnt = nd.mnt;

        set_branchperms(sb, bindex, perms);
        set_branch_count(sb, bindex, 0);
        new_branch_id(sb, bindex);

        if (lower_root_info->bstart < 0)
            lower_root_info->bstart = bindex;
        lower_root_info->bend = bindex;
        bindex++;
    }

    if (branches == 0) {
        printk(KERN_ERR "unionfs: no branches specified\n");
        err = -EINVAL;
        goto out;
    }

    BUG_ON(branches != (lower_root_info->bend + 1));

    /*
     * Ensure that no overlaps exist in the branches.
     *
     * This test is required because the Linux kernel has no support
     * currently for ensuring coherency between stackable layers and
     * branches.  If we were to allow overlapping branches, it would be
     * possible, for example, to delete a file via one branch, which
     * would not be reflected in another branch.  Such incoherency could
     * lead to inconsistencies and even kernel oopses.  Rather than
     * implement hacks to work around some of these cache-coherency
     * problems, we prevent branch overlapping, for now.  A complete
     * solution will involve proper kernel/VFS support for cache
     * coherency, at which time we could safely remove this
     * branch-overlapping test.
     */
    for (i = 0; i < branches; i++) {
        dent1 = lower_root_info->lower_paths[i].dentry;
        for (j = i + 1; j < branches; j++) {
            dent2 = lower_root_info->lower_paths[j].dentry;
            if (is_branch_overlap(dent1, dent2)) {
                printk(KERN_ERR "unionfs: branches %d and "
                       "%d overlap\n", i, j);
                err = -EINVAL;
                goto out;
            }
        }
    }

out:
    if (err) {
        for (i = 0; i < branches; i++)
            if (lower_root_info->lower_paths[i].dentry) {
                dput(lower_root_info->lower_paths[i].dentry);
                /* initialize: can't use unionfs_mntput here */
                mntput(lower_root_info->lower_paths[i].mnt);
            }

        kfree(lower_root_info->lower_paths);
        kfree(UNIONFS_SB(sb)->data);

        /*
         * MUST clear the pointers to prevent potential double free if
         * the caller dies later on
         */
        lower_root_info->lower_paths = NULL;
        UNIONFS_SB(sb)->data = NULL;
    }
    return err;
}
Пример #5
0
/* If times==NULL, set access and modification to current time,
 * must be owner or have write permission.
 * Else, update from *times, must be owner or super user.
 */
long do_utimes(int dfd, char __user *filename, struct timespec *times, int flags)
{
	int error;
	struct nameidata nd;
	struct dentry *dentry;
	struct inode *inode;
	struct iattr newattrs;
	struct file *f = NULL;

	error = -EINVAL;
	if (times && (!nsec_valid(times[0].tv_nsec) ||
		      !nsec_valid(times[1].tv_nsec))) {
		goto out;
	}

	if (flags & ~AT_SYMLINK_NOFOLLOW)
		goto out;

	if (filename == NULL && dfd != AT_FDCWD) {
		error = -EINVAL;
		if (flags & AT_SYMLINK_NOFOLLOW)
			goto out;

		error = -EBADF;
		f = fget(dfd);
		if (!f)
			goto out;
		dentry = f->f_path.dentry;
	} else {
		error = __user_walk_fd(dfd, filename, (flags & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW, &nd);
		if (error)
			goto out;

		dentry = nd.dentry;
	}

	inode = dentry->d_inode;

	error = -EROFS;
	if (IS_RDONLY(inode))
		goto dput_and_out;

	/* Don't worry, the checks are done in inode_change_ok() */
	newattrs.ia_valid = ATTR_CTIME | ATTR_MTIME | ATTR_ATIME;
	if (times) {
		error = -EPERM;
                if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
                        goto dput_and_out;

		if (times[0].tv_nsec == UTIME_OMIT)
			newattrs.ia_valid &= ~ATTR_ATIME;
		else if (times[0].tv_nsec != UTIME_NOW) {
			newattrs.ia_atime.tv_sec = times[0].tv_sec;
			newattrs.ia_atime.tv_nsec = times[0].tv_nsec;
			newattrs.ia_valid |= ATTR_ATIME_SET;
		}

		if (times[1].tv_nsec == UTIME_OMIT)
			newattrs.ia_valid &= ~ATTR_MTIME;
		else if (times[1].tv_nsec != UTIME_NOW) {
			newattrs.ia_mtime.tv_sec = times[1].tv_sec;
			newattrs.ia_mtime.tv_nsec = times[1].tv_nsec;
			newattrs.ia_valid |= ATTR_MTIME_SET;
		}
	} else {
		error = -EACCES;
                if (IS_IMMUTABLE(inode))
                        goto dput_and_out;

		if (!is_owner_or_cap(inode)) {
			if (f) {
				if (!(f->f_mode & FMODE_WRITE))
					goto dput_and_out;
			} else {
				error = vfs_permission(&nd, MAY_WRITE);
				if (error)
					goto dput_and_out;
			}
		}
	}
	mutex_lock(&inode->i_mutex);
	error = notify_change(dentry, &newattrs);
	mutex_unlock(&inode->i_mutex);
dput_and_out:
	if (f)
		fput(f);
	else
		path_release(&nd);
out:
	return error;
}
Пример #6
0
static void *cifs_dfs_follow_mountpoint(struct dentry *dentry,
					struct nameidata *nd)
{
	DFS_INFO3_PARAM *referrals = NULL;
	unsigned int num_referrals = 0;
	struct cifs_sb_info *cifs_sb;
	struct cifsSesInfo *ses;
	char *full_path = NULL;
	int xid, i;
	int rc = 0;
	struct vfsmount *mnt = ERR_PTR(-ENOENT);

	cFYI(1, ("in %s", __FUNCTION__ ));
	BUG_ON(IS_ROOT(dentry));

	xid = GetXid();

	dput(nd->dentry);
	nd->dentry = dget(dentry);
	if (d_mountpoint(nd->dentry)) {
		goto out_follow;
	}

	if ( dentry->d_inode == NULL ) {
		rc = -EINVAL;
		goto out_err;
	}

	cifs_sb = CIFS_SB(dentry->d_inode->i_sb);
	ses = cifs_sb->tcon->ses;

	if ( !ses ) {
		rc = -EINVAL;
		goto out_err;
	}

	full_path = build_full_dfs_path_from_dentry(dentry);
	if ( full_path == NULL ) {
		rc = -ENOMEM;
		goto out_err;
	}

	rc = get_dfs_path(xid, ses , full_path, cifs_sb->local_nls,
			&num_referrals, &referrals,
			cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR);

	for (i = 0; i < num_referrals; i++) {
		cFYI(1, ("%s: ref path: %s", __FUNCTION__,
			 referrals[i].path_name));
		cFYI(1, ("%s: node path: %s", __FUNCTION__,
			 referrals[i].node_name ));
		cFYI(1, ("%s: fl: %hd, serv_type: %hd, ref_flags: %hd, "
			 "path_consumed: %hd", __FUNCTION__,
			 referrals[i].flags, referrals[i].server_type,
			 referrals[i].ref_flag, referrals[i].PathConsumed));

		/* connect to storage node */
		if (referrals[i].flags & DFSREF_STORAGE_SERVER) {
			int len;
			len = strlen(referrals[i].node_name);
			if (len < 2) {
				cERROR(1, ("%s: Net Address path too short: %s",
					__FUNCTION__, referrals[i].node_name ));
				rc = -EINVAL;
				goto out_err;
			} else {
				mnt = cifs_dfs_do_refmount(nd->mnt,
						nd->dentry,
						referrals[i].node_name);
				cFYI(1, ("%s: cifs_dfs_do_refmount:%s , mnt:%p",
					 __FUNCTION__,
					 referrals[i].node_name, mnt));
				if ( !rc ) {
					/* have server so stop here & return */
					break;
				}
			}
		}
	}

	rc = PTR_ERR(mnt);
	if (IS_ERR(mnt))
		goto out_err;

	mntget(mnt);
	rc = do_add_mount(mnt, nd, nd->mnt->mnt_flags,
			  &cifs_dfs_automount_list);
	if (rc < 0) {
		mntput(mnt);
		if (rc == -EBUSY)
			goto out_follow;
		goto out_err;
	}
	mntput(nd->mnt);
	dput(nd->dentry);
	nd->mnt = mnt;
	nd->dentry = dget(mnt->mnt_root);

out:
	FreeXid(xid);
	free_dfs_info_array(referrals, num_referrals);
	cFYI(1, ("leaving %s", __FUNCTION__ ));
	return ERR_PTR(rc);
out_err:
	if ( full_path ) kfree(full_path);
	path_release(nd);
	goto out;
out_follow:
	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
		;
	rc = 0;
	goto out;
}
Пример #7
0
/* given a path: write a close record and cancel an LML record, finally
   call truncate LML.  Lento is doing this so it goes in with uid/gid's 
   root. 
*/ 
int lento_cancel_lml(char *path, 
                     __u64 lml_offset, 
                     __u64 remote_ino, 
                     __u32 remote_generation,
                     __u32 remote_version, 
                     struct lento_vfs_context *info)
{
        struct nameidata nd;
        struct rec_info rec;
        struct dentry *dentry;
        int error;
        struct presto_file_set *fset;
        void *handle; 
        struct presto_version new_ver;
        ENTRY;


        error = presto_walk(path, &nd);
        if (error) {
                EXIT;
                return error;
        }
        dentry = nd.dentry;

        error = -ENXIO;
        if ( !presto_ispresto(dentry->d_inode) ) {
                EXIT;
                goto out_cancel_lml;
        }
        
        fset = presto_fset(dentry);

        error=-EINVAL;
        if (fset==NULL) {
                CERROR("No fileset!\n");
                EXIT;
                goto out_cancel_lml;
        }
        
        /* this only requires a transaction below which is automatic */
        handle = presto_trans_start(fset, dentry->d_inode, PRESTO_OP_RELEASE); 
        if ( IS_ERR(handle) ) {
                error = -ENOMEM; 
                EXIT; 
                goto out_cancel_lml; 
        } 
        
        if (info->flags & LENTO_FL_CANCEL_LML) {
                error = presto_clear_lml_close(fset, lml_offset);
                if ( error ) {
                        presto_trans_commit(fset, handle);
                        EXIT; 
                        goto out_cancel_lml;
                }
        }


        if (info->flags & LENTO_FL_WRITE_KML) {
                struct file file;
                file.private_data = NULL;
                file.f_dentry = dentry; 
                presto_getversion(&new_ver, dentry->d_inode);
                error = presto_journal_close(&rec, fset, &file, dentry, 
                                             &new_ver);
                if ( error ) {
                        EXIT; 
                        presto_trans_commit(fset, handle);
                        goto out_cancel_lml;
                }
        }

        if (info->flags & LENTO_FL_WRITE_EXPECT) {
                error = presto_write_last_rcvd(&rec, fset, info); 
                if ( error < 0 ) {
                        EXIT; 
                        presto_trans_commit(fset, handle);
                        goto out_cancel_lml;
                }
        }

        presto_trans_commit(fset, handle);

        if (info->flags & LENTO_FL_CANCEL_LML) {
            presto_truncate_lml(fset); 
        }
                

 out_cancel_lml:
        EXIT;
        path_release(&nd); 
        return error;
}       
Пример #8
0
static noinline_for_stack
struct dentry *decode_by_path(struct super_block *sb, aufs_bindex_t bindex,
			      ino_t ino, __u32 *fh, int fh_len,
			      struct au_nfsd_si_lock *nsi_lock)
{
	struct dentry *dentry, *h_parent, *root;
	struct super_block *h_sb;
	char *pathname, *p;
	struct vfsmount *h_mnt;
	struct au_branch *br;
	int err;
	struct nameidata nd;
	struct path path;

	LKTRTrace("b%d\n", bindex);
	SiMustAnyLock(sb);

	br = au_sbr(sb, bindex);
	/* au_br_get(br); */
	h_mnt = br->br_mnt;
	h_sb = h_mnt->mnt_sb;
	LKTRTrace("%s, h_decode_fh\n", au_sbtype(h_sb));
	h_parent = au_call_decode_fh(h_mnt, fh + Fh_tail, fh_len - Fh_tail,
				     fh[Fh_h_type], h_acceptable,
				     /*context*/NULL);
	dentry = h_parent;
	if (unlikely(!h_parent || IS_ERR(h_parent))) {
		AuWarn1("%s decode_fh failed, %ld\n",
			au_sbtype(h_sb), PTR_ERR(h_parent));
		goto out;
	}
	dentry = NULL;
	if (unlikely(au_test_anon(h_parent))) {
		AuWarn1("%s decode_fh returned a disconnected dentry\n",
			au_sbtype(h_sb));
		goto out_h_parent;
	}

	dentry = ERR_PTR(-ENOMEM);
	pathname = (void *)__get_free_page(GFP_NOFS);
	if (unlikely(!pathname))
		goto out_h_parent;

	root = sb->s_root;
	path.mnt = h_mnt;
	di_read_lock_parent(root, !AuLock_IR);
	path.dentry = au_h_dptr(root, bindex);
	di_read_unlock(root, !AuLock_IR);
	p = au_build_path(h_parent, &path, pathname, PAGE_SIZE, sb);
	dentry = (void *)p;
	if (IS_ERR(p))
		goto out_pathname;

	LKTRTrace("%s\n", p);
	si_read_unlock(sb);
	err = vfsub_path_lookup(p, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd);
	dentry = ERR_PTR(err);
	if (unlikely(err))
		goto out_relock;

	dentry = ERR_PTR(-ENOENT);
	AuDebugOn(au_test_anon(nd.dentry));
	if (unlikely(!nd.dentry->d_inode))
		goto out_nd;

	if (ino != nd.dentry->d_inode->i_ino) {
		path.mnt = nd.mnt;
		path.dentry = nd.dentry;
		dentry = au_lkup_by_ino(&path, ino, /*nsi_lock*/NULL);
	} else
		dentry = dget(nd.dentry);

 out_nd:
	path_release(&nd);
 out_relock:
	if (unlikely(si_nfsd_read_lock(sb, nsi_lock) < 0))
		if (!IS_ERR(dentry)) {
			dput(dentry);
			dentry = ERR_PTR(-ESTALE);
		}
 out_pathname:
	free_page((unsigned long)pathname);
 out_h_parent:
	dput(h_parent);
 out:
	/* au_br_put(br); */
	AuTraceErrPtr(dentry);
	return dentry;
}
Пример #9
0
int unionfs_ioctl_addbranch(struct inode *inode, unsigned int cmd,
			    unsigned long arg)
{
	int err;
	struct unionfs_addbranch_args *addargs = NULL;
	struct nameidata nd;
	char *path = NULL;
	int gen;
	int i;

	int pobjects;

	struct unionfs_usi_data *new_data = NULL;
	struct dentry **new_udi_dentry = NULL;
	struct inode **new_uii_inode = NULL;

	struct dentry *root = NULL;
	struct dentry *hidden_root = NULL;

	print_entry_location();

	err = -ENOMEM;
	addargs = KMALLOC(sizeof(struct unionfs_addbranch_args), GFP_KERNEL);
	if (!addargs)
		goto out;

	err = -EFAULT;
	if (copy_from_user
	    (addargs, (const void __user *)arg,
	     sizeof(struct unionfs_addbranch_args)))
		goto out;

	err = -EINVAL;
	if (addargs->ab_perms & ~(MAY_READ | MAY_WRITE | MAY_NFSRO))
		goto out;
	if (!(addargs->ab_perms & MAY_READ))
		goto out;

	err = -E2BIG;
	if (sbend(inode->i_sb) > FD_SETSIZE)
		goto out;

	err = -ENOMEM;
	if (!(path = getname((const char __user *)addargs->ab_path)))
		goto out;

	err = path_lookup(path, LOOKUP_FOLLOW, &nd);

	RECORD_PATH_LOOKUP(&nd);
	if (err)
		goto out;
	if ((err = check_branch(&nd))) {
		path_release(&nd);
		RECORD_PATH_RELEASE(&nd);
		goto out;
	}

	unionfs_write_lock(inode->i_sb);
	lock_dentry(inode->i_sb->s_root);

	root = inode->i_sb->s_root;
	for (i = dbstart(inode->i_sb->s_root); i <= dbend(inode->i_sb->s_root);
	     i++) {
		hidden_root = dtohd_index(root, i);
		if (is_branch_overlap(hidden_root, nd.dentry)) {
			err = -EINVAL;
			goto out;
		}
	}

	err = -EINVAL;
	if (addargs->ab_branch < 0
	    || (addargs->ab_branch > (sbend(inode->i_sb) + 1)))
		goto out;

	if ((err = newputmap(inode->i_sb)))
		goto out;

	stopd(inode->i_sb)->b_end++;
	dtopd(inode->i_sb->s_root)->udi_bcount++;
	set_dbend(inode->i_sb->s_root, dbend(inode->i_sb->s_root) + 1);
	itopd(inode->i_sb->s_root->d_inode)->b_end++;

	atomic_inc(&stopd(inode->i_sb)->usi_generation);
	gen = atomic_read(&stopd(inode->i_sb)->usi_generation);

	pobjects = sbend(inode->i_sb) + 1;

	/* Reallocate the dynamic structures. */
	new_data = alloc_new_data(pobjects);
	new_udi_dentry = alloc_new_dentries(pobjects);
	new_uii_inode = KZALLOC(sizeof(struct inode *) * pobjects, GFP_KERNEL);

	if (!new_udi_dentry || !new_uii_inode || !new_data) {
		err = -ENOMEM;
		goto out;
	}

	/* Copy the in-place values to our new structure. */
	for (i = 0; i < addargs->ab_branch; i++) {
		atomic_set(&(new_data[i].sbcount),
			   branch_count(inode->i_sb, i));

		new_data[i].branchperms = branchperms(inode->i_sb, i);
		new_data[i].hidden_mnt = stohiddenmnt_index(inode->i_sb, i);
		new_data[i].sb = stohs_index(inode->i_sb, i);

		new_udi_dentry[i] = dtohd_index(inode->i_sb->s_root, i);
		new_uii_inode[i] = itohi_index(inode->i_sb->s_root->d_inode, i);
	}

	/* Shift the ends to the right (only handle reallocated bits). */
	for (i = sbend(inode->i_sb) - 1; i >= (int)addargs->ab_branch; i--) {
		int j = i + 1;
		int pmindex;

		atomic_set(&new_data[j].sbcount, branch_count(inode->i_sb, i));

		new_data[j].branchperms = branchperms(inode->i_sb, i);
		new_data[j].hidden_mnt = stohiddenmnt_index(inode->i_sb, i);
		new_data[j].sb = stohs_index(inode->i_sb, i);
		new_udi_dentry[j] = dtohd_index(inode->i_sb->s_root, i);
		new_uii_inode[j] = itohi_index(inode->i_sb->s_root->d_inode, i);

		/* Update the newest putmap, so it is correct for later. */
		pmindex = stopd(inode->i_sb)->usi_lastputmap;
		pmindex -= stopd(inode->i_sb)->usi_firstputmap;
		stopd(inode->i_sb)->usi_putmaps[pmindex]->map[i] = j;

	}

	/* Now we can free the old ones. */
	KFREE(dtopd(inode->i_sb->s_root)->udi_dentry);
	KFREE(itopd(inode->i_sb->s_root->d_inode)->uii_inode);
	KFREE(stopd(inode->i_sb)->usi_data);

	/* Update the real pointers. */
	dtohd_ptr(inode->i_sb->s_root) = new_udi_dentry;
	itohi_ptr(inode->i_sb->s_root->d_inode) = new_uii_inode;
	stopd(inode->i_sb)->usi_data = new_data;

	/* Re-NULL the new ones so we don't try to free them. */
	new_data = NULL;
	new_udi_dentry = NULL;
	new_uii_inode = NULL;

	/* Put the new dentry information into it's slot. */
	set_dtohd_index(inode->i_sb->s_root, addargs->ab_branch, nd.dentry);
	set_itohi_index(inode->i_sb->s_root->d_inode, addargs->ab_branch,
			IGRAB(nd.dentry->d_inode));
	set_branchperms(inode->i_sb, addargs->ab_branch, addargs->ab_perms);
	set_branch_count(inode->i_sb, addargs->ab_branch, 0);
	set_stohiddenmnt_index(inode->i_sb, addargs->ab_branch, nd.mnt);
	set_stohs_index(inode->i_sb, addargs->ab_branch, nd.dentry->d_sb);

	atomic_set(&dtopd(inode->i_sb->s_root)->udi_generation, gen);
	atomic_set(&itopd(inode->i_sb->s_root->d_inode)->uii_generation, gen);

	fixputmaps(inode->i_sb);

      out:
	unlock_dentry(inode->i_sb->s_root);
	unionfs_write_unlock(inode->i_sb);

	KFREE(new_udi_dentry);
	KFREE(new_uii_inode);
	KFREE(new_data);
	KFREE(addargs);
	if (path)
		putname(path);

	print_exit_status(err);

	return err;
}
Пример #10
0
/*
 * Safely creates '/proc/systemtap' (if necessary) and
 * '/proc/systemtap/{module_name}'.
 *
 * NB: this function is suitable to call from early in the the
 * module-init function, and doesn't rely on any other facilities
 * in our runtime.  PR19833.  See also PR15408.
 */
static int _stp_mkdir_proc_module(void)
{	
	int found = 0;
	static char proc_root_name[STP_MODULE_NAME_LEN + sizeof("systemtap/")];
#if defined(STAPCONF_PATH_LOOKUP) || defined(STAPCONF_KERN_PATH_PARENT)
	struct nameidata nd;
#else  /* STAPCONF_VFS_PATH_LOOKUP or STAPCONF_KERN_PATH */
	struct path path;
#if defined(STAPCONF_VFS_PATH_LOOKUP)
	struct vfsmount *mnt;
#endif
	int rc;
#endif	/* STAPCONF_VFS_PATH_LOOKUP or STAPCONF_KERN_PATH */

        if (_stp_proc_root != NULL)
		return 0;

#if defined(STAPCONF_PATH_LOOKUP) || defined(STAPCONF_KERN_PATH_PARENT)
	/* Why "/proc/systemtap/foo"?  kern_path_parent() is basically
	 * the same thing as calling the old path_lookup() with flags
	 * set to LOOKUP_PARENT, which means to look up the parent of
	 * the path, which in this case is "/proc/systemtap". */
	if (! kern_path_parent("/proc/systemtap/foo", &nd)) {
		found = 1;
#ifdef STAPCONF_NAMEIDATA_CLEANUP
		path_put(&nd.path);
#else  /* !STAPCONF_NAMEIDATA_CLEANUP */
		path_release(&nd);
#endif	/* !STAPCONF_NAMEIDATA_CLEANUP */
	}

#elif defined(STAPCONF_KERN_PATH)
	/* Prefer kern_path() over vfs_path_lookup(), since on some
	 * kernels the declaration for vfs_path_lookup() was moved to
	 * a private header. */

	/* See if '/proc/systemtap' exists. */
	rc = kern_path("/proc/systemtap", 0, &path);
	if (rc == 0) {
		found = 1;
		path_put (&path);
	}

#else  /* STAPCONF_VFS_PATH_LOOKUP */
	/* See if '/proc/systemtap' exists. */
	if (! init_pid_ns.proc_mnt) {
		errk("Unable to create '/proc/systemap':"
		     " '/proc' doesn't exist.\n");
		goto done;
	}
	mnt = init_pid_ns.proc_mnt;
	rc = vfs_path_lookup(mnt->mnt_root, mnt, "systemtap", 0, &path);
	if (rc == 0) {
		found = 1;
		path_put (&path);
	}
#endif	/* STAPCONF_VFS_PATH_LOOKUP */

	/* If we couldn't find "/proc/systemtap", create it. */
	if (!found) {
		struct proc_dir_entry *de;

		de = proc_mkdir ("systemtap", NULL);
		if (de == NULL) {
			errk("Unable to create '/proc/systemap':"
			     " proc_mkdir failed.\n");
			goto done;
 		}
	}

	/* Create the "systemtap/{module_name} directory in procfs. */
	strlcpy(proc_root_name, "systemtap/", sizeof(proc_root_name));
	strlcat(proc_root_name, THIS_MODULE->name, sizeof(proc_root_name));
	_stp_proc_root = proc_mkdir(proc_root_name, NULL);
#ifdef STAPCONF_PROCFS_OWNER
	if (_stp_proc_root != NULL)
		_stp_proc_root->owner = THIS_MODULE;
#endif
	if (_stp_proc_root == NULL)
		errk("Unable to create '/proc/systemap/%s':"
		     " proc_mkdir failed.\n", THIS_MODULE->name);

done:
	return (_stp_proc_root) ? 0 : -EINVAL;
}
Пример #11
0
static int parse_dirs_option(struct super_block *sb, struct unionfs_dentry_info
			     *hidden_root_info, char *options)
{
	struct nameidata nd;
	char *name;
	int err = 0;
	int branches = 1;
	int bindex = 0;
	int i = 0;
	int j = 0;

	struct dentry *dent1 = NULL;
	struct dentry *dent2 = NULL;

	if (options[0] == '\0') {
		printk(KERN_WARNING "unionfs: no branches specified\n");
		err = -EINVAL;
		goto out;
	}

	/* Each colon means we have a separator, this is really just a rough
	 * guess, since strsep will handle empty fields for us. */
	for (i = 0; options[i]; i++) {
		if (options[i] == ':')
			branches++;
	}

	/* allocate space for underlying pointers to hidden dentry */
	if (!(stopd(sb)->usi_data = alloc_new_data(branches))) {
		err = -ENOMEM;
		goto out;
	}

	if (!(hidden_root_info->udi_dentry = alloc_new_dentries(branches))) {
		err = -ENOMEM;
		goto out;
	}

	/* now parsing the string b1:b2=rw:b3=ro:b4 */
	branches = 0;
	while ((name = strsep(&options, ":")) != NULL) {
		int perms;

		if (!*name)
			continue;

		branches++;

		/* strip off =rw or =ro if it is specified. */
		perms = parse_branch_mode(name);
		if (!bindex && !(perms & MAY_WRITE)) {
			err = -EINVAL;
			goto out;
		}

		fist_dprint(4, "unionfs: using directory: %s (%c%c%c)\n",
			    name, perms & MAY_READ ? 'r' : '-',
			    perms & MAY_WRITE ? 'w' : '-',
			    perms & MAY_NFSRO ? 'n' : '-');

		err = path_lookup(name, LOOKUP_FOLLOW, &nd);
		RECORD_PATH_LOOKUP(&nd);
		if (err) {
			printk(KERN_WARNING "unionfs: error accessing "
			       "hidden directory '%s' (error %d)\n", name, err);
			goto out;
		}

		if ((err = check_branch(&nd))) {
			printk(KERN_WARNING "unionfs: hidden directory "
			       "'%s' is not a valid branch\n", name);
			path_release(&nd);
			RECORD_PATH_RELEASE(&nd);
			goto out;
		}

		hidden_root_info->udi_dentry[bindex] = nd.dentry;

		set_stohiddenmnt_index(sb, bindex, nd.mnt);
		set_branchperms(sb, bindex, perms);
		set_branch_count(sb, bindex, 0);

		if (hidden_root_info->udi_bstart < 0)
			hidden_root_info->udi_bstart = bindex;
		hidden_root_info->udi_bend = bindex;
		bindex++;
	}

	if (branches == 0) {
		printk(KERN_WARNING "unionfs: no branches specified\n");
		err = -EINVAL;
		goto out;
	}

	BUG_ON(branches != (hidden_root_info->udi_bend + 1));

	/* ensure that no overlaps exist in the branches */
	for (i = 0; i < branches; i++) {
		for (j = i + 1; j < branches; j++) {
			dent1 = hidden_root_info->udi_dentry[i];
			dent2 = hidden_root_info->udi_dentry[j];

			if (is_branch_overlap(dent1, dent2)) {
				goto out_overlap;
			}
		}
	}

      out_overlap:

	if (i != branches) {
		printk(KERN_WARNING "unionfs: branches %d and %d overlap\n", i,
		       j);
		err = -EINVAL;
		goto out;
	}

      out:
	if (err) {
		for (i = 0; i < branches; i++) {
			if (hidden_root_info->udi_dentry[i])
				DPUT(hidden_root_info->udi_dentry[i]);
		}

		KFREE(hidden_root_info->udi_dentry);
		KFREE(stopd(sb)->usi_data);

		/* MUST clear the pointers to prevent potential double free if
		 * the caller dies later on
		 */
		hidden_root_info->udi_dentry = NULL;
		stopd(sb)->usi_data = NULL;
	}
	return err;
}
Пример #12
0
static long do_sys_truncate(const char __user * path, loff_t length)
{
	struct nameidata nd;
	struct inode * inode;
	int error;

	error = -EINVAL;
	if (length < 0)	/* sorry, but loff_t says... */
		goto out;

	error = user_path_walk(path, &nd);
	if (error)
		goto out;
	inode = nd.dentry->d_inode;

	/* For directories it's -EISDIR, for other non-regulars - -EINVAL */
	error = -EISDIR;
	if (S_ISDIR(inode->i_mode))
		goto dput_and_out;

	error = -EINVAL;
	if (!S_ISREG(inode->i_mode))
		goto dput_and_out;

	error = vfs_permission(&nd, MAY_WRITE);
	if (error)
		goto dput_and_out;

	error = -EROFS;
	if (IS_RDONLY(inode))
		goto dput_and_out;

	error = -EPERM;
	if (IS_IMMUTABLE(inode) || IS_APPEND(inode))
		goto dput_and_out;

	error = get_write_access(inode);
	if (error)
		goto dput_and_out;

	/*
	 * Make sure that there are no leases.  get_write_access() protects
	 * against the truncate racing with a lease-granting setlease().
	 */
	error = break_lease(inode, FMODE_WRITE);
	if (error)
		goto put_write_and_out;

	error = locks_verify_truncate(inode, NULL, length);
	if (!error) {
		DQUOT_INIT(inode);
		error = do_truncate(nd.dentry, nd.mnt, length, 0, NULL);
	}

put_write_and_out:
	put_write_access(inode);
dput_and_out:
	path_release(&nd);
out:
	return error;
}