void AsyncShaderCompiler::WorkerThreadRun() { std::unique_lock<std::mutex> pending_lock(m_pending_work_lock); while (!m_exit_flag.IsSet()) { m_worker_thread_wake.wait(pending_lock); while (!m_pending_work.empty() && !m_exit_flag.IsSet()) { m_busy_workers++; auto iter = m_pending_work.begin(); WorkItemPtr item(std::move(iter->second)); m_pending_work.erase(iter); pending_lock.unlock(); if (item->Compile()) { std::lock_guard<std::mutex> completed_guard(m_completed_work_lock); m_completed_work.push_back(std::move(item)); } pending_lock.lock(); m_busy_workers--; } } }
void EpidemicRoutingExtension::eventTransferSlotChanged(const dtn::data::EID &peer) throw () { ibrcommon::MutexLock pending_lock(_pending_mutex); if (_pending_peers.find(peer) != _pending_peers.end()) { _pending_peers.erase(peer); eventDataChanged(peer); } }
// increase number of concurrent queries void Engine::EngineLock::IncreaseQueryCount() { // lock update pending boost::interprocess::scoped_lock<boost::interprocess::named_mutex> pending_lock( barrier.pending_update_mutex); // lock query boost::interprocess::scoped_lock<boost::interprocess::named_mutex> query_lock( barrier.query_mutex); // unlock update pending pending_lock.unlock(); // increment query count ++(barrier.number_of_queries); }
// increase number of concurrent queries void OSRM_impl::increase_concurrent_query_count() { if (!barrier) { return; } // lock update pending boost::interprocess::scoped_lock<boost::interprocess::named_mutex> pending_lock( barrier->pending_update_mutex); // lock query boost::interprocess::scoped_lock<boost::interprocess::named_mutex> query_lock( barrier->query_mutex); // unlock update pending pending_lock.unlock(); // increment query count ++(barrier->number_of_queries); (static_cast<SharedDataFacade<QueryEdge::EdgeData> *>(query_data_facade)) ->CheckAndReloadFacade(); }
void EpidemicRoutingExtension::run() throw () { class BundleFilter : public dtn::storage::BundleSelector { public: BundleFilter(const NeighborDatabase::NeighborEntry &entry, const std::set<dtn::core::Node> &neighbors, const dtn::core::FilterContext &context, const dtn::net::ConnectionManager::protocol_list &plist) : _entry(entry), _neighbors(neighbors), _plist(plist), _context(context) {}; virtual ~BundleFilter() {}; virtual dtn::data::Size limit() const throw () { return _entry.getFreeTransferSlots(); }; virtual bool addIfSelected(dtn::storage::BundleResult &result, const dtn::data::MetaBundle &meta) const throw (dtn::storage::BundleSelectorException) { // check Scope Control Block - do not forward bundles with hop limit == 0 if (meta.hopcount == 0) { return false; } // do not forward local bundles if ((meta.destination.getNode() == dtn::core::BundleCore::local) && meta.get(dtn::data::PrimaryBlock::DESTINATION_IS_SINGLETON) ) { return false; } // check Scope Control Block - do not forward non-group bundles with hop limit <= 1 if ((meta.hopcount <= 1) && (meta.get(dtn::data::PrimaryBlock::DESTINATION_IS_SINGLETON))) { return false; } // do not forward bundles addressed to this neighbor, // because this is handled by neighbor routing extension if (_entry.eid == meta.destination.getNode()) { return false; } // request limits from neighbor database try { const RoutingLimitations &limits = _entry.getDataset<RoutingLimitations>(); if (meta.get(dtn::data::PrimaryBlock::DESTINATION_IS_SINGLETON)) { // check if the peer accepts bundles for other nodes if (limits.getLimit(RoutingLimitations::LIMIT_LOCAL_ONLY) > 0) return false; } else { // check if destination permits non-singleton bundles if (limits.getLimit(RoutingLimitations::LIMIT_SINGLETON_ONLY) > 0) return false; } // check if the payload is too large for the neighbor if ((limits.getLimit(RoutingLimitations::LIMIT_FOREIGN_BLOCKSIZE) > 0) && ((size_t)limits.getLimit(RoutingLimitations::LIMIT_FOREIGN_BLOCKSIZE) < meta.getPayloadLength())) return false; } catch (const NeighborDatabase::DatasetNotAvailableException&) { } // if this is a singleton bundle ... if (meta.get(dtn::data::PrimaryBlock::DESTINATION_IS_SINGLETON)) { const dtn::core::Node n(meta.destination.getNode()); // do not forward the bundle if the final destination is available if (_neighbors.find(n) != _neighbors.end()) { return false; } } // do not forward bundles already known by the destination // throws BloomfilterNotAvailableException if no filter is available or it is expired try { if (_entry.has(meta, true)) { return false; } } catch (const dtn::routing::NeighborDatabase::BloomfilterNotAvailableException&) { throw dtn::storage::BundleSelectorException(); } // update filter context dtn::core::FilterContext context = _context; context.setMetaBundle(meta); // check bundle filter for each possible path for (dtn::net::ConnectionManager::protocol_list::const_iterator it = _plist.begin(); it != _plist.end(); ++it) { const dtn::core::Node::Protocol &p = (*it); // update context with current protocol context.setProtocol(p); // execute filtering dtn::core::BundleFilter::ACTION ret = dtn::core::BundleCore::getInstance().evaluate(dtn::core::BundleFilter::ROUTING, context); if (ret == dtn::core::BundleFilter::ACCEPT) { // put the selected bundle with targeted interface into the result-set static_cast<RoutingResult&>(result).put(meta, p); return true; } } return false; }; private: const NeighborDatabase::NeighborEntry &_entry; const std::set<dtn::core::Node> &_neighbors; const dtn::net::ConnectionManager::protocol_list &_plist; const dtn::core::FilterContext &_context; }; // list for bundles RoutingResult list; // set of known neighbors std::set<dtn::core::Node> neighbors; while (true) { try { Task *t = _taskqueue.poll(); std::auto_ptr<Task> killer(t); IBRCOMMON_LOGGER_DEBUG_TAG(EpidemicRoutingExtension::TAG, 50) << "processing task " << t->toString() << IBRCOMMON_LOGGER_ENDL; try { /** * SearchNextBundleTask triggers a search for a bundle to transfer * to another host. This Task is generated by TransferCompleted, TransferAborted * and node events. */ try { SearchNextBundleTask &task = dynamic_cast<SearchNextBundleTask&>(*t); // clear the result list list.clear(); // lock the neighbor database while searching for bundles try { NeighborDatabase &db = (**this).getNeighborDB(); ibrcommon::MutexLock l(db); NeighborDatabase::NeighborEntry &entry = db.get(task.eid, true); // check if enough transfer slots available (threshold reached) if (!entry.isTransferThresholdReached()) throw NeighborDatabase::NoMoreTransfersAvailable(task.eid); if (dtn::daemon::Configuration::getInstance().getNetwork().doPreferDirect()) { // get current neighbor list neighbors = dtn::core::BundleCore::getInstance().getConnectionManager().getNeighbors(); } else { // "prefer direct" option disabled - clear the list of neighbors neighbors.clear(); } // get a list of protocols supported by both, the local BPA and the remote peer const dtn::net::ConnectionManager::protocol_list plist = dtn::core::BundleCore::getInstance().getConnectionManager().getSupportedProtocols(entry.eid); // create a filter context dtn::core::FilterContext context; context.setPeer(entry.eid); context.setRouting(*this); // get the bundle filter of the neighbor const BundleFilter filter(entry, neighbors, context, plist); // some debug output IBRCOMMON_LOGGER_DEBUG_TAG(EpidemicRoutingExtension::TAG, 40) << "search some bundles not known by " << task.eid.getString() << IBRCOMMON_LOGGER_ENDL; // query some unknown bundle from the storage (**this).getSeeker().get(filter, list); } catch (const dtn::storage::BundleSelectorException&) { // query a new summary vector from this neighbor (**this).doHandshake(task.eid); } // send the bundles as long as we have resources for (RoutingResult::const_iterator iter = list.begin(); iter != list.end(); ++iter) { try { // transfer the bundle to the neighbor transferTo(task.eid, (*iter).first, (*iter).second); } catch (const NeighborDatabase::AlreadyInTransitException&) { }; } } catch (const NeighborDatabase::NoMoreTransfersAvailable &ex) { // remember that this peer has pending transfers ibrcommon::MutexLock pending_lock(_pending_mutex); _pending_peers.insert(ex.peer); IBRCOMMON_LOGGER_DEBUG_TAG(TAG, 10) << "task " << t->toString() << " aborted: " << ex.what() << IBRCOMMON_LOGGER_ENDL; } catch (const NeighborDatabase::EntryNotFoundException &ex) { IBRCOMMON_LOGGER_DEBUG_TAG(TAG, 10) << "task " << t->toString() << " aborted: " << ex.what() << IBRCOMMON_LOGGER_ENDL; } catch (const NodeNotAvailableException &ex) { IBRCOMMON_LOGGER_DEBUG_TAG(TAG, 10) << "task " << t->toString() << " aborted: " << ex.what() << IBRCOMMON_LOGGER_ENDL; } catch (const dtn::storage::NoBundleFoundException &ex) { IBRCOMMON_LOGGER_DEBUG_TAG(TAG, 10) << "task " << t->toString() << " aborted: " << ex.what() << IBRCOMMON_LOGGER_ENDL; } catch (const std::bad_cast&) { }; } catch (const ibrcommon::Exception &ex) { IBRCOMMON_LOGGER_DEBUG_TAG(EpidemicRoutingExtension::TAG, 20) << "task failed: " << ex.what() << IBRCOMMON_LOGGER_ENDL; } } catch (const std::exception &ex) { IBRCOMMON_LOGGER_DEBUG_TAG(EpidemicRoutingExtension::TAG, 15) << "terminated due to " << ex.what() << IBRCOMMON_LOGGER_ENDL; return; } yield(); } }
int Storage::Run() { BOOST_ASSERT_MSG(config.IsValid(), "Invalid storage config"); util::LogPolicy::GetInstance().Unmute(); SharedBarriers barrier; #ifdef __linux__ // try to disable swapping on Linux const bool lock_flags = MCL_CURRENT | MCL_FUTURE; if (-1 == mlockall(lock_flags)) { util::SimpleLogger().Write(logWARNING) << "Could not request RAM lock"; } #endif try { boost::interprocess::scoped_lock<boost::interprocess::named_mutex> pending_lock( barrier.pending_update_mutex); } catch (...) { // hard unlock in case of any exception. barrier.pending_update_mutex.unlock(); } // determine segment to use bool segment2_in_use = SharedMemory::RegionExists(LAYOUT_2); const storage::SharedDataType layout_region = [&] { return segment2_in_use ? LAYOUT_1 : LAYOUT_2; }(); const storage::SharedDataType data_region = [&] { return segment2_in_use ? DATA_1 : DATA_2; }(); const storage::SharedDataType previous_layout_region = [&] { return segment2_in_use ? LAYOUT_2 : LAYOUT_1; }(); const storage::SharedDataType previous_data_region = [&] { return segment2_in_use ? DATA_2 : DATA_1; }(); // Allocate a memory layout in shared memory, deallocate previous auto *layout_memory = makeSharedMemory(layout_region, sizeof(SharedDataLayout)); auto shared_layout_ptr = new (layout_memory->Ptr()) SharedDataLayout(); auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::FILE_INDEX_PATH, absolute_file_index_path.string().length() + 1); // collect number of elements to store in shared memory object util::SimpleLogger().Write() << "load names from: " << config.names_data_path; // number of entries in name index boost::filesystem::ifstream name_stream(config.names_data_path, std::ios::binary); if (!name_stream) { throw util::exception("Could not open " + config.names_data_path.string() + " for reading."); } unsigned name_blocks = 0; name_stream.read((char *)&name_blocks, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::NAME_OFFSETS, name_blocks); shared_layout_ptr->SetBlockSize<typename util::RangeTable<16, true>::BlockT>( SharedDataLayout::NAME_BLOCKS, name_blocks); util::SimpleLogger().Write() << "name offsets size: " << name_blocks; BOOST_ASSERT_MSG(0 != name_blocks, "name file broken"); unsigned number_of_chars = 0; name_stream.read((char *)&number_of_chars, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::NAME_CHAR_LIST, number_of_chars); std::vector<std::uint32_t> lane_description_offsets; std::vector<extractor::guidance::TurnLaneType::Mask> lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); shared_layout_ptr->SetBlockSize<std::uint32_t>(SharedDataLayout::LANE_DESCRIPTION_OFFSETS, lane_description_offsets.size()); shared_layout_ptr->SetBlockSize<extractor::guidance::TurnLaneType::Mask>( SharedDataLayout::LANE_DESCRIPTION_MASKS, lane_description_masks.size()); // Loading information for original edges boost::filesystem::ifstream edges_input_stream(config.edges_data_path, std::ios::binary); if (!edges_input_stream) { throw util::exception("Could not open " + config.edges_data_path.string() + " for reading."); } unsigned number_of_original_edges = 0; edges_input_stream.read((char *)&number_of_original_edges, sizeof(unsigned)); // note: settings this all to the same size is correct, we extract them from the same struct shared_layout_ptr->SetBlockSize<NodeID>(SharedDataLayout::VIA_NODE_LIST, number_of_original_edges); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::NAME_ID_LIST, number_of_original_edges); shared_layout_ptr->SetBlockSize<extractor::TravelMode>(SharedDataLayout::TRAVEL_MODE, number_of_original_edges); shared_layout_ptr->SetBlockSize<extractor::guidance::TurnInstruction>( SharedDataLayout::TURN_INSTRUCTION, number_of_original_edges); shared_layout_ptr->SetBlockSize<LaneDataID>(SharedDataLayout::LANE_DATA_ID, number_of_original_edges); shared_layout_ptr->SetBlockSize<EntryClassID>(SharedDataLayout::ENTRY_CLASSID, number_of_original_edges); boost::filesystem::ifstream hsgr_input_stream(config.hsgr_data_path, std::ios::binary); if (!hsgr_input_stream) { throw util::exception("Could not open " + config.hsgr_data_path.string() + " for reading."); } util::FingerPrint fingerprint_valid = util::FingerPrint::GetValid(); util::FingerPrint fingerprint_loaded; hsgr_input_stream.read((char *)&fingerprint_loaded, sizeof(util::FingerPrint)); if (fingerprint_loaded.TestGraphUtil(fingerprint_valid)) { util::SimpleLogger().Write(logDEBUG) << "Fingerprint checked out ok"; } else { util::SimpleLogger().Write(logWARNING) << ".hsgr was prepared with different build. " "Reprocess to get rid of this warning."; } // load checksum unsigned checksum = 0; hsgr_input_stream.read((char *)&checksum, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::HSGR_CHECKSUM, 1); // load graph node size unsigned number_of_graph_nodes = 0; hsgr_input_stream.read((char *)&number_of_graph_nodes, sizeof(unsigned)); BOOST_ASSERT_MSG((0 != number_of_graph_nodes), "number of nodes is zero"); shared_layout_ptr->SetBlockSize<QueryGraph::NodeArrayEntry>(SharedDataLayout::GRAPH_NODE_LIST, number_of_graph_nodes); // load graph edge size unsigned number_of_graph_edges = 0; hsgr_input_stream.read((char *)&number_of_graph_edges, sizeof(unsigned)); // BOOST_ASSERT_MSG(0 != number_of_graph_edges, "number of graph edges is zero"); shared_layout_ptr->SetBlockSize<QueryGraph::EdgeArrayEntry>(SharedDataLayout::GRAPH_EDGE_LIST, number_of_graph_edges); // load rsearch tree size boost::filesystem::ifstream tree_node_file(config.ram_index_path, std::ios::binary); uint32_t tree_size = 0; tree_node_file.read((char *)&tree_size, sizeof(uint32_t)); shared_layout_ptr->SetBlockSize<RTreeNode>(SharedDataLayout::R_SEARCH_TREE, tree_size); // load profile properties shared_layout_ptr->SetBlockSize<extractor::ProfileProperties>(SharedDataLayout::PROPERTIES, 1); // load timestamp size boost::filesystem::ifstream timestamp_stream(config.timestamp_path); std::string m_timestamp; getline(timestamp_stream, m_timestamp); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::TIMESTAMP, m_timestamp.length()); // load core marker size boost::filesystem::ifstream core_marker_file(config.core_data_path, std::ios::binary); if (!core_marker_file) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } uint32_t number_of_core_markers = 0; core_marker_file.read((char *)&number_of_core_markers, sizeof(uint32_t)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::CORE_MARKER, number_of_core_markers); // load coordinate size boost::filesystem::ifstream nodes_input_stream(config.nodes_data_path, std::ios::binary); if (!nodes_input_stream) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } unsigned coordinate_list_size = 0; nodes_input_stream.read((char *)&coordinate_list_size, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<util::Coordinate>(SharedDataLayout::COORDINATE_LIST, coordinate_list_size); // we'll read a list of OSM node IDs from the same data, so set the block size for the same // number of items: shared_layout_ptr->SetBlockSize<std::uint64_t>( SharedDataLayout::OSM_NODE_ID_LIST, util::PackedVector<OSMNodeID>::elements_to_blocks(coordinate_list_size)); // load geometries sizes boost::filesystem::ifstream geometry_input_stream(config.geometries_path, std::ios::binary); if (!geometry_input_stream) { throw util::exception("Could not open " + config.geometries_path.string() + " for reading."); } unsigned number_of_geometries_indices = 0; unsigned number_of_compressed_geometries = 0; geometry_input_stream.read((char *)&number_of_geometries_indices, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::GEOMETRIES_INDEX, number_of_geometries_indices); boost::iostreams::seek( geometry_input_stream, number_of_geometries_indices * sizeof(unsigned), BOOST_IOS::cur); geometry_input_stream.read((char *)&number_of_compressed_geometries, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<extractor::CompressedEdgeContainer::CompressedEdge>( SharedDataLayout::GEOMETRIES_LIST, number_of_compressed_geometries); // load datasource sizes. This file is optional, and it's non-fatal if it doesn't // exist. boost::filesystem::ifstream geometry_datasource_input_stream(config.datasource_indexes_path, std::ios::binary); if (!geometry_datasource_input_stream) { throw util::exception("Could not open " + config.datasource_indexes_path.string() + " for reading."); } std::size_t number_of_compressed_datasources = 0; if (geometry_datasource_input_stream) { geometry_datasource_input_stream.read( reinterpret_cast<char *>(&number_of_compressed_datasources), sizeof(std::size_t)); } shared_layout_ptr->SetBlockSize<uint8_t>(SharedDataLayout::DATASOURCES_LIST, number_of_compressed_datasources); // Load datasource name sizes. This file is optional, and it's non-fatal if it doesn't // exist boost::filesystem::ifstream datasource_names_input_stream(config.datasource_names_path, std::ios::binary); if (!datasource_names_input_stream) { throw util::exception("Could not open " + config.datasource_names_path.string() + " for reading."); } std::vector<char> m_datasource_name_data; std::vector<std::size_t> m_datasource_name_offsets; std::vector<std::size_t> m_datasource_name_lengths; if (datasource_names_input_stream) { std::string name; while (std::getline(datasource_names_input_stream, name)) { m_datasource_name_offsets.push_back(m_datasource_name_data.size()); std::copy(name.c_str(), name.c_str() + name.size(), std::back_inserter(m_datasource_name_data)); m_datasource_name_lengths.push_back(name.size()); } } shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::DATASOURCE_NAME_DATA, m_datasource_name_data.size()); shared_layout_ptr->SetBlockSize<std::size_t>(SharedDataLayout::DATASOURCE_NAME_OFFSETS, m_datasource_name_offsets.size()); shared_layout_ptr->SetBlockSize<std::size_t>(SharedDataLayout::DATASOURCE_NAME_LENGTHS, m_datasource_name_lengths.size()); boost::filesystem::ifstream intersection_stream(config.intersection_class_path, std::ios::binary); if (!static_cast<bool>(intersection_stream)) throw util::exception("Could not open " + config.intersection_class_path.string() + " for reading."); if (!util::readAndCheckFingerprint(intersection_stream)) throw util::exception("Fingerprint of " + config.intersection_class_path.string() + " does not match or could not read from file"); std::vector<BearingClassID> bearing_class_id_table; if (!util::deserializeVector(intersection_stream, bearing_class_id_table)) throw util::exception("Failed to bearing class ids read from " + config.names_data_path.string()); shared_layout_ptr->SetBlockSize<BearingClassID>(SharedDataLayout::BEARING_CLASSID, bearing_class_id_table.size()); unsigned bearing_blocks = 0; intersection_stream.read((char *)&bearing_blocks, sizeof(unsigned)); unsigned sum_lengths = 0; intersection_stream.read((char *)&sum_lengths, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::BEARING_OFFSETS, bearing_blocks); shared_layout_ptr->SetBlockSize<typename util::RangeTable<16, true>::BlockT>( SharedDataLayout::BEARING_BLOCKS, bearing_blocks); std::vector<unsigned> bearing_offsets_data(bearing_blocks); std::vector<typename util::RangeTable<16, true>::BlockT> bearing_blocks_data(bearing_blocks); if (bearing_blocks) { intersection_stream.read(reinterpret_cast<char *>(&bearing_offsets_data[0]), bearing_blocks * sizeof(bearing_offsets_data[0])); } if (bearing_blocks) { intersection_stream.read(reinterpret_cast<char *>(&bearing_blocks_data[0]), bearing_blocks * sizeof(bearing_blocks_data[0])); } std::uint64_t num_bearings; intersection_stream.read(reinterpret_cast<char*>(&num_bearings),sizeof(num_bearings)); std::vector<DiscreteBearing> bearing_class_table(num_bearings); intersection_stream.read(reinterpret_cast<char *>(&bearing_class_table[0]), sizeof(bearing_class_table[0]) * num_bearings); shared_layout_ptr->SetBlockSize<DiscreteBearing>(SharedDataLayout::BEARING_VALUES, num_bearings); // Loading turn lane data boost::filesystem::ifstream lane_data_stream(config.turn_lane_data_path, std::ios::binary); std::uint64_t lane_tupel_count = 0; lane_data_stream.read(reinterpret_cast<char *>(&lane_tupel_count), sizeof(lane_tupel_count)); shared_layout_ptr->SetBlockSize<util::guidance::LaneTupelIdPair>( SharedDataLayout::TURN_LANE_DATA, lane_tupel_count); if (!static_cast<bool>(intersection_stream)) throw util::exception("Failed to read bearing values from " + config.intersection_class_path.string()); std::vector<util::guidance::EntryClass> entry_class_table; if (!util::deserializeVector(intersection_stream, entry_class_table)) throw util::exception("Failed to read entry classes from " + config.intersection_class_path.string()); shared_layout_ptr->SetBlockSize<util::guidance::EntryClass>(SharedDataLayout::ENTRY_CLASS, entry_class_table.size()); // allocate shared memory block util::SimpleLogger().Write() << "allocating shared memory of " << shared_layout_ptr->GetSizeOfLayout() << " bytes"; auto *shared_memory = makeSharedMemory(data_region, shared_layout_ptr->GetSizeOfLayout()); char *shared_memory_ptr = static_cast<char *>(shared_memory->Ptr()); // read actual data into shared memory object // // hsgr checksum unsigned *checksum_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::HSGR_CHECKSUM); *checksum_ptr = checksum; // ram index file name char *file_index_path_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::FILE_INDEX_PATH); // make sure we have 0 ending std::fill(file_index_path_ptr, file_index_path_ptr + shared_layout_ptr->GetBlockSize(SharedDataLayout::FILE_INDEX_PATH), 0); std::copy(absolute_file_index_path.string().begin(), absolute_file_index_path.string().end(), file_index_path_ptr); // Loading street names unsigned *name_offsets_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_OFFSETS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_OFFSETS) > 0) { name_stream.read((char *)name_offsets_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_OFFSETS)); } unsigned *name_blocks_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_BLOCKS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_BLOCKS) > 0) { name_stream.read((char *)name_blocks_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_BLOCKS)); } char *name_char_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::NAME_CHAR_LIST); unsigned temp_length = 0; name_stream.read((char *)&temp_length, sizeof(unsigned)); BOOST_ASSERT_MSG(shared_layout_ptr->AlignBlockSize(temp_length) == shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST), "Name file corrupted!"); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST) > 0) { name_stream.read(name_char_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST)); } name_stream.close(); // make sure do write canary... auto *turn_lane_data_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::LaneTupelIdPair, true>( shared_memory_ptr, SharedDataLayout::TURN_LANE_DATA); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::TURN_LANE_DATA) > 0) { lane_data_stream.read(reinterpret_cast<char *>(turn_lane_data_ptr), shared_layout_ptr->GetBlockSize(SharedDataLayout::TURN_LANE_DATA)); } lane_data_stream.close(); auto *turn_lane_offset_ptr = shared_layout_ptr->GetBlockPtr<std::uint32_t, true>( shared_memory_ptr, SharedDataLayout::LANE_DESCRIPTION_OFFSETS); if (!lane_description_offsets.empty()) { BOOST_ASSERT(shared_layout_ptr->GetBlockSize(SharedDataLayout::LANE_DESCRIPTION_OFFSETS) >= sizeof(lane_description_offsets[0]) * lane_description_offsets.size()); std::copy( lane_description_offsets.begin(), lane_description_offsets.end(), turn_lane_offset_ptr); std::vector<std::uint32_t> tmp; lane_description_offsets.swap(tmp); } auto *turn_lane_mask_ptr = shared_layout_ptr->GetBlockPtr<extractor::guidance::TurnLaneType::Mask, true>( shared_memory_ptr, SharedDataLayout::LANE_DESCRIPTION_MASKS); if (!lane_description_masks.empty()) { BOOST_ASSERT(shared_layout_ptr->GetBlockSize(SharedDataLayout::LANE_DESCRIPTION_MASKS) >= sizeof(lane_description_masks[0]) * lane_description_masks.size()); std::copy(lane_description_masks.begin(), lane_description_masks.end(), turn_lane_mask_ptr); std::vector<extractor::guidance::TurnLaneType::Mask> tmp; lane_description_masks.swap(tmp); } // load original edge information NodeID *via_node_ptr = shared_layout_ptr->GetBlockPtr<NodeID, true>( shared_memory_ptr, SharedDataLayout::VIA_NODE_LIST); unsigned *name_id_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_ID_LIST); extractor::TravelMode *travel_mode_ptr = shared_layout_ptr->GetBlockPtr<extractor::TravelMode, true>(shared_memory_ptr, SharedDataLayout::TRAVEL_MODE); LaneDataID *lane_data_id_ptr = shared_layout_ptr->GetBlockPtr<LaneDataID, true>( shared_memory_ptr, SharedDataLayout::LANE_DATA_ID); extractor::guidance::TurnInstruction *turn_instructions_ptr = shared_layout_ptr->GetBlockPtr<extractor::guidance::TurnInstruction, true>( shared_memory_ptr, SharedDataLayout::TURN_INSTRUCTION); EntryClassID *entry_class_id_ptr = shared_layout_ptr->GetBlockPtr<EntryClassID, true>( shared_memory_ptr, SharedDataLayout::ENTRY_CLASSID); extractor::OriginalEdgeData current_edge_data; for (unsigned i = 0; i < number_of_original_edges; ++i) { edges_input_stream.read((char *)&(current_edge_data), sizeof(extractor::OriginalEdgeData)); via_node_ptr[i] = current_edge_data.via_node; name_id_ptr[i] = current_edge_data.name_id; travel_mode_ptr[i] = current_edge_data.travel_mode; lane_data_id_ptr[i] = current_edge_data.lane_data_id; turn_instructions_ptr[i] = current_edge_data.turn_instruction; entry_class_id_ptr[i] = current_edge_data.entry_classid; } edges_input_stream.close(); // load compressed geometry unsigned temporary_value; unsigned *geometries_index_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::GEOMETRIES_INDEX); geometry_input_stream.seekg(0, geometry_input_stream.beg); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == shared_layout_ptr->num_entries[SharedDataLayout::GEOMETRIES_INDEX]); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_INDEX) > 0) { geometry_input_stream.read( (char *)geometries_index_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_INDEX)); } extractor::CompressedEdgeContainer::CompressedEdge *geometries_list_ptr = shared_layout_ptr->GetBlockPtr<extractor::CompressedEdgeContainer::CompressedEdge, true>( shared_memory_ptr, SharedDataLayout::GEOMETRIES_LIST); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == shared_layout_ptr->num_entries[SharedDataLayout::GEOMETRIES_LIST]); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_LIST) > 0) { geometry_input_stream.read( (char *)geometries_list_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_LIST)); } // load datasource information (if it exists) uint8_t *datasources_list_ptr = shared_layout_ptr->GetBlockPtr<uint8_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCES_LIST); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCES_LIST) > 0) { geometry_datasource_input_stream.read( reinterpret_cast<char *>(datasources_list_ptr), shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCES_LIST)); } // load datasource name information (if it exists) char *datasource_name_data_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_DATA); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_DATA) > 0) { util::SimpleLogger().Write() << "Copying " << (m_datasource_name_data.end() - m_datasource_name_data.begin()) << " chars into name data ptr"; std::copy( m_datasource_name_data.begin(), m_datasource_name_data.end(), datasource_name_data_ptr); } auto datasource_name_offsets_ptr = shared_layout_ptr->GetBlockPtr<std::size_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_OFFSETS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_OFFSETS) > 0) { std::copy(m_datasource_name_offsets.begin(), m_datasource_name_offsets.end(), datasource_name_offsets_ptr); } auto datasource_name_lengths_ptr = shared_layout_ptr->GetBlockPtr<std::size_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_LENGTHS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_LENGTHS) > 0) { std::copy(m_datasource_name_lengths.begin(), m_datasource_name_lengths.end(), datasource_name_lengths_ptr); } // Loading list of coordinates util::Coordinate *coordinates_ptr = shared_layout_ptr->GetBlockPtr<util::Coordinate, true>( shared_memory_ptr, SharedDataLayout::COORDINATE_LIST); std::uint64_t *osmnodeid_ptr = shared_layout_ptr->GetBlockPtr<std::uint64_t, true>( shared_memory_ptr, SharedDataLayout::OSM_NODE_ID_LIST); util::PackedVector<OSMNodeID, true> osmnodeid_list; osmnodeid_list.reset( osmnodeid_ptr, shared_layout_ptr->num_entries[storage::SharedDataLayout::OSM_NODE_ID_LIST]); extractor::QueryNode current_node; for (unsigned i = 0; i < coordinate_list_size; ++i) { nodes_input_stream.read((char *)¤t_node, sizeof(extractor::QueryNode)); coordinates_ptr[i] = util::Coordinate(current_node.lon, current_node.lat); osmnodeid_list.push_back(current_node.node_id); } nodes_input_stream.close(); // store timestamp char *timestamp_ptr = shared_layout_ptr->GetBlockPtr<char, true>(shared_memory_ptr, SharedDataLayout::TIMESTAMP); std::copy(m_timestamp.c_str(), m_timestamp.c_str() + m_timestamp.length(), timestamp_ptr); // store search tree portion of rtree char *rtree_ptr = shared_layout_ptr->GetBlockPtr<char, true>(shared_memory_ptr, SharedDataLayout::R_SEARCH_TREE); if (tree_size > 0) { tree_node_file.read(rtree_ptr, sizeof(RTreeNode) * tree_size); } tree_node_file.close(); // load core markers std::vector<char> unpacked_core_markers(number_of_core_markers); core_marker_file.read((char *)unpacked_core_markers.data(), sizeof(char) * number_of_core_markers); unsigned *core_marker_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::CORE_MARKER); for (auto i = 0u; i < number_of_core_markers; ++i) { BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1); if (unpacked_core_markers[i] == 1) { const unsigned bucket = i / 32; const unsigned offset = i % 32; const unsigned value = [&] { unsigned return_value = 0; if (0 != offset) { return_value = core_marker_ptr[bucket]; } return return_value; }(); core_marker_ptr[bucket] = (value | (1u << offset)); } } // load the nodes of the search graph QueryGraph::NodeArrayEntry *graph_node_list_ptr = shared_layout_ptr->GetBlockPtr<QueryGraph::NodeArrayEntry, true>( shared_memory_ptr, SharedDataLayout::GRAPH_NODE_LIST); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GRAPH_NODE_LIST) > 0) { hsgr_input_stream.read((char *)graph_node_list_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GRAPH_NODE_LIST)); } // load the edges of the search graph QueryGraph::EdgeArrayEntry *graph_edge_list_ptr = shared_layout_ptr->GetBlockPtr<QueryGraph::EdgeArrayEntry, true>( shared_memory_ptr, SharedDataLayout::GRAPH_EDGE_LIST); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GRAPH_EDGE_LIST) > 0) { hsgr_input_stream.read((char *)graph_edge_list_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GRAPH_EDGE_LIST)); } hsgr_input_stream.close(); // load profile properties auto profile_properties_ptr = shared_layout_ptr->GetBlockPtr<extractor::ProfileProperties, true>( shared_memory_ptr, SharedDataLayout::PROPERTIES); boost::filesystem::ifstream profile_properties_stream(config.properties_path); if (!profile_properties_stream) { util::exception("Could not open " + config.properties_path.string() + " for reading!"); } profile_properties_stream.read(reinterpret_cast<char *>(profile_properties_ptr), sizeof(extractor::ProfileProperties)); // load intersection classes if (!bearing_class_id_table.empty()) { auto bearing_id_ptr = shared_layout_ptr->GetBlockPtr<BearingClassID, true>( shared_memory_ptr, SharedDataLayout::BEARING_CLASSID); std::copy(bearing_class_id_table.begin(), bearing_class_id_table.end(), bearing_id_ptr); } if (shared_layout_ptr->GetBlockSize(SharedDataLayout::BEARING_OFFSETS) > 0) { auto *bearing_offsets_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::BEARING_OFFSETS); std::copy(bearing_offsets_data.begin(), bearing_offsets_data.end(), bearing_offsets_ptr); } if (shared_layout_ptr->GetBlockSize(SharedDataLayout::BEARING_BLOCKS) > 0) { auto *bearing_blocks_ptr = shared_layout_ptr->GetBlockPtr<typename util::RangeTable<16, true>::BlockT, true>( shared_memory_ptr, SharedDataLayout::BEARING_BLOCKS); std::copy(bearing_blocks_data.begin(), bearing_blocks_data.end(), bearing_blocks_ptr); } if (!bearing_class_table.empty()) { auto bearing_class_ptr = shared_layout_ptr->GetBlockPtr<DiscreteBearing, true>( shared_memory_ptr, SharedDataLayout::BEARING_VALUES); std::copy(bearing_class_table.begin(), bearing_class_table.end(), bearing_class_ptr); } if (!entry_class_table.empty()) { auto entry_class_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::EntryClass, true>( shared_memory_ptr, SharedDataLayout::ENTRY_CLASS); std::copy(entry_class_table.begin(), entry_class_table.end(), entry_class_ptr); } // acquire lock SharedMemory *data_type_memory = makeSharedMemory(CURRENT_REGIONS, sizeof(SharedDataTimestamp), true, false); SharedDataTimestamp *data_timestamp_ptr = static_cast<SharedDataTimestamp *>(data_type_memory->Ptr()); boost::interprocess::scoped_lock<boost::interprocess::named_mutex> query_lock( barrier.query_mutex); // notify all processes that were waiting for this condition if (0 < barrier.number_of_queries) { barrier.no_running_queries_condition.wait(query_lock); } data_timestamp_ptr->layout = layout_region; data_timestamp_ptr->data = data_region; data_timestamp_ptr->timestamp += 1; deleteRegion(previous_data_region); deleteRegion(previous_layout_region); util::SimpleLogger().Write() << "all data loaded"; return EXIT_SUCCESS; }