Пример #1
0
PARAMS 
*phgParametersCreate()
{
    PARAMS *params = (PARAMS *) phgAlloc(sizeof(*params));
    
    /* default settings */
    _p->fn = "cube.bdface.mesh";
    _p->fn_bdry = "cube.bdry.dat";

    _p->fix_edge = FALSE;
    _p->fix_bdry = FALSE;

    _p->pre_refines = 0;
    _p->tol = 1e-2;
    _p->n_move_substep = 1;
    _p->n_smooth_monitor = 1;

    _p->move_opts = NULL;
    _p->dof_opts = NULL;

    _p->verb = 0;
    _p->viz_move = FALSE;

    /* get user defined parameter from file*/
    phgOptionsRegisterFilename("mesh_file", "Mesh file", (char **)&_p->fn);
    phgOptionsRegisterFilename("bdry_face_file", "Boundary face file", (char **)&_p->fn_bdry);
    phgOptionsRegisterInt("pre_refines", "Pre-refines", &_p->pre_refines);
    
    phgOptionsRegisterInt("mm_n_move_substep", "Moving Mesh: num of substep in one step", &_p->n_move_substep);
    phgOptionsRegisterInt("mm_n_smooth_monitor", "Moving Mesh: num of smoothing mointor", &_p->n_smooth_monitor);
    phgOptionsRegisterInt("mm_verbosity", "Moving Mesh: Verbosity", &_p->verb);
    phgOptionsRegisterFloat("mm_tol", "Moving Mesh: tolerence of error", &_p->tol);
    phgOptionsRegisterNoArg("mm_fix_edge", "Moving Mesh: fix edge boundary nodes", &_p->fix_edge);
    phgOptionsRegisterNoArg("mm_fix_bdry", "Moving Mesh: fix all boundary nodes", &_p->fix_bdry);
    phgOptionsRegisterNoArg("mm_viz_move", "Moving Mesh: visualize nodes move", &_p->viz_move);
    phgOptionsRegisterString("mm_move_opts", "Moving Mesh Solver of moving options", &_p->move_opts);
    phgOptionsRegisterString("mm_dof_opts", "Moving Mesh Solver of dof updating options", &_p->dof_opts);
    
    _p->fix_edge |= _p->fix_bdry;
    return params;
}
Пример #2
0
int
main(int argc, char *argv[])
{
    MAT *A, *B;
    VEC *U = NULL, *x;
    FLOAT *C;
    SOLVER *solver, *solver1 = NULL;
    INT i, j, k, n, *pvt, N = 1000, K = 2;
    char *main_opts = NULL, *sub_opts = NULL;

    phgOptionsRegisterInt("-n", "N value", &N);
    phgOptionsRegisterInt("-k", "K value", &K);
    phgOptionsRegisterString("-main_solver_opts", "Options for the main solver",
				&main_opts);
    phgOptionsRegisterString("-sub_solver_opts", "Options for the subsolver",
				&sub_opts);

    /* a direct solver is preferable for the sparse matrix */
    phgOptionsPreset("-solver mumps");
    phgInit(&argc, &argv);

    phgPrintf(
"----------------------------------------------------------------------------\n"
"This code solves (A+UU^t)x=b using the Sherman-Morrison-Woodbury formula.\n"
"Note: may use the following to disable use of the Sherman-Morrison-Woodbury\n"
"algorithm and change to the default solver instead:\n"
"	-preonly_pc_type solver -preonly_pc_opts \"-solver_maxit 2000\"\n"
"----------------------------------------------------------------------------\n"
    );

   phgPrintf("Generating the linear system: N = %"dFMT", K = %"dFMT"\n", N, K);

    /* A is a distributed NxN SPD tridiagonal matrix (A = [-1, 2, -1]) */
    n = N / phgNProcs + (phgRank < (N % phgNProcs) ? 1 : 0);
    A = phgMatCreate(phgComm, n, N);
    phgPrintf("  Generating matrix A.\n");
    for (i = 0; i < n; i++) {
	/* diagonal */
	phgMatAddEntry(A, i, i, 2.0);
	/* diagonal - 1 */
	if (i > 0)
	    phgMatAddEntry(A, i, i - 1, -1.0);
	else if (phgRank > 0)
	    phgMatAddLGEntry(A, i, A->rmap->partition[phgRank] - 1, -1.0);
	/* diagonal + 1 */
	if (i < n - 1)
	    phgMatAddEntry(A, i, i + 1, -1.0);
	else if (phgRank < phgNProcs - 1)
	    phgMatAddLGEntry(A, i, A->rmap->partition[phgRank] + n, -1.0);
    }
    phgMatAssemble(A);

    /* U is a K-component vector */
    U = phgMapCreateVec(A->rmap, K);
    phgVecRandomize(U, 123);

    /* solver1 is the solver for A */
    phgOptionsPush();
    phgOptionsSetOptions(sub_opts);
    solver1 = phgMat2Solver(SOLVER_DEFAULT, A);
    phgOptionsPop();

    /* x is a scratch vector */
    x = phgMapCreateVec(A->rmap, 1);

    /* C is a KxK dense matrix, pvt is an integer array, they store the LU
     * factorization of (I + U^t*inv(A)*U) */
    phgPrintf("  Generating the dense matrix I+U^t*inv(A)*U.\n");
    C = phgCalloc(K * K, sizeof(*C));
    pvt = phgAlloc(K * sizeof(*pvt));
    for (i = 0; i < K; i++) {
	for (j = 0; j < n; j++) {
	    solver1->rhs->data[j] = U->data[i * n + j];
	    x->data[j] = 0.0;
	}
	solver1->rhs->assembled = TRUE;
	phgSolverVecSolve(solver1, FALSE, x);
	for (j = 0; j < K; j++)
	    for (k = 0; k < n; k++)
		C[i * K + j] += U->data[j * n + k] * x->data[k];
    }
#if USE_MPI
    if (U->map->nprocs > 1) {
	FLOAT *tmp = phgAlloc(K * K * sizeof(*tmp));
	MPI_Allreduce(C, tmp, K * K, PHG_MPI_FLOAT, MPI_SUM, U->map->comm);
	phgFree(C);
	C = tmp;
    }
#endif	/* USE_MPI */
    for (i = 0; i < K; i++)
	C[i * K + i] += 1.0;
    phgPrintf("  Factorizing the dense matrix I+U^t*inv(A)*U.\n");
    phgSolverDenseLU(K, C, pvt);

    /* B is a matrix-free matrix representing A + U*U^t, B->mv_data is used
     * to pass A, U, solver1, C and pvt to callback functions */
    B = phgMapCreateMatrixFreeMat(A->rmap, A->cmap, funcB,
				  /* arguments carried over to CB functions */
				  A, U, solver1, C, pvt, NULL);

    /* solver is a PreOnly solver for B whose pc_proc is set to sherman().
     * 
     * Note: can also use pcg, gmres, or petsc for this solver, in this case
     * the solution obtained with the Sherman-Morisson formula is iteratively
     * refined. */
    phgOptionsPush();
    phgOptionsSetOptions("-solver preonly");
    phgOptionsSetOptions(main_opts);
    solver = phgMat2Solver(SOLVER_DEFAULT, B);
    phgSolverSetPC(solver, solver, sherman);
    phgOptionsPop();

    for (i = 0; i < n; i++)
	x->data[i] = 1.0;
    phgMatVec(MAT_OP_N, 1.0, B, x, 0.0, &solver->rhs);

    phgPrintf("Solving the linear system.\n");

    /* reset initial solution to zero */
    memset(x->data, 0, n * sizeof(*x->data));
    phgSolverVecSolve(solver, TRUE, x);
    for (i = 0; i < n; i++)
	solver->rhs->data[i] = 1.0;
    phgVecAXPBY(-1.0, solver->rhs, 1.0, &x);
    phgPrintf("Checking the result: |x - x_exact| / |x_exact| = %lg\n",
			(double)phgVecNorm2(x, 0, NULL) / sqrt((double)N));

    phgSolverDestroy(&solver);
    phgSolverDestroy(&solver1);
    phgMatDestroy(&A);
    phgMatDestroy(&B);
    phgVecDestroy(&U);
    phgVecDestroy(&x);
    phgFree(C);
    phgFree(pvt);

    phgFinalize();

    return 0;
}
Пример #3
0
int
main(int argc, char *argv[])
{
  ELEMENT *e;
  GRID *g;
  DOF *u, *v, *u_hp, *v_hp;
  HP_TYPE *hp;
  MAP *map;
  char *fn = "cube.dat";
  char *dof_u = "P2", *dof_v = "P1";
  INT step = 0, pre_refines = 0;

  phgOptionsRegisterFilename("-mesh_file", "Mesh file", &fn);
  phgOptionsRegisterInt("-pre_refines", "Pre-refinements", &pre_refines);
  phgOptionsRegisterString("-dof_u", "DOF type for u", &dof_u);
  phgOptionsRegisterString("-dof_v", "DOF type for v", &dof_v);

  phgInit(&argc, &argv);
  g = phgNewGrid(-1);
  if (!phgImport(g, fn, FALSE))
    phgError(1, "can't read file \"%s\".\n", fn);
  phgRefineAllElements(g, pre_refines);

  phgOptionsSetHandler("-dof_type", dof_u);
  u = phgDofNew(g, DOF_DEFAULT, 1, "u", DofInterpolation);
  phgOptionsSetHandler("-dof_type", dof_v);
  v = phgDofNew(g, DOF_DEFAULT, 1, "v", DofInterpolation);
  phgPrintf("u->type = %s, v->type = %s\n", u->type->name, v->type->name);

  hp = phgHPNew(g, HP_HB);
  u_hp = phgHPDofNew(g, hp, 1, "u_hp", DofInterpolation);
  phgHPFree(&hp);
  hp = phgHPNew(g, HP_HC);
  v_hp = phgHPDofNew(g, hp, 1, "v_hp", DofInterpolation);
  phgHPFree(&hp);

  while (TRUE) {
    if (phgBalanceGrid(g, 1.1, 1, NULL, 0.))
      phgPrintf("Repartition mesh, %d submeshes, load imbalance: %lg\n",
		g->nprocs, (double)g->lif);

    phgPrintf("Testing map with non HP DOFs:\n");
    map = phgMapCreate(u, v, NULL);
    phgPrintf("    nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal);
    phgMapDestroy(&map);

    phgPrintf("Testing map with HP DOFs:\n");
    ForAllElements(g, e)
	e->hp_order = 1 + GlobalElement(g, e->index) % 4;
    phgHPSetup(u_hp->hp, FALSE);

    ForAllElements(g, e)
	e->hp_order = 1 + (3 - GlobalElement(g, e->index) % 4);
    phgHPSetup(v_hp->hp, FALSE);

    map = phgMapCreate(u_hp, v_hp, NULL);
    phgPrintf("    nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal);
    phgMapDestroy(&map);

    phgPrintf("Testing map with HP and non HP DOFs:\n");
    map = phgMapCreate(u, u_hp, v, v_hp, NULL);
    phgPrintf("    nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal);
    phgMapDestroy(&map);

    if (++step >= 1)
	break;
    phgRefineAllElements(g, 1);
  }

  phgDofFree(&u_hp);
  phgDofFree(&v_hp);
  phgDofFree(&u);
  phgDofFree(&v);

  phgFreeGrid(&g);
  phgFinalize();

  return 0;
}