Пример #1
0
int pmCircleStretch(PmCircle * const circ, double new_angle, int from_end)
{
    if (!circ || new_angle <= DOUBLE_FUZZ) {
        return PM_ERR;
    }

    double mag = 0;
    pmCartMagSq(&circ->rHelix, &mag);
    if ( mag > 1e-6 ) {
        //Can't handle helices
        return PM_ERR;
    }
    //TODO handle spiral?
    if (from_end) {
        //Not implemented yet, way more reprocessing...
        PmCartesian new_start;
        double start_angle = circ->angle - new_angle;
        pmCirclePoint(circ, start_angle, &new_start);
        pmCartCartSub(&new_start, &circ->center, &circ->rTan);
        pmCartCartCross(&circ->normal, &circ->rTan, &circ->rPerp);
        pmCartMag(&circ->rTan, &circ->radius);
    } 
    //Reduce the spiral proportionally
    circ->spiral *= (new_angle / circ->angle);
    // Easy to grow / shrink from start
    circ->angle = new_angle;

    return 0;
}
Пример #2
0
int pmCartLineInit(PmCartLine * const line, PmCartesian const * const start, PmCartesian const * const end)
{
    int r1 = 0, r2 = 0;
    double tmag = 0.0;

    if (0 == line) {
        return (pmErrno = PM_ERR);
    }

    line->start = *start;
    line->end = *end;
    r1 = pmCartCartSub(end, start, &line->uVec);
    if (r1) {
        return r1;
    }

    pmCartMag(&line->uVec, &tmag);
    if (IS_FUZZ(tmag, CART_FUZZ)) {
        line->uVec.x = 1.0;
        line->uVec.y = 0.0;
        line->uVec.z = 0.0;
    } else {
        r2 = pmCartUnit(&line->uVec, &line->uVec);
    }
    line->tmag = tmag;
    line->tmag_zero = (line->tmag <= CART_FUZZ);

    /* return PM_NORM_ERR if uVec has been set to 1, 0, 0 */
    return pmErrno = (r1 || r2) ? PM_NORM_ERR : 0;
}
Пример #3
0
double pmCircle9Target(PmCircle9 const * const circ9)
{

    double helix_z_component;   // z of the helix's cylindrical coord system
    double helix_length;

    pmCartMag(&circ9->xyz.rHelix, &helix_z_component);
    double planar_arc_length = circ9->xyz.angle * circ9->xyz.radius;
    helix_length = pmSqrt(pmSq(planar_arc_length) +
            pmSq(helix_z_component));
    return helix_length;
}
Пример #4
0
int pmLineInit(PmLine * const line, PmPose const * const start, PmPose const * const end)
{
    int r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
    double tmag = 0.0;
    double rmag = 0.0;
    PmQuaternion startQuatInverse;

    if (0 == line) {
        return (pmErrno = PM_ERR);
    }

    r3 = pmQuatInv(&start->rot, &startQuatInverse);
    if (r3) {
        return r3;
    }

    r4 = pmQuatQuatMult(&startQuatInverse, &end->rot, &line->qVec);
    if (r4) {
        return r4;
    }

    pmQuatMag(&line->qVec, &rmag);
    if (rmag > Q_FUZZ) {
        r5 = pmQuatScalMult(&line->qVec, 1 / rmag, &(line->qVec));
        if (r5) {
            return r5;
        }
    }

    line->start = *start;
    line->end = *end;
    r1 = pmCartCartSub(&end->tran, &start->tran, &line->uVec);
    if (r1) {
        return r1;
    }

    pmCartMag(&line->uVec, &tmag);
    if (IS_FUZZ(tmag, CART_FUZZ)) {
        line->uVec.x = 1.0;
        line->uVec.y = 0.0;
        line->uVec.z = 0.0;
    } else {
        r2 = pmCartUnit(&line->uVec, &line->uVec);
    }
    line->tmag = tmag;
    line->rmag = rmag;
    line->tmag_zero = (line->tmag <= CART_FUZZ);
    line->rmag_zero = (line->rmag <= Q_FUZZ);

    /* return PM_NORM_ERR if uVec has been set to 1, 0, 0 */
    return pmErrno = (r1 || r2 || r3 || r4 || r5) ? PM_NORM_ERR : 0;
}
Пример #5
0
/**
 * Find the geometric tangent vector to a helical arc.
 * Unlike the acceleration vector, the result of this calculation is a vector
 * tangent to the helical arc. This is called by wrapper functions for the case of a circular or helical arc.
 */
int pmCircleTangentVector(PmCircle const * const circle,
        double angle_in, PmCartesian * const out)
{

    PmCartesian startpoint;
    PmCartesian radius;
    PmCartesian uTan, dHelix, dRadial;

    // Get vector in radial direction
    pmCirclePoint(circle, angle_in, &startpoint);
    pmCartCartSub(&startpoint, &circle->center, &radius);

    /* Find local tangent vector using planar normal. Assuming a differential
     * angle dtheta, the tangential component of the tangent vector is r *
     * dtheta. Since we're normalizing the vector anyway, assume dtheta = 1.
     */
    pmCartCartCross(&circle->normal, &radius, &uTan);

    // find dz/dtheta and get differential movement along helical axis
    double h;
    pmCartMag(&circle->rHelix, &h);

    /* the binormal component of the tangent vector is (dz / dtheta) * dtheta.
     */
    double dz = 1.0 / circle->angle;
    pmCartScalMult(&circle->rHelix, dz, &dHelix);

    pmCartCartAddEq(&uTan, &dHelix);

    /* The normal component is (dr / dtheta) * dtheta.
     */
    double dr = circle->spiral / circle->angle;
    pmCartUnit(&radius, &dRadial);
    pmCartScalMultEq(&dRadial, dr);
    pmCartCartAddEq(&uTan, &dRadial);

    //Normalize final output vector
    pmCartUnit(&uTan, out);
    return 0;
}
Пример #6
0
int tpAddCircle(TP_STRUCT * tp, EmcPose end,
		PmCartesian center, PmCartesian normal, int turn, int type,
                double vel, double ini_maxvel, double acc, unsigned char enables, char atspeed)
{
    TC_STRUCT tc;
    PmCircle circle;
    PmLine line_uvw, line_abc;
    PmPose start_xyz, end_xyz;
    PmPose start_uvw, end_uvw;
    PmPose start_abc, end_abc;
    double helix_z_component;   // z of the helix's cylindrical coord system
    double helix_length;
    PmQuaternion identity_quat = { 1.0, 0.0, 0.0, 0.0 };

    if (!tp || tp->aborting) 
	return -1;

    start_xyz.tran = tp->goalPos.tran;
    end_xyz.tran = end.tran;

    start_abc.tran.x = tp->goalPos.a;
    start_abc.tran.y = tp->goalPos.b;
    start_abc.tran.z = tp->goalPos.c;
    end_abc.tran.x = end.a;
    end_abc.tran.y = end.b;
    end_abc.tran.z = end.c;

    start_uvw.tran.x = tp->goalPos.u;
    start_uvw.tran.y = tp->goalPos.v;
    start_uvw.tran.z = tp->goalPos.w;
    end_uvw.tran.x = end.u;
    end_uvw.tran.y = end.v;
    end_uvw.tran.z = end.w;

    start_xyz.rot = identity_quat;
    end_xyz.rot = identity_quat;
    start_uvw.rot = identity_quat;
    end_uvw.rot = identity_quat;
    start_abc.rot = identity_quat;
    end_abc.rot = identity_quat;

    pmCircleInit(&circle, start_xyz, end_xyz, center, normal, turn);
    pmLineInit(&line_uvw, start_uvw, end_uvw);
    pmLineInit(&line_abc, start_abc, end_abc);

    // find helix length
    pmCartMag(circle.rHelix, &helix_z_component);
    helix_length = pmSqrt(pmSq(circle.angle * circle.radius) +
                          pmSq(helix_z_component));

    tc.sync_accel = 0;
    tc.cycle_time = tp->cycleTime;
    tc.target = helix_length;
    tc.progress = 0.0;
    tc.reqvel = vel;
    tc.maxaccel = acc;
    tc.feed_override = 0.0;
    tc.maxvel = ini_maxvel;
    tc.id = tp->nextId;
    tc.active = 0;
    tc.atspeed = atspeed;

    tc.currentvel = 0.0;
    tc.blending = 0;
    tc.blend_vel = 0.0;
    tc.vel_at_blend_start = 0.0;

    tc.coords.circle.xyz = circle;
    tc.coords.circle.uvw = line_uvw;
    tc.coords.circle.abc = line_abc;
    tc.motion_type = TC_CIRCULAR;
    tc.canon_motion_type = type;
    tc.blend_with_next = tp->termCond == TC_TERM_COND_BLEND;
    tc.tolerance = tp->tolerance;

    tc.synchronized = tp->synchronized;
    tc.velocity_mode = tp->velocity_mode;
    tc.uu_per_rev = tp->uu_per_rev;
    tc.enables = enables;
    tc.indexrotary = -1;
    
    if (syncdio.anychanged != 0) {
	tc.syncdio = syncdio; //enqueue the list of DIOs that need toggling
	tpClearDIOs(); // clear out the list, in order to prepare for the next time we need to use it
    } else {
	tc.syncdio.anychanged = 0;
    }


    if (tcqPut(&tp->queue, tc) == -1) {
	return -1;
    }

    tp->goalPos = end;
    tp->done = 0;
    tp->depth = tcqLen(&tp->queue);
    tp->nextId++;

    return 0;
}
Пример #7
0
/*
  pmCircleInit() takes the defining parameters of a generalized circle
  and sticks them in the structure. It also computes the radius and vectors
  in the plane that are useful for other functions and that don't need
  to be recomputed every time.

  Note that the end can be placed arbitrarily, resulting in a combination of
  spiral and helical motion. There is an overconstraint between the start,
  center, and normal vector: the center vector and start vector are assumed
  to be in the plane defined by the normal vector. If this is not true, then
  it will be made true by moving the center vector onto the plane.
  */
int pmCircleInit(PmCircle * const circle,
        PmCartesian const * const start, PmCartesian const * const end,
        PmCartesian const * const center, PmCartesian const * const normal, int turn)
{
    double dot;
    PmCartesian rEnd;
    PmCartesian v;
    double d;
    int r1;

#ifdef PM_DEBUG
    if (0 == circle) {
#ifdef PM_PRINT_ERROR
        pmPrintError("error: pmCircleInit cirle pointer is null\n");
#endif
        return pmErrno = PM_ERR;
    }
#endif

    /* adjust center */
    pmCartCartSub(start, center, &v);
    r1 = pmCartCartProj(&v, normal, &v);
    if (PM_NORM_ERR == r1) {
        /* bad normal vector-- abort */
#ifdef PM_PRINT_ERROR
        pmPrintError("error: pmCircleInit normal vector is 0\n");
#endif
        return -1;
    }
    pmCartCartAdd(&v, center, &circle->center);

    /* normalize and redirect normal vector based on turns. If turn is less
       than 0, point normal vector in other direction and make turn positive, 
       -1 -> 0, -2 -> 1, etc. */
    pmCartUnit(normal, &circle->normal);
    if (turn < 0) {
        turn = -1 - turn;
        pmCartScalMult(&circle->normal, -1.0, &circle->normal);
    }

    /* radius */
    pmCartCartDisp(start, &circle->center, &circle->radius);

    /* vector in plane of circle from center to start, magnitude radius */
    pmCartCartSub(start, &circle->center, &circle->rTan);
    /* vector in plane of circle perpendicular to rTan, magnitude radius */
    pmCartCartCross(&circle->normal, &circle->rTan, &circle->rPerp);

    /* do rHelix, rEnd */
    pmCartCartSub(end, &circle->center, &circle->rHelix);
    pmCartPlaneProj(&circle->rHelix, &circle->normal, &rEnd);
    pmCartMag(&rEnd, &circle->spiral);
    circle->spiral -= circle->radius;
    pmCartCartSub(&circle->rHelix, &rEnd, &circle->rHelix);
    pmCartUnit(&rEnd, &rEnd);
    pmCartScalMult(&rEnd, circle->radius, &rEnd);

    /* Patch for error spiral end same as spiral center */
    pmCartMag(&rEnd, &d);
    if (d == 0.0) {
        pmCartScalMult(&circle->normal, DOUBLE_FUZZ, &v);
        pmCartCartAdd(&rEnd, &v, &rEnd);
    }
    /* end patch 03-mar-1999 Dirk Maij */

    /* angle */
    pmCartCartDot(&circle->rTan, &rEnd, &dot);
    dot = dot / (circle->radius * circle->radius);
    if (dot > 1.0) {
        circle->angle = 0.0;
    } else if (dot < -1.0) {
        circle->angle = PM_PI;
    } else {
        circle->angle = rtapi_acos(dot);
    }
    /* now angle is in range 0..PI . Check if cross is antiparallel to
       normal. If so, true angle is between PI..2PI. Need to subtract from
       2PI. */
    pmCartCartCross(&circle->rTan, &rEnd, &v);
    pmCartCartDot(&v, &circle->normal, &d);
    if (d < 0.0) {
        circle->angle = PM_2_PI - circle->angle;
    }

    if (circle->angle > -(CIRCLE_FUZZ) && circle->angle < (CIRCLE_FUZZ)) {
        circle->angle = PM_2_PI;
    }

    /* now add more angle for multi turns */
    if (turn > 0) {
        circle->angle += turn * 2.0 * PM_PI;
    }

    //Default to invalid
/* if 0'ed out while not debugging*/
#if 0
    printf("\n\n");
    printf("pmCircleInit:\n");
    printf(" \t start  : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	start->x, start->y, start->z);
    printf(" \t end    : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	end->x, end->y, end->z);
    printf(" \t center : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	center->x, center->y, center->z);
    printf(" \t normal : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	normal->x, normal->y, normal->z);
    printf(" \t rEnd   : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	rEnd.x, rEnd.y, rEnd.z);
    printf(" \t turn=%d\n", turn);
    printf(" \t dot=%9.9f\n", dot);
    printf(" \t d=%9.9f\n", d);
    printf(" \t circle  \t{angle=%9.9f, radius=%9.9f, spiral=%9.9f}\n",
	circle->angle, circle->radius, circle->spiral);
    printf(" \t circle->normal : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	circle->normal.x, circle->normal.y, circle->normal.z);
    printf(" \t circle->center : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	circle->center.x, circle->center.y, circle->center.z);
    printf(" \t circle->rTan : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	circle->rTan.x, circle->rTan.y, circle->rTan.z);
    printf(" \t circle->rPerp : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
	circle->rPerp.x, circle->rPerp.y, circle->rPerp.z);
    printf(" \t circle->rHelix : \t{x=%9.9f, y=%9.9f, z=%9.9f}\n",
            circle->rHelix.x, circle->rHelix.y, circle->rHelix.z);
    printf("\n\n");
#endif

    return pmErrno = 0;
}
Пример #8
0
int arcInitFromPoints(SphericalArc * const arc, PmCartesian const * const start,
        PmCartesian const * const end,
        PmCartesian const * const center)
{
#ifdef ARC_PEDANTIC
    if (!P0 || !P1 || !center) {
        return TP_ERR_MISSING_INPUT;
    
    if (!arc) {
        return TP_ERR_MISSING_OUTPUT;
    }
#endif

    // Store the start, end, and center
    arc->start = *start;
    arc->end = *end;
    arc->center = *center;

    pmCartCartSub(start, center, &arc->rStart);
    pmCartCartSub(end, center, &arc->rEnd);

    // Find the radii at start and end. These are identical for a perfect spherical arc
    double radius0, radius1;
    pmCartMag(&arc->rStart, &radius0);
    pmCartMag(&arc->rEnd, &radius1);

    tp_debug_print("radii are %g and %g\n",
            radius0,
            radius1);

    if (radius0 < ARC_MIN_RADIUS || radius1 < ARC_MIN_RADIUS) {
        tp_debug_print("radius below min radius %f, aborting arc\n",
                ARC_MIN_RADIUS);
        return TP_ERR_RADIUS;
    }

    // Choose initial radius as nominal radius
    arc->radius = radius0;

    // Get unit vectors from center to start and center to end
    PmCartesian u0, u1;
    pmCartScalMult(&arc->rStart, 1.0 / radius0, &u0);
    pmCartScalMult(&arc->rEnd, 1.0 / radius1, &u1);

    // Find arc angle
    double dot;
    pmCartCartDot(&u0, &u1, &dot);
    arc->angle = acos(dot);
    tp_debug_print("spherical arc angle = %f\n", arc->angle);

    // Store spiral factor as radial difference. Archimedean spiral coef. a = spiral / angle
    arc->spiral = (radius1 - radius0 );

    if (arc->angle < ARC_MIN_ANGLE) {
        tp_debug_print("angle %f below min angle %f, aborting arc\n",
                arc->angle,
                ARC_MIN_ANGLE);
        return TP_ERR_GEOM;
    }

    // Store sin of arc angle since it is reused many times for SLERP
    arc->Sangle = sin(arc->angle);

    return TP_ERR_OK;
}

int arcPoint(SphericalArc const * const arc, double progress, PmCartesian * const out)
{
    //TODO pedantic

    //Convert progress to actual progress around the arc
    double net_progress = progress - arc->line_length;
    if (net_progress <= 0.0 && arc->line_length > 0) {
        tc_debug_print("net_progress = %f, line_length = %f\n", net_progress, arc->line_length);
        //Get position on line (not actually an angle in this case)
        pmCartScalMult(&arc->uTan, net_progress, out);
        pmCartCartAdd(out, &arc->start, out);
    } else {
        double angle_in = net_progress / arc->radius;
        tc_debug_print("angle_in = %f, angle_total = %f\n", angle_in, arc->angle);
        double scale0 = sin(arc->angle - angle_in) / arc->Sangle;
        double scale1 = sin(angle_in) / arc->Sangle;

        PmCartesian interp0,interp1;
        pmCartScalMult(&arc->rStart, scale0, &interp0);
        pmCartScalMult(&arc->rEnd, scale1, &interp1);

        pmCartCartAdd(&interp0, &interp1, out);
        pmCartCartAdd(&arc->center, out, out);
    }
    return TP_ERR_OK;
}
Пример #9
0
/*
  emcmotCommandHandler() is called each main cycle to read the
  shared memory buffer
  */
void emcmotCommandHandler(void *arg, long period)
{
    int joint_num;
    emcmot_joint_t *joint;
    double tmp1;
    emcmot_comp_entry_t *comp_entry;
    
check_stuff ( "before command_handler()" );

    /* check for split read */
    if (emcmotCommand->head != emcmotCommand->tail) {
	emcmotDebug->split++;
	return;			/* not really an error */
    }
    if (emcmotCommand->commandNum != emcmotStatus->commandNumEcho) {
	/* increment head count-- we'll be modifying emcmotStatus */
	emcmotStatus->head++;
	emcmotDebug->head++;

	/* got a new command-- echo command and number... */
	emcmotStatus->commandEcho = emcmotCommand->command;
	emcmotStatus->commandNumEcho = emcmotCommand->commandNum;

	/* clear status value by default */
	emcmotStatus->commandStatus = EMCMOT_COMMAND_OK;
	
	/* ...and process command */

	/* Many commands uses "command->axis" to indicate which joint they
	   wish to operate on.  This code eliminates the need to copy
	   command->axis to "joint_num", limit check it, and then set "joint"
	   to point to the joint data.  All the individual commands need to do
	   is verify that "joint" is non-zero. */
	joint_num = emcmotCommand->axis;
	if (joint_num >= 0 && joint_num < num_joints) {
	    /* valid joint, point to it's data */
	    joint = &joints[joint_num];
	} else {
	    /* bad joint number */
	    joint = 0;
	}

/* printing of commands for troubleshooting */
	rtapi_print_msg(RTAPI_MSG_DBG, "%d: CMD %d, code %3d ", emcmotStatus->heartbeat,
	    emcmotCommand->commandNum, emcmotCommand->command);

	switch (emcmotCommand->command) {
	case EMCMOT_ABORT:
	    /* abort motion */
	    /* can happen at any time */
	    /* this command attempts to stop all machine motion. it looks at
	       the current mode and acts accordingly, if in teleop mode, it
	       sets the desired velocities to zero, if in coordinated mode,
	       it calls the traj planner abort function (don't know what that
	       does yet), and if in free mode, it disables the free mode traj
	       planners which stops axis motion */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ABORT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    /* check for coord or free space motion active */
	    if (GET_MOTION_TELEOP_FLAG()) {
		emcmotDebug->teleop_data.desiredVel.tran.x = 0.0;
		emcmotDebug->teleop_data.desiredVel.tran.y = 0.0;
		emcmotDebug->teleop_data.desiredVel.tran.z = 0.0;
		emcmotDebug->teleop_data.desiredVel.a = 0.0;
		emcmotDebug->teleop_data.desiredVel.b = 0.0;
		emcmotDebug->teleop_data.desiredVel.c = 0.0;
	    } else if (GET_MOTION_COORD_FLAG()) {
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(0);
	    } else {
		for (joint_num = 0; joint_num < num_joints; joint_num++) {
		    /* point to joint struct */
		    joint = &joints[joint_num];
		    /* tell joint planner to stop */
		    joint->free_tp_enable = 0;
		    /* stop homing if in progress */
		    if ( joint->home_state != HOME_IDLE ) {
			joint->home_state = HOME_ABORT;
		    }
		}
	    }
	    /* clear axis errors (regardless of mode */	    
	    for (joint_num = 0; joint_num < num_joints; joint_num++) {
		/* point to joint struct */
		joint = &joints[joint_num];
		/* update status flags */
		SET_JOINT_ERROR_FLAG(joint, 0);
		SET_JOINT_FAULT_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_AXIS_ABORT:
	    /* abort one axis */
	    /* can happen at any time */
	    /* this command stops a single axis.  It is only usefull
	       in free mode, so in coord or teleop mode it does
	       nothing. */
	    rtapi_print_msg(RTAPI_MSG_DBG, "AXIS_ABORT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (GET_MOTION_TELEOP_FLAG()) {
		/* do nothing in teleop mode */
	    } else if (GET_MOTION_COORD_FLAG()) {
		/* do nothing in coord mode */
	    } else {
		/* validate joint */
		if (joint == 0) {
		    break;
		}
		/* tell joint planner to stop */
		joint->free_tp_enable = 0;
		/* stop homing if in progress */
		if ( joint->home_state != HOME_IDLE ) {
		    joint->home_state = HOME_ABORT;
		}
		/* update status flags */
		SET_JOINT_ERROR_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_FREE:
	    /* change the mode to free axis motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       requests the transition by clearing a couple of flags */
	    /* reset the emcmotDebug->coordinating flag to defer transition
	       to controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "FREE");
	    emcmotDebug->coordinating = 0;
	    emcmotDebug->teleoperating = 0;
	    break;

	case EMCMOT_COORD:
	    /* change the mode to coordinated axis motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       tests a condition and then sets a flag requesting the
	       transition */
	    /* set the emcmotDebug->coordinating flag to defer transition to
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "COORD");
	    emcmotDebug->coordinating = 1;
	    emcmotDebug->teleoperating = 0;
	    if (kinType != KINEMATICS_IDENTITY) {
		if (!checkAllHomed()) {
		    reportError
			("all axes must be homed before going into coordinated mode");
		    emcmotDebug->coordinating = 0;
		    break;
		}
	    }
	    break;

	case EMCMOT_TELEOP:
	    /* change the mode to teleop motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       tests a condition and then sets a flag requesting the
	       transition */
	    /* set the emcmotDebug->teleoperating flag to defer transition to
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "TELEOP");
	    emcmotDebug->teleoperating = 1;
	    if (kinType != KINEMATICS_IDENTITY) {
		
		if (!checkAllHomed()) {
		    reportError
			("all axes must be homed before going into teleop mode");
		    emcmotDebug->teleoperating = 0;
		    break;
		}

	    }
	    break;

	case EMCMOT_SET_NUM_AXES:
	    /* set the global NUM_AXES, which must be between 1 and
	       EMCMOT_MAX_AXIS, inclusive */
	    /* this sets a global - I hate globals - hopefully this can be
	       moved into the config structure, or dispensed with completely */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_NUM_AXES");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (( emcmotCommand->axis <= 0 ) ||
		( emcmotCommand->axis > EMCMOT_MAX_AXIS )) {
		break;
	    }
	    num_axes = emcmotCommand->axis;
	    emcmotConfig->numAxes = num_axes;
	    break;

	case EMCMOT_SET_WORLD_HOME:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_WORLD_HOME");
	    emcmotStatus->world_home = emcmotCommand->pos;
	    break;

	case EMCMOT_SET_HOMING_PARAMS:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_HOMING_PARAMS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0) {
		break;
	    }
	    joint->home_offset = emcmotCommand->offset;
	    joint->home = emcmotCommand->home;
	    joint->home_search_vel = emcmotCommand->search_vel;
	    joint->home_latch_vel = emcmotCommand->latch_vel;
	    joint->home_flags = emcmotCommand->flags;
	    joint->home_sequence = emcmotCommand->home_sequence;
	    break;

	case EMCMOT_OVERRIDE_LIMITS:
	    /* this command can be issued with axix < 0 to re-enable
	       limits, but they are automatically re-enabled at the
	       end of the next jog */
	    rtapi_print_msg(RTAPI_MSG_DBG, "OVERRIDE_LIMITS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (emcmotCommand->axis < 0) {
		/* don't override limits */
		rtapi_print_msg(RTAPI_MSG_DBG, "override off");
		emcmotStatus->overrideLimitMask = 0;
	    } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "override on");
		emcmotStatus->overrideLimitMask = 0;
		for (joint_num = 0; joint_num < num_joints; joint_num++) {
		    /* point at joint data */
		    joint = &joints[joint_num];
#if 0		// Original code commented by KSU to allow tripped axis move
		    /* only override limits that are currently tripped */
		    if ( GET_JOINT_NHL_FLAG(joint) ) {
			emcmotStatus->overrideLimitMask |= (1 << (joint_num*2));
		    }
		    if ( GET_JOINT_PHL_FLAG(joint) ) {
			emcmotStatus->overrideLimitMask |= (2 << (joint_num*2));
		    }
#else
		    emcmotStatus->overrideLimitMask |= (1 << (joint_num*2));
		    emcmotStatus->overrideLimitMask |= (2 << (joint_num*2));
#endif
		}
	    }
	    emcmotDebug->overriding = 0;
	    for (joint_num = 0; joint_num < num_joints; joint_num++) {
		/* point at joint data */
		joint = &joints[joint_num];
		/* clear joint errors */
		SET_JOINT_ERROR_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_SET_MOTOR_OFFSET:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MOTOR_OFFSET");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if(joint == 0) {
		break;
	    }
	    joint->motor_offset = emcmotCommand->motor_offset;
	    break;

	case EMCMOT_SET_POSITION_LIMITS:
	    /* sets soft limits for an axis */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_POSITION_LIMITS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* set the position limits for the axis */
	    /* can be done at any time */
	    if (joint == 0) {
		break;
	    }
	    joint->min_pos_limit = emcmotCommand->minLimit;
	    joint->max_pos_limit = emcmotCommand->maxLimit;
	    break;

	case EMCMOT_SET_BACKLASH:
	    /* sets backlash for an axis */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_BACKLASH");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* set the backlash for the axis */
	    /* can be done at any time */
	    if (joint == 0) {
		break;
	    }
	    joint->backlash = emcmotCommand->backlash;
	    break;

	    /*
	       Max and min ferror work like this: limiting ferror is
	       determined by slope of ferror line, = maxFerror/limitVel ->
	       limiting ferror = maxFerror/limitVel * vel. If ferror <
	       minFerror then OK else if ferror < limiting ferror then OK
	       else ERROR */
	case EMCMOT_SET_MAX_FERROR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MAX_FERROR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0 || emcmotCommand->maxFerror < 0.0) {
		break;
	    }
	    joint->max_ferror = emcmotCommand->maxFerror;
	    break;

	case EMCMOT_SET_MIN_FERROR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MIN_FERROR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0 || emcmotCommand->minFerror < 0.0) {
		break;
	    }
	    joint->min_ferror = emcmotCommand->minFerror;
	    break;

	case EMCMOT_JOG_CONT:
	    /* do a continuous jog, implemented as an incremental jog to the
	       limit.  When the user lets go of the button an abort will
	       stop the jog. */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_CONT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }

	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /* set destination of jog */
	    refresh_jog_limits(joint);
	    if (emcmotCommand->vel > 0.0) {
		joint->free_pos_cmd = joint->max_jog_limit;
	    } else {
		joint->free_pos_cmd = joint->min_jog_limit;
	    }
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    /*! \todo FIXME - should we really be clearing errors here? */
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_JOG_INCR:
	    /* do an incremental jog */

	    /* check axis range */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_INCR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }

	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /* set target position for jog */
	    if (emcmotCommand->vel > 0.0) {
		tmp1 = joint->free_pos_cmd + emcmotCommand->offset;
	    } else {
		tmp1 = joint->free_pos_cmd - emcmotCommand->offset;
	    }
	    /* don't jog past limits */
	    refresh_jog_limits(joint);
	    if (tmp1 > joint->max_jog_limit) {
		break;
	    }
	    if (tmp1 < joint->min_jog_limit) {
		break;
	    }
	    /* set target position */
	    joint->free_pos_cmd = tmp1;
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_JOG_ABS:
	    /* do an absolute jog */

	    /* check axis range */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_ABS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /*! \todo FIXME-- use 'goal' instead */
	    joint->free_pos_cmd = emcmotCommand->offset;
	    /* don't jog past limits */
	    refresh_jog_limits(joint);
	    if (joint->free_pos_cmd > joint->max_jog_limit) {
		joint->free_pos_cmd = joint->max_jog_limit;
	    }
	    if (joint->free_pos_cmd < joint->min_jog_limit) {
		joint->free_pos_cmd = joint->min_jog_limit;
	    }
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_SET_TERM_COND:
	    /* sets termination condition for motion emcmotDebug->queue */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_TERM_COND");
	    tpSetTermCond(&emcmotDebug->queue, emcmotCommand->termCond, emcmotCommand->tolerance);
	    break;

        case EMCMOT_SET_SPINDLESYNC:
            tpSetSpindleSync(&emcmotDebug->queue, emcmotCommand->spindlesync, emcmotCommand->flags);
            break;

	case EMCMOT_SET_LINE:
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_LINE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for linear move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("linear move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("linear move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do linear move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddLine(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->motion_type, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add linear move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_CIRCLE:
	    /* emcmotDebug->queue up a circular move */
	    /* requires coordinated mode, enable on, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_CIRCLE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for circular move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("circular move on line %d would exceed limits",
			emcmotCommand->id);
		else
		    reportError("circular move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do circular move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 ==
		tpAddCircle(&emcmotDebug->queue, emcmotCommand->pos,
		    emcmotCommand->center, emcmotCommand->normal,
		    emcmotCommand->turn, emcmotCommand->motion_type,
                    emcmotCommand->vel, emcmotCommand->ini_maxvel,
                    emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add circular move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_VEL:
	    /* set the velocity for subsequent moves */
	    /* can do it at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_VEL");
	    emcmotStatus->vel = emcmotCommand->vel;
	    tpSetVmax(&emcmotDebug->queue, emcmotStatus->vel, 
			    emcmotCommand->ini_maxvel);
	    break;

	case EMCMOT_SET_VEL_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_VEL_LIMIT");
	    emcmot_config_change();
	    /* set the absolute max velocity for all subsequent moves */
	    /* can do it at any time */
	    emcmotConfig->limitVel = emcmotCommand->vel;
	    tpSetVlimit(&emcmotDebug->queue, emcmotConfig->limitVel);
	    break;

	case EMCMOT_SET_JOINT_VEL_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_VEL_LIMIT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }
	    joint->vel_limit = emcmotCommand->vel;
	    joint->big_vel = 10 * emcmotCommand->vel;
	    break;

	case EMCMOT_SET_JOINT_ACC_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_ACC_LIMIT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }
	    joint->acc_limit = emcmotCommand->acc;
	    break;

	case EMCMOT_SET_ACC:
	    /* set the max acceleration */
	    /* can do it at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_ACCEL");
	    emcmotStatus->acc = emcmotCommand->acc;
	    tpSetAmax(&emcmotDebug->queue, emcmotStatus->acc);
	    break;

	case EMCMOT_PAUSE:
	    /* pause the motion */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "PAUSE");
	    tpPause(&emcmotDebug->queue);
	    emcmotStatus->paused = 1;
	    break;

	case EMCMOT_RESUME:
	    /* resume paused motion */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "RESUME");
	    emcmotDebug->stepping = 0;
	    tpResume(&emcmotDebug->queue);
	    emcmotStatus->paused = 0;
	    break;

	case EMCMOT_STEP:
	    /* resume paused motion until id changes */
	    /* can happen at any time */
            rtapi_print_msg(RTAPI_MSG_DBG, "STEP");
            if(emcmotStatus->paused) {
                emcmotDebug->idForStep = emcmotStatus->id;
                emcmotDebug->stepping = 1;
                tpResume(&emcmotDebug->queue);
                emcmotStatus->paused = 1;
            } else {
		reportError("MOTION: can't STEP while already executing");
	    }
	    break;

	case EMCMOT_FEED_SCALE:
	    /* override speed */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE");
	    if (emcmotCommand->scale < 0.0) {
		emcmotCommand->scale = 0.0;	/* clamp it */
	    }
	    emcmotStatus->feed_scale = emcmotCommand->scale;
	    break;

	case EMCMOT_FS_ENABLE:
	    /* enable/disable overriding speed */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE: ON");
		emcmotStatus->enables_new |= FS_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE: OFF");
		emcmotStatus->enables_new &= ~FS_ENABLED;
	    }
	    break;

	case EMCMOT_FH_ENABLE:
	    /* enable/disable feed hold */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED HOLD: ENABLED");
		emcmotStatus->enables_new |= FH_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED HOLD: DISABLED");
		emcmotStatus->enables_new &= ~FH_ENABLED;
	    }
	    break;

	case EMCMOT_SPINDLE_SCALE:
	    /* override spindle speed */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE");
	    if (emcmotCommand->scale < 0.0) {
		emcmotCommand->scale = 0.0;	/* clamp it */
	    }
	    emcmotStatus->spindle_scale = emcmotCommand->scale;
	    break;

	case EMCMOT_SS_ENABLE:
	    /* enable/disable overriding spindle speed */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE: ON");
		emcmotStatus->enables_new |= SS_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE: OFF");
		emcmotStatus->enables_new &= ~SS_ENABLED;
	    }
	    break;

	case EMCMOT_AF_ENABLE:
	    /* enable/disable adaptive feedrate override from HAL pin */
	    /* can happen at any time */
	    if ( emcmotCommand->flags != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "ADAPTIVE FEED: ON");
		emcmotStatus->enables_new |= AF_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "ADAPTIVE FEED: OFF");
		emcmotStatus->enables_new &= ~AF_ENABLED;
	    }
	    break;

	case EMCMOT_DISABLE:
	    /* go into disable */
	    /* can happen at any time */
	    /* reset the emcmotDebug->enabling flag to defer disable until
	       controller cycle (it *will* be honored) */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE");
	    emcmotDebug->enabling = 0;
	    if (kinType == KINEMATICS_INVERSE_ONLY) {
		emcmotDebug->teleoperating = 0;
		emcmotDebug->coordinating = 0;
	    }
	    break;

	case EMCMOT_ENABLE:
	    /* come out of disable */
	    /* can happen at any time */
	    /* set the emcmotDebug->enabling flag to defer enable until
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE");
	    if ( *(emcmot_hal_data->enable) == 0 ) {
		reportError("can't enable motion, enable input is false");
	    } else {
		emcmotDebug->enabling = 1;
		if (kinType == KINEMATICS_INVERSE_ONLY) {
		    emcmotDebug->teleoperating = 0;
		    emcmotDebug->coordinating = 0;
		}
	    }
	    break;

	case EMCMOT_ACTIVATE_JOINT:
	    /* make axis active, so that amps will be enabled when system is
	       enabled or disabled */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ACTIVATE_JOINT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    SET_JOINT_ACTIVE_FLAG(joint, 1);
	    break;

	case EMCMOT_DEACTIVATE_JOINT:
	    /* make axis inactive, so that amps won't be affected when system
	       is enabled or disabled */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DEACTIVATE_AXIS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    SET_JOINT_ACTIVE_FLAG(joint, 0);
	    break;
/*! \todo FIXME - need to replace the ext function */
	case EMCMOT_ENABLE_AMPLIFIER:
	    /* enable the amplifier directly, but don't enable calculations */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE_AMP");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
/*! \todo Another #if 0 */
#if 0
	    extAmpEnable(axis, 1);
#endif
	    break;

	case EMCMOT_DISABLE_AMPLIFIER:
	    /* disable the axis calculations and amplifier, but don't disable
	       calculations */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE_AMP");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
/*! \todo Another #if 0 */
#if 0
	    extAmpEnable(axis, 0);
#endif
	    break;

	case EMCMOT_HOME:
	    /* home the specified axis */
	    /* need to be in free mode, enable on */
	    /* this just sets the initial state, then the state machine in
	       control.c does the rest */
	    rtapi_print_msg(RTAPI_MSG_DBG, "HOME");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);

	    if (emcmotStatus->motion_state != EMCMOT_MOTION_FREE) {
		/* can't home unless in free mode */
		reportError("must be in joint mode to home");
		return;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		break;
	    }

	    if(joint_num == -1) {
                if(emcmotStatus->homingSequenceState == HOME_SEQUENCE_IDLE)
                    emcmotStatus->homingSequenceState = HOME_SEQUENCE_START;
                else
                    reportError("homing sequence already in progress");
		break;
	    }

	    if (joint == NULL) {
		break;
	    }

            if(joint->home_state != HOME_IDLE) {
                reportError("homing already in progress");
            } else if(emcmotStatus->homingSequenceState != HOME_SEQUENCE_IDLE) {
                reportError("homing sequence already in progress");
            } else {
                /* abort any movement (jog, etc) that is in progress */
                joint->free_tp_enable = 0;
                
                /* prime the homing state machine */
                joint->home_state = HOME_START;
            }
	    break;

	case EMCMOT_ENABLE_WATCHDOG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE_WATCHDOG");
/*! \todo Another #if 0 */
#if 0
	    emcmotDebug->wdEnabling = 1;
	    emcmotDebug->wdWait = emcmotCommand->wdWait;
	    if (emcmotDebug->wdWait < 0) {
		emcmotDebug->wdWait = 0;
	    }
#endif
	    break;

	case EMCMOT_DISABLE_WATCHDOG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE_WATCHDOG");
/*! \todo Another #if 0 */
#if 0
	    emcmotDebug->wdEnabling = 0;
#endif
	    break;

	case EMCMOT_CLEAR_PROBE_FLAGS:
	    rtapi_print_msg(RTAPI_MSG_DBG, "CLEAR_PROBE_FLAGS");
	    emcmotStatus->probing = 0;
	    break;

	case EMCMOT_PROBE:
	    /* most of this is taken from EMCMOT_SET_LINE */
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "PROBE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for probe move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("probe move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("probe move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do probe move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddLine(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->motion_type, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add probe move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		emcmotStatus->probing = 1;
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;


	case EMCMOT_RIGID_TAP:
	    /* most of this is taken from EMCMOT_SET_LINE */
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "RIGID_TAP");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for rigid tap move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("rigid tap move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("rigid tap move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do rigid tap move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddRigidTap(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add rigid tap move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
	    }
	    break;

	case EMCMOT_SET_TELEOP_VECTOR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_TELEOP_VECTOR");
	    if (!GET_MOTION_TELEOP_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in teleop mode for teleop move");
	    } else {
		double velmag;
		emcmotDebug->teleop_data.desiredVel = emcmotCommand->pos;
		pmCartMag(emcmotDebug->teleop_data.desiredVel.tran, &velmag);
		if (emcmotDebug->teleop_data.desiredVel.a > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.a;
		}
		if (emcmotDebug->teleop_data.desiredVel.b > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.b;
		}
		if (emcmotDebug->teleop_data.desiredVel.c > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.c;
		}
		if (velmag > emcmotConfig->limitVel) {
		    pmCartScalMult(emcmotDebug->teleop_data.desiredVel.tran,
			emcmotConfig->limitVel / velmag,
			&emcmotDebug->teleop_data.desiredVel.tran);
		    emcmotDebug->teleop_data.desiredVel.a *=
			emcmotConfig->limitVel / velmag;
		    emcmotDebug->teleop_data.desiredVel.b *=
			emcmotConfig->limitVel / velmag;
		    emcmotDebug->teleop_data.desiredVel.c *=
			emcmotConfig->limitVel / velmag;
		}
		/* flag that all joints need to be homed, if any joint is
		   jogged individually later */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_DEBUG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_DEBUG");
	    emcmotConfig->debug = emcmotCommand->debug;
	    emcmot_config_change();
	    break;

	/* needed for synchronous I/O */
	case EMCMOT_SET_AOUT:
	    if (emcmotCommand->now) { //we set it right away
		emcmotAioWrite(emcmotCommand->out, emcmotCommand->minLimit);
	    } else { // we put it on the TP queue, warning: only room for one in there, any new ones will overwrite
		tpSetAout(&emcmotDebug->queue, emcmotCommand->out,
		    emcmotCommand->start, emcmotCommand->end);
	    }
	    break;

	case EMCMOT_SET_DOUT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_DOUT");
	    if (emcmotCommand->now) { //we set it right away
		emcmotDioWrite(emcmotCommand->out, emcmotCommand->start);
	    } else { // we put it on the TP queue, warning: only room for one in there, any new ones will overwrite
		tpSetDout(&emcmotDebug->queue, emcmotCommand->out,
		    emcmotCommand->start, emcmotCommand->end);
	    }
	    break;

	case EMCMOT_SET_SPINDLE_VEL:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_SPINDLE_VEL");
	    emcmotStatus->spindle.speed = emcmotCommand->vel;
	    break;
	    
	case EMCMOT_SPINDLE_ON:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_ON");
	    emcmotStatus->spindle.speed = emcmotCommand->vel;
	    emcmotStatus->spindle.css_factor = emcmotCommand->ini_maxvel;
	    emcmotStatus->spindle.xoffset = emcmotCommand->acc;
	    if (emcmotCommand->vel >= 0) {
		emcmotStatus->spindle.direction = 1;
	    } else {
		emcmotStatus->spindle.direction = -1;
	    }
	    emcmotStatus->spindle.brake = 0; //disengage brake
	    break;

	case EMCMOT_SPINDLE_OFF:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_OFF");
	    emcmotStatus->spindle.speed = 0;
	    emcmotStatus->spindle.direction = 0;
	    emcmotStatus->spindle.brake = 1; // engage brake
	    break;

	case EMCMOT_SPINDLE_INCREASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_INCREASE");
	    if (emcmotStatus->spindle.speed > 0) {
		emcmotStatus->spindle.speed += 100; //FIXME - make the step a HAL parameter
	    } else if (emcmotStatus->spindle.speed < 0) {
		emcmotStatus->spindle.speed -= 100;
	    }
	    break;

	case EMCMOT_SPINDLE_DECREASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_DECREASE");
	    if (emcmotStatus->spindle.speed > 100) {
		emcmotStatus->spindle.speed -= 100; //FIXME - make the step a HAL parameter
	    } else if (emcmotStatus->spindle.speed < -100) {
		emcmotStatus->spindle.speed += 100;
	    }
	    break;

	case EMCMOT_SPINDLE_BRAKE_ENGAGE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_BRAKE_ENGAGE");
	    emcmotStatus->spindle.speed = 0;
	    emcmotStatus->spindle.direction = 0;
	    emcmotStatus->spindle.brake = 1;
	    break;

	case EMCMOT_SPINDLE_BRAKE_RELEASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_BRAKE_RELEASE");
	    emcmotStatus->spindle.brake = 0;
	    break;

	case EMCMOT_SET_JOINT_COMP:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_COMP for joint %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    if (joint->comp.entries >= EMCMOT_COMP_SIZE) {
		reportError("joint %d: too many compensation entries", joint_num);
		break;
	    }
	    /* point to last entry */
	    comp_entry = &(joint->comp.array[joint->comp.entries]);
	    if (emcmotCommand->comp_nominal <= comp_entry[0].nominal) {
		reportError("joint %d: compensation values must increase", joint_num);
		break;
	    }
	    /* store data to new entry */
	    comp_entry[1].nominal = emcmotCommand->comp_nominal;
	    comp_entry[1].fwd_trim = emcmotCommand->comp_forward;
	    comp_entry[1].rev_trim = emcmotCommand->comp_reverse;
	    /* calculate slopes from previous entry to the new one */
	    if ( comp_entry[0].nominal != -HUGE_VAL ) {
		/* but only if the previous entry is "real" */
		tmp1 = comp_entry[1].nominal - comp_entry[0].nominal;
		comp_entry[0].fwd_slope =
		    (comp_entry[1].fwd_trim - comp_entry[0].fwd_trim) / tmp1;
		comp_entry[0].rev_slope =
		    (comp_entry[1].rev_trim - comp_entry[0].rev_trim) / tmp1;
	    } else {
		/* previous entry is at minus infinity, slopes are zero */
		comp_entry[0].fwd_trim = comp_entry[1].fwd_trim;
		comp_entry[0].rev_trim = comp_entry[1].rev_trim;
	    }
	    joint->comp.entries++;
	    break;

	default:
	    rtapi_print_msg(RTAPI_MSG_DBG, "UNKNOWN");
	    reportError("unrecognized command %d", emcmotCommand->command);
	    emcmotStatus->commandStatus = EMCMOT_COMMAND_UNKNOWN_COMMAND;
	    break;

	}			/* end of: command switch */
	if (emcmotStatus->commandStatus != EMCMOT_COMMAND_OK) {
	    rtapi_print_msg(RTAPI_MSG_DBG, "ERRROR: %d",
		emcmotStatus->commandStatus);
	}
	rtapi_print_msg(RTAPI_MSG_DBG, "\n");
	/* synch tail count */
	emcmotStatus->tail = emcmotStatus->head;
	emcmotConfig->tail = emcmotConfig->head;
	emcmotDebug->tail = emcmotDebug->head;

    }
    /* end of: if-new-command */
check_stuff ( "after command_handler()" );

    return;
}