Пример #1
0
/*
 * uvm_loanbreak: break loan on a uobj page
 *
 * => called with uobj locked
 * => the page should be busy
 * => return value:
 *	newly allocated page if succeeded
 */
struct vm_page *
uvm_loanbreak(struct vm_page *uobjpage)
{
	struct vm_page *pg;
#ifdef DIAGNOSTIC
	struct uvm_object *uobj = uobjpage->uobject;
#endif

	KASSERT(uobj != NULL);
	KASSERT(mutex_owned(&uobj->vmobjlock));
	KASSERT(uobjpage->flags & PG_BUSY);

	/* alloc new un-owned page */
	pg = uvm_pagealloc(NULL, 0, NULL, 0);
	if (pg == NULL)
		return NULL;

	/*
	 * copy the data from the old page to the new
	 * one and clear the fake flags on the new page (keep it busy).
	 * force a reload of the old page by clearing it from all
	 * pmaps.
	 * transfer dirtiness of the old page to the new page.
	 * then lock the page queues to rename the pages.
	 */

	uvm_pagecopy(uobjpage, pg);	/* old -> new */
	pg->flags &= ~PG_FAKE;
	pmap_page_protect(uobjpage, VM_PROT_NONE);
	if ((uobjpage->flags & PG_CLEAN) != 0 && !pmap_clear_modify(uobjpage)) {
		pmap_clear_modify(pg);
		pg->flags |= PG_CLEAN;
	} else {
		/* uvm_pagecopy marked it dirty */
		KASSERT((pg->flags & PG_CLEAN) == 0);
		/* a object with a dirty page should be dirty. */
		KASSERT(!UVM_OBJ_IS_CLEAN(uobj));
	}
	if (uobjpage->flags & PG_WANTED)
		wakeup(uobjpage);
	/* uobj still locked */
	uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
	UVM_PAGE_OWN(uobjpage, NULL);

	mutex_enter(&uvm_pageqlock);

	/*
	 * replace uobjpage with new page.
	 */

	uvm_pagereplace(uobjpage, pg);

	/*
	 * if the page is no longer referenced by
	 * an anon (i.e. we are breaking an O->K
	 * loan), then remove it from any pageq's.
	 */
	if (uobjpage->uanon == NULL)
		uvm_pagedequeue(uobjpage);

	/*
	 * at this point we have absolutely no
	 * control over uobjpage
	 */

	/* install new page */
	uvm_pageactivate(pg);
	mutex_exit(&uvm_pageqlock);

	/*
	 * done!  loan is broken and "pg" is
	 * PG_BUSY.   it can now replace uobjpage.
	 */

	return pg;
}
Пример #2
0
int
uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    struct vm_anon *anon)
{
	boolean_t we_own;	/* we own anon's page? */
	boolean_t locked;	/* did we relock? */
	struct vm_page *pg;
	int result;

	result = 0;		/* XXX shut up gcc */
	uvmexp.fltanget++;
        /* bump rusage counters */
	if (anon->an_page)
		curproc->p_ru.ru_minflt++;
	else
		curproc->p_ru.ru_majflt++;

	/* 
	 * loop until we get it, or fail.
	 */

	while (1) {

		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
		pg = anon->an_page;

		/*
		 * if there is a resident page and it is loaned, then anon
		 * may not own it.   call out to uvm_anon_lockpage() to ensure
		 * the real owner of the page has been identified and locked.
		 */

		if (pg && pg->loan_count)
			pg = uvm_anon_lockloanpg(anon);

		/*
		 * page there?   make sure it is not busy/released.
		 */

		if (pg) {

			/*
			 * at this point, if the page has a uobject [meaning
			 * we have it on loan], then that uobject is locked
			 * by us!   if the page is busy, we drop all the
			 * locks (including uobject) and try again.
			 */

			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) {
				return (VM_PAGER_OK);
			}
			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
			uvmexp.fltpgwait++;

			/*
			 * the last unlock must be an atomic unlock+wait on
			 * the owner of page
			 */
			if (pg->uobject) {	/* owner is uobject ? */
				uvmfault_unlockall(ufi, amap, NULL, anon);
				UVM_UNLOCK_AND_WAIT(pg,
				    &pg->uobject->vmobjlock,
				    FALSE, "anonget1",0);
			} else {
				/* anon owns page */
				uvmfault_unlockall(ufi, amap, NULL, NULL);
				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
				    "anonget2",0);
			}
			/* ready to relock and try again */

		} else {
		
			/*
			 * no page, we must try and bring it in.
			 */
			pg = uvm_pagealloc(NULL, 0, anon, 0);

			if (pg == NULL) {		/* out of RAM.  */

				uvmfault_unlockall(ufi, amap, NULL, anon);
				uvmexp.fltnoram++;
				uvm_wait("flt_noram1");
				/* ready to relock and try again */

			} else {
	
				/* we set the PG_BUSY bit */
				we_own = TRUE;	
				uvmfault_unlockall(ufi, amap, NULL, anon);

				/*
				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
				 * page into the uvm_swap_get function with
				 * all data structures unlocked.  note that
				 * it is ok to read an_swslot here because
				 * we hold PG_BUSY on the page.
				 */
				uvmexp.pageins++;
				result = uvm_swap_get(pg, anon->an_swslot,
				    PGO_SYNCIO);

				/*
				 * we clean up after the i/o below in the
				 * "we_own" case
				 */
				/* ready to relock and try again */
			}
		}

		/*
		 * now relock and try again
		 */

		locked = uvmfault_relock(ufi);
		if (locked || we_own)
			simple_lock(&anon->an_lock);

		/*
		 * if we own the page (i.e. we set PG_BUSY), then we need
		 * to clean up after the I/O. there are three cases to
		 * consider:
		 *   [1] page released during I/O: free anon and ReFault.
		 *   [2] I/O not OK.   free the page and cause the fault 
		 *       to fail.
		 *   [3] I/O OK!   activate the page and sync with the
		 *       non-we_own case (i.e. drop anon lock if not locked).
		 */
		
		if (we_own) {

			if (pg->pg_flags & PG_WANTED) {
				/* still holding object lock */
				wakeup(pg);	
			}
			/* un-busy! */
			atomic_clearbits_int(&pg->pg_flags,
			    PG_WANTED|PG_BUSY|PG_FAKE);
			UVM_PAGE_OWN(pg, NULL);

			/* 
			 * if we were RELEASED during I/O, then our anon is
			 * no longer part of an amap.   we need to free the
			 * anon and try again.
			 */
			if (pg->pg_flags & PG_RELEASED) {
				pmap_page_protect(pg, VM_PROT_NONE);
				simple_unlock(&anon->an_lock);
				uvm_anfree(anon);	/* frees page for us */
				if (locked)
					uvmfault_unlockall(ufi, amap, NULL,
							   NULL);
				uvmexp.fltpgrele++;
				return (VM_PAGER_REFAULT);	/* refault! */
			}

			if (result != VM_PAGER_OK) {
				KASSERT(result != VM_PAGER_PEND);

				/* remove page from anon */
				anon->an_page = NULL;

				/*
				 * remove the swap slot from the anon
				 * and mark the anon as having no real slot.
				 * don't free the swap slot, thus preventing
				 * it from being used again.
				 */
				uvm_swap_markbad(anon->an_swslot, 1);
				anon->an_swslot = SWSLOT_BAD;

				/*
				 * note: page was never !PG_BUSY, so it
				 * can't be mapped and thus no need to
				 * pmap_page_protect it...
				 */
				uvm_lock_pageq();
				uvm_pagefree(pg);
				uvm_unlock_pageq();

				if (locked)
					uvmfault_unlockall(ufi, amap, NULL,
					    anon);
				else
					simple_unlock(&anon->an_lock);
				return (VM_PAGER_ERROR);
			}
			
			/*
			 * must be OK, clear modify (already PG_CLEAN)
			 * and activate
			 */
			pmap_clear_modify(pg);
			uvm_lock_pageq();
			uvm_pageactivate(pg);
			uvm_unlock_pageq();
			if (!locked)
				simple_unlock(&anon->an_lock);
		}

		/*
		 * we were not able to relock.   restart fault.
		 */

		if (!locked)
			return (VM_PAGER_REFAULT);

		/*
		 * verify no one has touched the amap and moved the anon on us.
		 */

		if (ufi != NULL &&
		    amap_lookup(&ufi->entry->aref, 
				ufi->orig_rvaddr - ufi->entry->start) != anon) {
			
			uvmfault_unlockall(ufi, amap, NULL, anon);
			return (VM_PAGER_REFAULT);
		}
			
		/*
		 * try it again! 
		 */

		uvmexp.fltanretry++;
		continue;

	} /* while (1) */

	/*NOTREACHED*/
}