/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write, unsigned long mmu_meh) { struct vm_area_struct *vma = NULL; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; int si_code; int fault; unsigned long address = mmu_meh & PAGE_MASK; si_code = SEGV_MAPERR; #ifndef CONFIG_CPU_HAS_TLBI /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(address >= VMALLOC_START) && unlikely(address <= VMALLOC_END)) { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = __pgd_offset(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; unsigned long pgd_base; pgd_base = tlb_get_pgd(); pgd = (pgd_t *)pgd_base + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; set_pgd(pgd, *pgd_k); pud = (pud_t *)pgd; pud_k = (pud_t *)pgd_k; if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } #endif /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: si_code = SEGV_ACCERR; if (write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, address, write ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; else if (fault & VM_FAULT_SIGSEGV) goto bad_area; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { force_sig_fault(SIGSEGV, si_code, (void __user *)address, current); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); pr_alert("Unable to handle kernel paging request at virtual " "address 0x%08lx, pc: 0x%08lx\n", address, regs->pc); die_if_kernel("Oops", regs, write); out_of_memory: /* * We ran out of memory, call the OOM killer, and return the userspace * (which will retry the fault, or kill us if we got oom-killed). */ pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current); }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write, unsigned long address) { struct vm_area_struct * vma = NULL; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; const int field = sizeof(unsigned long) * 2; siginfo_t info; int fault; #if 0 printk("Cpu%d[%s:%d:%0*lx:%ld:%0*lx]\n", raw_smp_processor_id(), current->comm, current->pid, field, address, write, field, regs->cp0_epc); #endif info.si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(address >= VMALLOC_START && address <= VMALLOC_END)) goto vmalloc_fault; #ifdef MODULE_START if (unlikely(address >= MODULE_START && address < MODULE_END)) goto vmalloc_fault; #endif /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { tsk->thread.cp0_badvaddr = address; tsk->thread.error_code = write; #if 0 printk("do_page_fault() #2: sending SIGSEGV to %s for " "invalid %s\n%0*lx (epc == %0*lx, ra == %0*lx)\n", tsk->comm, write ? "write access to" : "read access from", field, address, field, (unsigned long) regs->cp0_epc, field, (unsigned long) regs->regs[31]); #endif info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void __user *) address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) { current->thread.cp0_baduaddr = address; return; } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); printk(KERN_ALERT "CPU %d Unable to handle kernel paging request at " "virtual address %0*lx, epc == %0*lx, ra == %0*lx\n", raw_smp_processor_id(), field, address, field, regs->cp0_epc, field, regs->regs[31]); die("Oops", regs); out_of_memory: /* * We ran out of memory, call the OOM killer, and return the userspace * (which will retry the fault, or kill us if we got oom-killed). */ up_read(&mm->mmap_sem); pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; else /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ #if 0 printk("do_page_fault() #3: sending SIGBUS to %s for " "invalid %s\n%0*lx (epc == %0*lx, ra == %0*lx)\n", tsk->comm, write ? "write access to" : "read access from", field, address, field, (unsigned long) regs->cp0_epc, field, (unsigned long) regs->regs[31]); #endif tsk->thread.cp0_badvaddr = address; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *) address; force_sig_info(SIGBUS, &info, tsk); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = __pgd_offset(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *) pgd_current[raw_smp_processor_id()] + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; set_pgd(pgd, *pgd_k); pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } }
static void __init map_node(int node) { #define PTRTREESIZE (256*1024) #define ROOTTREESIZE (32*1024*1024) unsigned long physaddr, virtaddr, size; pgd_t *pgd_dir; pmd_t *pmd_dir; pte_t *pte_dir; size = m68k_memory[node].size; physaddr = m68k_memory[node].addr; virtaddr = (unsigned long)phys_to_virt(physaddr); physaddr |= m68k_supervisor_cachemode | _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY; if (CPU_IS_040_OR_060) physaddr |= _PAGE_GLOBAL040; while (size > 0) { #ifdef DEBUG if (!(virtaddr & (PTRTREESIZE-1))) printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK, virtaddr); #endif pgd_dir = pgd_offset_k(virtaddr); if (virtaddr && CPU_IS_020_OR_030) { if (!(virtaddr & (ROOTTREESIZE-1)) && size >= ROOTTREESIZE) { #ifdef DEBUG printk ("[very early term]"); #endif pgd_val(*pgd_dir) = physaddr; size -= ROOTTREESIZE; virtaddr += ROOTTREESIZE; physaddr += ROOTTREESIZE; continue; } } if (!pgd_present(*pgd_dir)) { pmd_dir = kernel_ptr_table(); #ifdef DEBUG printk ("[new pointer %p]", pmd_dir); #endif pgd_set(pgd_dir, pmd_dir); } else pmd_dir = pmd_offset(pgd_dir, virtaddr); if (CPU_IS_020_OR_030) { if (virtaddr) { #ifdef DEBUG printk ("[early term]"); #endif pmd_dir->pmd[(virtaddr/PTRTREESIZE) & 15] = physaddr; physaddr += PTRTREESIZE; } else { int i; #ifdef DEBUG printk ("[zero map]"); #endif zero_pgtable = kernel_ptr_table(); pte_dir = (pte_t *)zero_pgtable; pmd_dir->pmd[0] = virt_to_phys(pte_dir) | _PAGE_TABLE | _PAGE_ACCESSED; pte_val(*pte_dir++) = 0; physaddr += PAGE_SIZE; for (i = 1; i < 64; physaddr += PAGE_SIZE, i++) pte_val(*pte_dir++) = physaddr; } size -= PTRTREESIZE; virtaddr += PTRTREESIZE; } else { if (!pmd_present(*pmd_dir)) { #ifdef DEBUG printk ("[new table]"); #endif pte_dir = kernel_page_table(); pmd_set(pmd_dir, pte_dir); } pte_dir = pte_offset_kernel(pmd_dir, virtaddr); if (virtaddr) { if (!pte_present(*pte_dir)) pte_val(*pte_dir) = physaddr; } else pte_val(*pte_dir) = 0; size -= PAGE_SIZE; virtaddr += PAGE_SIZE; physaddr += PAGE_SIZE; } } #ifdef DEBUG printk("\n"); #endif }
void do_page_fault(struct pt_regs *regs) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; unsigned int exccause = regs->exccause; unsigned int address = regs->excvaddr; siginfo_t info; int is_write, is_exec; int fault; unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; info.si_code = SEGV_MAPERR; /* We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. */ if (address >= TASK_SIZE && !user_mode(regs)) goto vmalloc_fault; /* If we're in an interrupt or have no user * context, we must not take the fault.. */ if (faulthandler_disabled() || !mm) { bad_page_fault(regs, address, SIGSEGV); return; } is_write = (exccause == EXCCAUSE_STORE_CACHE_ATTRIBUTE) ? 1 : 0; is_exec = (exccause == EXCCAUSE_ITLB_PRIVILEGE || exccause == EXCCAUSE_ITLB_MISS || exccause == EXCCAUSE_FETCH_CACHE_ATTRIBUTE) ? 1 : 0; #ifdef DEBUG_PAGE_FAULT printk("[%s:%d:%08x:%d:%08x:%s%s]\n", current->comm, current->pid, address, exccause, regs->pc, is_write? "w":"", is_exec? "x":""); #endif if (user_mode(regs)) flags |= FAULT_FLAG_USER; retry: down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; flags |= FAULT_FLAG_WRITE; } else if (is_exec) { if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else /* Allow read even from write-only pages. */ if (!(vma->vm_flags & (VM_READ | VM_WRITE))) goto bad_area; /* If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, address, flags); if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) return; if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGSEGV) goto bad_area; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (flags & FAULT_FLAG_ALLOW_RETRY) { if (fault & VM_FAULT_MAJOR) current->maj_flt++; else current->min_flt++; if (fault & VM_FAULT_RETRY) { flags &= ~FAULT_FLAG_ALLOW_RETRY; flags |= FAULT_FLAG_TRIED; /* No need to up_read(&mm->mmap_sem) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } } up_read(&mm->mmap_sem); perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); if (flags & VM_FAULT_MAJOR) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); return; /* Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); if (user_mode(regs)) { current->thread.bad_vaddr = address; current->thread.error_code = is_write; info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, current); return; } bad_page_fault(regs, address, SIGSEGV); return; /* We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (!user_mode(regs)) bad_page_fault(regs, address, SIGKILL); else pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* Send a sigbus, regardless of whether we were in kernel * or user mode. */ current->thread.bad_vaddr = address; info.si_code = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *) address; force_sig_info(SIGBUS, &info, current); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) bad_page_fault(regs, address, SIGBUS); return; vmalloc_fault: { /* Synchronize this task's top level page-table * with the 'reference' page table. */ struct mm_struct *act_mm = current->active_mm; int index = pgd_index(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; if (act_mm == NULL) goto bad_page_fault; pgd = act_mm->pgd + index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) goto bad_page_fault; pgd_val(*pgd) = pgd_val(*pgd_k); pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (!pmd_present(*pmd) || !pmd_present(*pmd_k)) goto bad_page_fault; pmd_val(*pmd) = pmd_val(*pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto bad_page_fault; return; } bad_page_fault: bad_page_fault(regs, address, SIGKILL); return; }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write, unsigned long address) { #ifdef NO_MM show_regs(regs); panic("do_page_fault - should not happen."); #else struct vm_area_struct * vma; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; unsigned long fixup; siginfo_t info; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (address >= VMALLOC_START) goto vmalloc_fault; info.si_code = SEGV_MAPERR; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context; #if 0 printk("[%s:%d:%08lx:%ld:%08lx]\n", current->comm, current->pid, address, write, regs->cp0_epc); #endif down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { case 1: tsk->min_flt++; break; case 2: tsk->maj_flt++; break; case 0: goto do_sigbus; default: goto out_of_memory; } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { tsk->thread.cp0_badvaddr = address; tsk->thread.error_code = write; #if 0 printk("do_page_fault() #2: sending SIGSEGV to %s for illegal %s\n" "%08lx (epc == %08lx, ra == %08lx)\n", tsk->comm, write ? "write access to" : "read access from", address, (unsigned long) regs->cp0_epc, (unsigned long) regs->regs[31]); #endif info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? */ fixup = search_exception_table(exception_epc(regs)); if (fixup) { long new_epc; tsk->thread.cp0_baduaddr = address; new_epc = fixup_exception(dpf_reg, fixup, regs->cp0_epc); if (development_version) printk(KERN_DEBUG "%s: Exception at [<%lx>] (%lx)\n", tsk->comm, regs->cp0_epc, new_epc); regs->cp0_epc = new_epc; return; } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ printk(KERN_ALERT "Unable to handle kernel paging request at virtual " "address %08lx, epc == %08lx, ra == %08lx\n", address, regs->cp0_epc, regs->regs[31]); die("Oops", regs); /* Game over. */ /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (tsk->pid == 1) { tsk->policy |= SCHED_YIELD; schedule(); down_read(&mm->mmap_sem); goto survive; } printk(KERN_NOTICE "VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.cp0_badvaddr = address; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *) address; force_sig_info(SIGBUS, &info, tsk); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pgd = tsk->active_mm->pgd + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd)) { if (!pgd_present(*pgd_k)) goto bad_area_nosemaphore; set_pgd(pgd, *pgd_k); return; } pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (pmd_present(*pmd) || !pmd_present(*pmd_k)) goto bad_area_nosemaphore; set_pmd(pmd, *pmd_k); } #endif /* endof NO_MM */ }
static void fix_range(struct mm_struct *mm, unsigned long start_addr, unsigned long end_addr, int force) { pgd_t *npgd; pmd_t *npmd; pte_t *npte; unsigned long addr; int r, w, x, err; if((current->thread.mode.tt.extern_pid != -1) && (current->thread.mode.tt.extern_pid != os_getpid())) panic("fix_range fixing wrong address space, current = 0x%p", current); if(mm == NULL) return; for(addr=start_addr;addr<end_addr;){ if(addr == TASK_SIZE){ /* Skip over kernel text, kernel data, and physical * memory, which don't have ptes, plus kernel virtual * memory, which is flushed separately, and remap * the process stack. The only way to get here is * if (end_addr == STACK_TOP) > TASK_SIZE, which is * only true in the honeypot case. */ addr = STACK_TOP - ABOVE_KMEM; continue; } npgd = pgd_offset(mm, addr); npmd = pmd_offset(npgd, addr); if(pmd_present(*npmd)){ npte = pte_offset_kernel(npmd, addr); r = pte_read(*npte); w = pte_write(*npte); x = pte_exec(*npte); if(!pte_dirty(*npte)) w = 0; if(!pte_young(*npte)){ r = 0; w = 0; } if(force || pte_newpage(*npte)){ err = os_unmap_memory((void *) addr, PAGE_SIZE); if(err < 0) panic("munmap failed, errno = %d\n", -err); if(pte_present(*npte)) map_memory(addr, pte_val(*npte) & PAGE_MASK, PAGE_SIZE, r, w, x); } else if(pte_newprot(*npte)){ protect_memory(addr, PAGE_SIZE, r, w, x, 1); } *npte = pte_mkuptodate(*npte); addr += PAGE_SIZE; } else { if(force || pmd_newpage(*npmd)){ err = os_unmap_memory((void *) addr, PMD_SIZE); if(err < 0) panic("munmap failed, errno = %d\n", -err); pmd_mkuptodate(*npmd); } addr += PMD_SIZE; } } }
void do_page_fault(struct pt_regs *regs) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; unsigned int exccause = regs->exccause; unsigned int address = regs->excvaddr; siginfo_t info; int is_write, is_exec; int fault; info.si_code = SEGV_MAPERR; if (address >= TASK_SIZE && !user_mode(regs)) goto vmalloc_fault; if (in_atomic() || !mm) { bad_page_fault(regs, address, SIGSEGV); return; } is_write = (exccause == EXCCAUSE_STORE_CACHE_ATTRIBUTE) ? 1 : 0; is_exec = (exccause == EXCCAUSE_ITLB_PRIVILEGE || exccause == EXCCAUSE_ITLB_MISS || exccause == EXCCAUSE_FETCH_CACHE_ATTRIBUTE) ? 1 : 0; #ifdef DEBUG_PAGE_FAULT printk("[%s:%d:%08x:%d:%08x:%s%s]\n", current->comm, current->pid, address, exccause, regs->pc, is_write? "w":"", is_exec? "x":""); #endif down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; good_area: info.si_code = SEGV_ACCERR; if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else if (is_exec) { if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else if (!(vma->vm_flags & (VM_READ | VM_WRITE))) goto bad_area; fault = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) current->maj_flt++; else current->min_flt++; up_read(&mm->mmap_sem); return; bad_area: up_read(&mm->mmap_sem); if (user_mode(regs)) { current->thread.bad_vaddr = address; current->thread.error_code = is_write; info.si_signo = SIGSEGV; info.si_errno = 0; info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, current); return; } bad_page_fault(regs, address, SIGSEGV); return; out_of_memory: up_read(&mm->mmap_sem); if (!user_mode(regs)) bad_page_fault(regs, address, SIGKILL); else pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); current->thread.bad_vaddr = address; info.si_code = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *) address; force_sig_info(SIGBUS, &info, current); if (!user_mode(regs)) bad_page_fault(regs, address, SIGBUS); vmalloc_fault: { struct mm_struct *act_mm = current->active_mm; int index = pgd_index(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; if (act_mm == NULL) goto bad_page_fault; pgd = act_mm->pgd + index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) goto bad_page_fault; pgd_val(*pgd) = pgd_val(*pgd_k); pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (!pmd_present(*pmd) || !pmd_present(*pmd_k)) goto bad_page_fault; pmd_val(*pmd) = pmd_val(*pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto bad_page_fault; return; } bad_page_fault: bad_page_fault(regs, address, SIGKILL); return; }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write, unsigned long address) { struct vm_area_struct * vma = NULL; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; const int field = sizeof(unsigned long) * 2; siginfo_t info; #if 0 printk("Cpu%d[%s:%d:%0*lx:%ld:%0*lx]\n", smp_processor_id(), current->comm, current->pid, field, address, write, field, regs->cp0_epc); #endif #ifdef CONFIG_CAVIUM_OCTEON_HW_FIX_UNALIGNED /* * Normally the FPU emulator uses a load word from address one to retake * control of the CPU after executing the instruction in the delay slot * of an emulated branch. The Octeon hardware unaligned access fix changes * this from an address exception into a TLB exception. This code checks * to see if this page fault was caused by an FPU emulation. * * Terminate if exception was recognized as a delay slot return */ extern int do_dsemulret(struct pt_regs *); if (do_dsemulret(regs)) return; #endif info.si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(address >= VMALLOC_START)) goto vmalloc_fault; ltt_ev_trap_entry(CAUSE_EXCCODE(regs), CAUSE_EPC(regs)); /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: goto do_sigbus; case VM_FAULT_OOM: goto out_of_memory; default: BUG(); } up_read(&mm->mmap_sem); ltt_ev_trap_exit(); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { tsk->thread.cp0_badvaddr = address; tsk->thread.error_code = write; #if 0 printk("do_page_fault() #2: sending SIGSEGV to %s for " "invalid %s\n%0*lx (epc == %0*lx, ra == %0*lx)\n", tsk->comm, write ? "write access to" : "read access from", field, address, field, (unsigned long) regs->cp0_epc, field, (unsigned long) regs->regs[31]); #endif info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, tsk); ltt_ev_trap_exit(); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) { current->thread.cp0_baduaddr = address; return; } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); printk(KERN_ALERT "CPU %d Unable to handle kernel paging request at " "virtual address %0*lx, epc == %0*lx, ra == %0*lx\n", smp_processor_id(), field, address, field, regs->cp0_epc, field, regs->regs[31]); die("Oops", regs); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (tsk->pid == 1) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.cp0_badvaddr = address; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *) address; force_sig_info(SIGBUS, &info, tsk); ltt_ev_trap_exit(); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = __pgd_offset(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *) pgd_current[smp_processor_id()] + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; set_pgd(pgd, *pgd_k); pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } ltt_ev_trap_exit(); }
/** * page_vma_mapped_walk - check if @pvmw->page is mapped in @pvmw->vma at * @pvmw->address * @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags * must be set. pmd, pte and ptl must be NULL. * * Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point * to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is * adjusted if needed (for PTE-mapped THPs). * * If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page * (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in * a loop to find all PTEs that map the THP. * * For HugeTLB pages, @pvmw->pte is set to the relevant page table entry * regardless of which page table level the page is mapped at. @pvmw->pmd is * NULL. * * Retruns false if there are no more page table entries for the page in * the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped. * * If you need to stop the walk before page_vma_mapped_walk() returned false, * use page_vma_mapped_walk_done(). It will do the housekeeping. */ bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw) { struct mm_struct *mm = pvmw->vma->vm_mm; struct page *page = pvmw->page; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t pmde; /* The only possible pmd mapping has been handled on last iteration */ if (pvmw->pmd && !pvmw->pte) return not_found(pvmw); if (pvmw->pte) goto next_pte; if (unlikely(PageHuge(pvmw->page))) { /* when pud is not present, pte will be NULL */ pvmw->pte = huge_pte_offset(mm, pvmw->address, PAGE_SIZE << compound_order(page)); if (!pvmw->pte) return false; pvmw->ptl = huge_pte_lockptr(page_hstate(page), mm, pvmw->pte); spin_lock(pvmw->ptl); if (!check_pte(pvmw)) return not_found(pvmw); return true; } restart: pgd = pgd_offset(mm, pvmw->address); if (!pgd_present(*pgd)) return false; p4d = p4d_offset(pgd, pvmw->address); if (!p4d_present(*p4d)) return false; pud = pud_offset(p4d, pvmw->address); if (!pud_present(*pud)) return false; pvmw->pmd = pmd_offset(pud, pvmw->address); /* * Make sure the pmd value isn't cached in a register by the * compiler and used as a stale value after we've observed a * subsequent update. */ pmde = READ_ONCE(*pvmw->pmd); if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde)) { pvmw->ptl = pmd_lock(mm, pvmw->pmd); if (likely(pmd_trans_huge(*pvmw->pmd))) { if (pvmw->flags & PVMW_MIGRATION) return not_found(pvmw); if (pmd_page(*pvmw->pmd) != page) return not_found(pvmw); return true; } else if (!pmd_present(*pvmw->pmd)) { if (thp_migration_supported()) { if (!(pvmw->flags & PVMW_MIGRATION)) return not_found(pvmw); if (is_migration_entry(pmd_to_swp_entry(*pvmw->pmd))) { swp_entry_t entry = pmd_to_swp_entry(*pvmw->pmd); if (migration_entry_to_page(entry) != page) return not_found(pvmw); return true; } } return not_found(pvmw); } else { /* THP pmd was split under us: handle on pte level */ spin_unlock(pvmw->ptl); pvmw->ptl = NULL; } } else if (!pmd_present(pmde)) { return false; } if (!map_pte(pvmw)) goto next_pte; while (1) { if (check_pte(pvmw)) return true; next_pte: /* Seek to next pte only makes sense for THP */ if (!PageTransHuge(pvmw->page) || PageHuge(pvmw->page)) return not_found(pvmw); do { pvmw->address += PAGE_SIZE; if (pvmw->address >= pvmw->vma->vm_end || pvmw->address >= __vma_address(pvmw->page, pvmw->vma) + hpage_nr_pages(pvmw->page) * PAGE_SIZE) return not_found(pvmw); /* Did we cross page table boundary? */ if (pvmw->address % PMD_SIZE == 0) { pte_unmap(pvmw->pte); if (pvmw->ptl) { spin_unlock(pvmw->ptl); pvmw->ptl = NULL; } goto restart; } else { pvmw->pte++; } } while (pte_none(*pvmw->pte)); if (!pvmw->ptl) { pvmw->ptl = pte_lockptr(mm, pvmw->pmd); spin_lock(pvmw->ptl); } } }
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long vector, int write_acc) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct *vma; siginfo_t info; int fault; unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; tsk = current; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * NOTE2: This is done so that, when updating the vmalloc * mappings we don't have to walk all processes pgdirs and * add the high mappings all at once. Instead we do it as they * are used. However vmalloc'ed page entries have the PAGE_GLOBAL * bit set so sometimes the TLB can use a lingering entry. * * This verifies that the fault happens in kernel space * and that the fault was not a protection error. */ if (address >= VMALLOC_START && (vector != 0x300 && vector != 0x400) && !user_mode(regs)) goto vmalloc_fault; /* If exceptions were enabled, we can reenable them here */ if (user_mode(regs)) { /* Exception was in userspace: reenable interrupts */ local_irq_enable(); flags |= FAULT_FLAG_USER; } else { /* If exception was in a syscall, then IRQ's may have * been enabled or disabled. If they were enabled, * reenable them. */ if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE)) local_irq_enable(); } mm = tsk->mm; info.si_code = SEGV_MAPERR; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context; retry: down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (user_mode(regs)) { /* * accessing the stack below usp is always a bug. * we get page-aligned addresses so we can only check * if we're within a page from usp, but that might be * enough to catch brutal errors at least. */ if (address + PAGE_SIZE < regs->sp) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; /* first do some preliminary protection checks */ if (write_acc) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; flags |= FAULT_FLAG_WRITE; } else { /* not present */ if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } /* are we trying to execute nonexecutable area */ if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC)) goto bad_area; /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, flags); if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) return; if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGSEGV) goto bad_area; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (flags & FAULT_FLAG_ALLOW_RETRY) { /*RGD modeled on Cris */ if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; if (fault & VM_FAULT_RETRY) { flags &= ~FAULT_FLAG_ALLOW_RETRY; flags |= FAULT_FLAG_TRIED; /* No need to up_read(&mm->mmap_sem) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *)address; force_sig_info(SIGSEGV, &info, tsk); printk("%s%s[%d]: segfault at %lx pc %p sp %p\n", task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, tsk->comm, task_pid_nr(tsk), address, (void *)regs->pc, (void *)regs->sp); return; } no_context: /* Are we prepared to handle this kernel fault? * * (The kernel has valid exception-points in the source * when it acesses user-memory. When it fails in one * of those points, we find it in a table and do a jump * to some fixup code that loads an appropriate error * code) */ { const struct exception_table_entry *entry; __asm__ __volatile__("l.nop 42"); if ((entry = search_exception_tables(regs->pc)) != NULL) { /* Adjust the instruction pointer in the stackframe */ regs->pc = entry->fixup; return; } } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ if ((unsigned long)(address) < PAGE_SIZE) printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); else printk(KERN_ALERT "Unable to handle kernel access"); printk(" at virtual address 0x%08lx\n", address); die("Oops", regs, write_acc); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: __asm__ __volatile__("l.nop 42"); __asm__ __volatile__("l.nop 1"); up_read(&mm->mmap_sem); if (!user_mode(regs)) goto no_context; pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *)address; force_sig_info(SIGBUS, &info, tsk); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Use current_pgd instead of tsk->active_mm->pgd * since the latter might be unavailable if this * code is executed in a misfortunately run irq * (like inside schedule() between switch_mm and * switch_to...). */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; /* phx_warn("do_page_fault(): vmalloc_fault will not work, " "since current_pgd assign a proper value somewhere\n" "anyhow we don't need this at the moment\n"); phx_mmu("vmalloc_fault"); */ pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset; pgd_k = init_mm.pgd + offset; /* Since we're two-level, we don't need to do both * set_pgd and set_pmd (they do the same thing). If * we go three-level at some point, do the right thing * with pgd_present and set_pgd here. * * Also, since the vmalloc area is global, we don't * need to copy individual PTE's, it is enough to * copy the pgd pointer into the pte page of the * root task. If that is there, we'll find our pte if * it exists. */ pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto bad_area_nosemaphore; set_pmd(pmd, *pmd_k); /* Make sure the actual PTE exists as well to * catch kernel vmalloc-area accesses to non-mapped * addresses. If we don't do this, this will just * silently loop forever. */ pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long cause, unsigned long address) { struct vm_area_struct *vma = NULL; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; int code = SEGV_MAPERR; int fault; unsigned int flags = 0; cause >>= 2; /* Restart the instruction */ regs->ea -= 4; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(address >= VMALLOC_START && address <= VMALLOC_END)) { if (user_mode(regs)) goto bad_area_nosemaphore; else goto vmalloc_fault; } if (unlikely(address >= TASK_SIZE)) goto bad_area_nosemaphore; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; if (user_mode(regs)) flags |= FAULT_FLAG_USER; if (!down_read_trylock(&mm->mmap_sem)) { if (!user_mode(regs) && !search_exception_tables(regs->ea)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: code = SEGV_ACCERR; switch (cause) { case EXC_SUPERV_INSN_ACCESS: goto bad_area; case EXC_SUPERV_DATA_ACCESS: goto bad_area; case EXC_X_PROTECTION_FAULT: if (!(vma->vm_flags & VM_EXEC)) goto bad_area; break; case EXC_R_PROTECTION_FAULT: if (!(vma->vm_flags & VM_READ)) goto bad_area; break; case EXC_W_PROTECTION_FAULT: if (!(vma->vm_flags & VM_WRITE)) goto bad_area; flags = FAULT_FLAG_WRITE; break; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, flags); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGSEGV) goto bad_area; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { if (unhandled_signal(current, SIGSEGV) && printk_ratelimit()) { pr_info("%s: unhandled page fault (%d) at 0x%08lx, " "cause %ld\n", current->comm, SIGSEGV, address, cause); show_regs(regs); } _exception(SIGSEGV, regs, code, address); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); pr_alert("Unable to handle kernel %s at virtual address %08lx", address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", address); pr_alert("ea = %08lx, ra = %08lx, cause = %ld\n", regs->ea, regs->ra, cause); panic("Oops"); return; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (is_global_init(tsk)) { yield(); down_read(&mm->mmap_sem); goto survive; } if (!user_mode(regs)) goto no_context; pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; _exception(SIGBUS, regs, BUS_ADRERR, address); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = pgd_current + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; set_pgd(pgd, *pgd_k); pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; flush_tlb_one(address); return; } }
/* * map any virtual address of the current process to its * physical one. */ static unsigned long long any_v2p(unsigned long long vaddr) { pgd_t *pgd = pgd_offset(current->mm, vaddr); #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) p4d_t *p4d; #endif pud_t *pud; pmd_t *pmd; pte_t *pte; /* to lock the page */ struct page *pg; unsigned long long paddr; if (bad_address(pgd)) { printk(KERN_ALERT "[nskk] Alert: bad address of pgd %p\n", pgd); goto bad; } if (!pgd_present(*pgd)) { printk(KERN_ALERT "[nskk] Alert: pgd not present %lu\n", *pgd); goto out; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) p4d = p4d_offset(pgd, vaddr); if (p4d_none(*p4d)) return 0; pud = pud_offset(p4d, vaddr); #else pud = pud_offset(pgd, vaddr); #endif if (bad_address(pud)) { printk(KERN_ALERT "[nskk] Alert: bad address of pud %p\n", pud); goto bad; } if (!pud_present(*pud) || pud_large(*pud)) { printk(KERN_ALERT "[nskk] Alert: pud not present %lu\n", *pud); goto out; } pmd = pmd_offset(pud, vaddr); if (bad_address(pmd)) { printk(KERN_ALERT "[nskk] Alert: bad address of pmd %p\n", pmd); goto bad; } if (!pmd_present(*pmd) || pmd_large(*pmd)) { printk(KERN_ALERT "[nskk] Alert: pmd not present %lu\n", *pmd); goto out; } pte = pte_offset_kernel(pmd, vaddr); if (bad_address(pte)) { printk(KERN_ALERT "[nskk] Alert: bad address of pte %p\n", pte); goto bad; } if (!pte_present(*pte)) { printk(KERN_ALERT "[nskk] Alert: pte not present %lu\n", *pte); goto out; } pg = pte_page(*pte); #if 1 paddr = (pte_val(*pte) & PHYSICAL_PAGE_MASK) | (vaddr&(PAGE_SIZE-1)); #else pte->pte |= _PAGE_RW; // | _PAGE_USER; paddr = pte_val(*pte); #endif out: return paddr; bad: printk(KERN_ALERT "[nskk] Alert: Bad address\n"); return 0; }
void do_page_fault(struct pt_regs *regs) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; unsigned int exccause = regs->exccause; unsigned int address = regs->excvaddr; siginfo_t info; int is_write, is_exec; is_write = (exccause == EXCCAUSE_STORE_CACHE_ATTRIBUTE) ? 1 : 0; is_exec = (exccause == EXCCAUSE_ITLB_PRIVILEGE || exccause == EXCCAUSE_ITLB_MISS || exccause == EXCCAUSE_FETCH_CACHE_ATTRIBUTE) ? 1 : 0; #if DEBUG_PAGE_FAULT printk("[%s:%d:%08x:%d:%08lx:%s%s]\n", current->comm, current->pid, address, exccause, regs->pc, is_write? "w":"", is_exec? "x":""); #endif info.si_code = SEGV_MAPERR; /* We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. */ if (address >= TASK_SIZE && !user_mode(regs)) goto vmalloc_fault; /* If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) { bad_page_fault(regs, address, SIGSEGV); return; } down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else if (is_exec) { if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else /* Allow read even from write-only pages. */ if (!(vma->vm_flags & (VM_READ | VM_WRITE))) goto bad_area; /* If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ survive: switch (handle_mm_fault(mm, vma, address, is_write)) { case VM_FAULT_MINOR: current->min_flt++; break; case VM_FAULT_MAJOR: current->maj_flt++; break; case VM_FAULT_SIGBUS: goto do_sigbus; case VM_FAULT_OOM: goto out_of_memory; default: BUG(); } up_read(&mm->mmap_sem); return; /* Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); if (user_mode(regs)) { current->thread.bad_vaddr = address; current->thread.error_code = is_write; info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, current); return; } bad_page_fault(regs, address, SIGSEGV); return; /* We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (current->pid == 1) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", current->comm); if (user_mode(regs)) do_exit(SIGKILL); bad_page_fault(regs, address, SIGKILL); return; do_sigbus: up_read(&mm->mmap_sem); /* Send a sigbus, regardless of whether we were in kernel * or user mode. */ current->thread.bad_vaddr = address; info.si_code = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *) address; force_sig_info(SIGBUS, &info, current); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) bad_page_fault(regs, address, SIGBUS); vmalloc_fault: { /* Synchronize this task's top level page-table * with the 'reference' page table. */ struct mm_struct *act_mm = current->active_mm; int index = pgd_index(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; if (act_mm == NULL) goto bad_page_fault; pgd = act_mm->pgd + index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) goto bad_page_fault; pgd_val(*pgd) = pgd_val(*pgd_k); pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (!pmd_present(*pmd) || !pmd_present(*pmd_k)) goto bad_page_fault; pmd_val(*pmd) = pmd_val(*pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto bad_page_fault; return; } bad_page_fault: bad_page_fault(regs, address, SIGKILL); return; }
asmlinkage void do_page_fault(unsigned long address, struct pt_regs *regs, int protection, int writeaccess) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; siginfo_t info; D(printk("Page fault for %lX on %X at %lX, prot %d write %d\n", address, smp_processor_id(), instruction_pointer(regs), protection, writeaccess)); tsk = current; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * NOTE2: This is done so that, when updating the vmalloc * mappings we don't have to walk all processes pgdirs and * add the high mappings all at once. Instead we do it as they * are used. However vmalloc'ed page entries have the PAGE_GLOBAL * bit set so sometimes the TLB can use a lingering entry. * * This verifies that the fault happens in kernel space * and that the fault was not a protection error (error_code & 1). */ if (address >= VMALLOC_START && !protection && !user_mode(regs)) goto vmalloc_fault; /* When stack execution is not allowed we store the signal * trampolines in the reserved cris_signal_return_page. * Handle this in the exact same way as vmalloc (we know * that the mapping is there and is valid so no need to * call handle_mm_fault). */ if (cris_signal_return_page && address == cris_signal_return_page && !protection && user_mode(regs)) goto vmalloc_fault; /* we can and should enable interrupts at this point */ local_irq_enable(); mm = tsk->mm; info.si_code = SEGV_MAPERR; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto no_context; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (user_mode(regs)) { /* * accessing the stack below usp is always a bug. * we get page-aligned addresses so we can only check * if we're within a page from usp, but that might be * enough to catch brutal errors at least. */ if (address + PAGE_SIZE < rdusp()) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; /* first do some preliminary protection checks */ if (writeaccess == 2){ if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else if (writeaccess == 1) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, writeaccess & 1)) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: goto do_sigbus; default: goto out_of_memory; } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: DPG(show_registers(regs)); /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *)address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? * * (The kernel has valid exception-points in the source * when it acesses user-memory. When it fails in one * of those points, we find it in a table and do a jump * to some fixup code that loads an appropriate error * code) */ if (find_fixup_code(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ if ((unsigned long) (address) < PAGE_SIZE) raw_printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); else raw_printk(KERN_ALERT "Unable to handle kernel access"); raw_printk(" at virtual address %08lx\n",address); die_if_kernel("Oops", regs, (writeaccess << 1) | protection); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); printk("VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *)address; force_sig_info(SIGBUS, &info, tsk); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Use current_pgd instead of tsk->active_mm->pgd * since the latter might be unavailable if this * code is executed in a misfortunately run irq * (like inside schedule() between switch_mm and * switch_to...). */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset; pgd_k = init_mm.pgd + offset; /* Since we're two-level, we don't need to do both * set_pgd and set_pmd (they do the same thing). If * we go three-level at some point, do the right thing * with pgd_present and set_pgd here. * * Also, since the vmalloc area is global, we don't * need to copy individual PTE's, it is enough to * copy the pgd pointer into the pte page of the * root task. If that is there, we'll find our pte if * it exists. */ pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto bad_area_nosemaphore; set_pmd(pmd, *pmd_k); /* Make sure the actual PTE exists as well to * catch kernel vmalloc-area accesses to non-mapped * addresses. If we don't do this, this will just * silently loop forever. */ pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } }
static ssize_t showmmap_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { char lbuf[32]; int pagecount, addr, pid; char *ptxt, *porg; struct mm_struct *mm; struct task_struct *tsk; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (count > 30) return -EINVAL; if (copy_from_user(lbuf, buf, count)) return -EINVAL; lbuf[count] = 0; sscanf(lbuf, "%d %x %d", &pid, &addr, &pagecount); if (pagecount > 1024) return -EINVAL; //align addr to a 4k bounder addr = addr & ~PAGE_SIZE; //prepare output memory buffer if (showmmap_txt_buf != NULL) kfree(showmmap_txt_buf); showmmap_txt_size = pagecount * OUTPUT_BYTES_PER_PAGE; showmmap_txt_buf = kmalloc(showmmap_txt_size, GFP_USER); if (showmmap_txt_buf == NULL) return -EINVAL; ptxt = showmmap_txt_buf; porg = ptxt; //first, get mm_struct by pid rcu_read_lock(); tsk = pid_task(find_get_pid(pid), PIDTYPE_PID); if (!tsk) { ptxt += sprintf(ptxt, "can't find process %d\n", pid); goto fail; } mm = tsk->mm; while(pagecount > 0) { pagecount--; pgd = pgd_offset(mm, addr); if (!pgd || !pgd_present(*pgd)) { ptxt += sprintf(ptxt, "[%08x]:not mapped pgd\n", addr); continue; } pud = pud_offset(pgd, addr); if (!pud || !pud_present(*pud)) { ptxt += sprintf(ptxt, "[%08x]:not mapped pud(pgd %08x)\n", addr, pgd_val(*pgd)); continue; } pmd = pmd_offset(pud, addr); if (!pmd || !pmd_present(*pmd)) { ptxt += sprintf(ptxt, "[%08x]:not mapped pmd(pgd %08x pud %08x)\n", addr, pgd_val(*pgd), pud_val(*pud)); continue; } pte = pte_offset_map(pmd, addr); if (!pte || !pte_present(*pte)) ptxt += sprintf(ptxt, "[%08x]:not mapped(pgd %08x pud %08x pmd %08x)\n", addr, pgd_val(*pgd), pud_val(*pud), pmd_val(*pmd)); else ptxt += sprintf(ptxt, "[%08x]:phy %08x %d\n", addr, pte_val(*pte), pte_pfn(*pte)); addr += PAGE_SIZE; } fail: rcu_read_unlock(); showmmap_txt_size = ptxt - porg; showmmap_txt_start = 0; return count; }