Пример #1
0
void platform_early_init(void)
{
    ps7_init();

    /* zynq manual says this is mandatory */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}
Пример #2
0
void platform_early_init(void)
{
    zynq_mio_init();
    zynq_pll_init();
    zynq_clk_init();
#if ZYNQ_SDRAM_INIT
    zynq_ddr_init();
#endif

    zynq_slcr_unlock();

    /* Enable all level shifters */
    SLCR_REG(LVL_SHFTR_EN) = 0xF;
    /* FPGA SW reset (not documented, but mandatory) */
    SLCR_REG(FPGA_RST_CTRL) = 0x0;

    /* zynq manual says this is mandatory for cache init */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    zynq_slcr_lock();

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}
Пример #3
0
void platform_early_init(void)
{
    /* initialize the interrupt controller */
    arm_gic_init();

    arm_generic_timer_init(ARM_GENERIC_TIMER_PHYSICAL_INT, 0);

    uart_init_early();

    /* look for a flattened device tree just before the kernel */
    const void *fdt = (void *)KERNEL_BASE;
    int err = fdt_check_header(fdt);
    if (err >= 0) {
        /* walk the nodes, looking for 'memory' */
        int depth = 0;
        int offset = 0;
        for (;;) {
            offset = fdt_next_node(fdt, offset, &depth);
            if (offset < 0)
                break;

            /* get the name */
            const char *name = fdt_get_name(fdt, offset, NULL);
            if (!name)
                continue;

            /* look for the 'memory' property */
            if (strcmp(name, "memory") == 0) {
                int lenp;
                const void *prop_ptr = fdt_getprop(fdt, offset, "reg", &lenp);
                if (prop_ptr && lenp == 0x10) {
                    /* we're looking at a memory descriptor */
                    //uint64_t base = fdt64_to_cpu(*(uint64_t *)prop_ptr);
                    uint64_t len = fdt64_to_cpu(*((const uint64_t *)prop_ptr + 1));

                    /* trim size on certain platforms */
#if ARCH_ARM
                    if (len > 1024*1024*1024U) {
                        len = 1024*1024*1024; /* only use the first 1GB on ARM32 */
                        printf("trimming memory to 1GB\n");
                    }
#endif

                    /* set the size in the pmm arena */
                    arena.size = len;
                }
            }
        }
    }

    /* add the main memory arena */
    pmm_add_arena(&arena);

    /* reserve the first 64k of ram, which should be holding the fdt */
    struct list_node list = LIST_INITIAL_VALUE(list);
    pmm_alloc_range(MEMBASE, 0x10000 / PAGE_SIZE, &list);
}
Пример #4
0
void platform_early_init(void)
{
    /* initialize the interrupt controller */
    arm_gic_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE_PHYS, 100000000);

    uart_init_early();

    /* add the main memory arena */
    pmm_add_arena(&arena);
}
Пример #5
0
void platform_early_init(void)
{
    platform_init_uart();

    /* update the heap end so we can take advantage of more ram */
    platform_init_multiboot_info();

    /* get the text console working */
    platform_init_console();

    /* initialize the interrupt controller */
    platform_init_interrupts();

    /* initialize the timer */
    platform_init_timer();
#if WITH_KERNEL_VM
    heap_arena_init();
    pmm_add_arena(&heap_arena);
#endif

}
Пример #6
0
void platform_early_init(void)
{
#if 0
    ps7_init();
#else
    /* Unlock the registers and leave them that way */
    zynq_slcr_unlock();
    zynq_mio_init();
    zynq_pll_init();
    zynq_clk_init();
#if ZYNQ_SDRAM_INIT
    zynq_ddr_init();
#endif
#endif

    /* Enable all level shifters */
    SLCR_REG(LVL_SHFTR_EN) = 0xF;
    /* FPGA SW reset (not documented, but mandatory) */
    SLCR_REG(FPGA_RST_CTRL) = 0x0;

    /* zynq manual says this is mandatory for cache init */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();
    zynq_gpio_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* bump the 2nd cpu into our code space and remap the top SRAM block */
    if (KERNEL_LOAD_OFFSET != 0) {
        /* construct a trampoline to get the 2nd cpu up to the trap routine */

        /* figure out the offset of the trampoline routine in physical space from address 0 */
        extern void platform_reset(void);
        addr_t tramp = (addr_t)&platform_reset;
        tramp -= KERNEL_BASE;
        tramp += MEMBASE;

        /* stuff in a ldr pc, [nextaddrress], and a target address */
        uint32_t *ptr = (uint32_t *)KERNEL_BASE;

        ptr[0] = 0xe51ff004; // ldr pc, [pc, #-4]
        ptr[1] = tramp;
        arch_clean_invalidate_cache_range((addr_t)ptr, 8);
    }

    /* reset the 2nd cpu, letting it go through its reset vector (at 0x0 physical) */
    SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1
    spin(10);
    SLCR_REG(A9_CPU_RST_CTRL) &= ~(1<<1); // unreset cpu 1

    /* wait for the 2nd cpu to reset, go through the usual reset vector, and get trapped by our code */
    /* see platform/zynq/reset.S */
    extern volatile int __cpu_trapped;
    uint count = 100000;
    while (--count) {
        arch_clean_invalidate_cache_range((addr_t)&__cpu_trapped, sizeof(__cpu_trapped));
        if (__cpu_trapped != 0)
            break;
    }
    if (count == 0) {
        panic("ZYNQ: failed to trap 2nd cpu\n");
    }

    /* bounce the 4th sram region down to lower address */
    SLCR_REG(OCM_CFG) &= ~0xf; /* all banks at low address */

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}