Пример #1
0
static int site_misc_create_path(pool *p, const char *path) {
  struct stat st;
  char *curr_path, *dup_path;

  pr_fs_clear_cache();

  if (pr_fsio_stat(path, &st) == 0)
    return 0;

  dup_path = pstrdup(p, path);
  curr_path = session.cwd;
 
  while (dup_path && *dup_path) {
    char *curr_dir = strsep(&dup_path, "/");
 
    curr_path = pdircat(p, curr_path, curr_dir, NULL);
   
    if (site_misc_create_dir(curr_path) < 0)
      return -1;

    pr_signals_handle(); 
  }
 
  return 0;
}
Пример #2
0
static int site_misc_create_dir(const char *dir) {
  struct stat st;
  int res;

  pr_fs_clear_cache();

  res = pr_fsio_stat(dir, &st);
  if (res == -1 &&
      errno != ENOENT) {
    pr_log_debug(DEBUG2, MOD_SITE_MISC_VERSION ": error checking '%s': %s",
      dir, strerror(errno));
    return -1;
  }

  if (res == 0)
    return 0;

  if (pr_fsio_mkdir(dir, 0777) < 0) {
    pr_log_debug(DEBUG2, MOD_SITE_MISC_VERSION ": error creating '%s': %s",
      dir, strerror(errno));
    return -1;
  }

  return 0;
}
Пример #3
0
/* Walk along a path, making sure that all directories in that path exist,
 * creating them if necessary.
 */
static int create_path(pool *p, const char *path, const char *user,
    uid_t dir_uid, gid_t dir_gid, mode_t dir_mode,
    uid_t dst_uid, gid_t dst_gid, mode_t dst_mode) {
  char *currpath = NULL, *tmppath = NULL;
  struct stat st;

  pr_fs_clear_cache();
  if (pr_fsio_stat(path, &st) == 0) {
    /* Path already exists, nothing to be done. */
    errno = EEXIST;
    return -1;
  }

  pr_event_generate("core.create-home", user);

  /* The special-case values of -1 for dir UID/GID mean that the destination
   * UID/GID should be used for the parent directories.
   */

  if (dir_uid == (uid_t) -1) {
    dir_uid = dst_uid;
  }

  if (dir_gid == (gid_t) -1) {
    dir_gid = dst_gid;
  }

  pr_trace_msg(trace_channel, 5, "creating home directory '%s' for user '%s'",
    path, user);
  pr_log_debug(DEBUG3, "creating home directory '%s' for user '%s'", path,
    user);
  tmppath = pstrdup(p, path);

  currpath = "/";
  while (tmppath && *tmppath) {
    char *currdir = strsep(&tmppath, "/");
    currpath = pdircat(p, currpath, currdir, NULL);

    /* If tmppath is NULL, we are creating the last part of the path, so we
     * use the configured mode, and chown it to the given UID and GID.
     */
    if (tmppath == NULL ||
        (*tmppath == '\0')) {
      create_dir(currpath, dst_uid, dst_gid, dst_mode);

    } else { 
      create_dir(currpath, dir_uid, dir_gid, dir_mode);
    }

    pr_signals_handle();
  }

  pr_trace_msg(trace_channel, 5, "home directory '%s' created", path);
  pr_log_debug(DEBUG3, "home directory '%s' created", path);
  return 0;
}
Пример #4
0
static int site_misc_delete_path(pool *p, const char *path) {
  struct stat st;

  pr_fs_clear_cache();

  if (pr_fsio_stat(path, &st) < 0)
    return -1;

  if (!S_ISDIR(st.st_mode)) {
    errno = EINVAL;
    return -1;
  }

  return site_misc_delete_dir(p, path);
}
Пример #5
0
static int create_dir(const char *dir, uid_t uid, gid_t gid,
    mode_t mode) {
  mode_t prev_mask;
  struct stat st;
  int res = -1;

  pr_fs_clear_cache();
  res = pr_fsio_stat(dir, &st);

  if (res == -1 &&
      errno != ENOENT) {
    pr_log_pri(PR_LOG_WARNING, "error checking '%s': %s", dir,
      strerror(errno));
    return -1;
  }

  /* The directory already exists. */
  if (res == 0) {
    pr_trace_msg(trace_channel, 8, "'%s' already exists", dir);
    pr_log_debug(DEBUG3, "CreateHome: '%s' already exists", dir);
    return 0;
  }

  /* The given mode is absolute, not subject to any Umask setting. */
  prev_mask = umask(0);

  if (pr_fsio_mkdir(dir, mode) < 0) {
    umask(prev_mask);
    pr_log_pri(PR_LOG_WARNING, "error creating '%s': %s", dir,
      strerror(errno));
    return -1;
  }

  umask(prev_mask);

  if (pr_fsio_chown(dir, uid, gid) < 0) {
    pr_log_pri(PR_LOG_WARNING, "error setting ownership of '%s': %s", dir,
      strerror(errno));
    return -1;
  }

  pr_trace_msg(trace_channel, 8, "directory '%s' created", dir);
  pr_log_debug(DEBUG6, "CreateHome: directory '%s' created", dir);
  return 0;
}
Пример #6
0
/* Walk along a path, making sure that all directories in that path exist,
 * creating them if necessary.
 */
static int create_path(pool *p, const char *path, const char *user, uid_t uid,
    gid_t gid, mode_t dir_mode, mode_t dst_mode) {
  char *currpath = NULL, *tmppath = NULL;
  struct stat st;

  pr_fs_clear_cache();
  if (pr_fsio_stat(path, &st) == 0) {
    /* Path already exists, nothing to be done. */
    errno = EEXIST;
    return -1;
  }

  pr_event_generate("core.create-home", user);

  pr_log_debug(DEBUG3, "creating home directory '%s' for user '%s'", path,
    user);
  tmppath = pstrdup(p, path);

  currpath = "/";
  while (tmppath && *tmppath) {
    char *currdir = strsep(&tmppath, "/");
    currpath = pdircat(p, currpath, currdir, NULL);

    /* If tmppath is NULL, we are creating the last part of the path, so we
     * use the configured mode, and chown it to the given UID and GID.
     */
    if ((tmppath == NULL) || (*tmppath == '\0'))
      create_dir(currpath, uid, gid, dst_mode);
    else
      create_dir(currpath, 0, 0, dir_mode);

    pr_signals_handle();
  }

  pr_log_debug(DEBUG3, "home directory '%s' created", path);
  return 0;
}
Пример #7
0
static int check_facl(pool *p, const char *path, int mode, void *acl, int nents,
    struct stat *st, uid_t uid, gid_t gid, array_header *suppl_gids) {
# if defined(HAVE_BSD_POSIX_ACL) || defined(HAVE_LINUX_POSIX_ACL)
  register unsigned int i;
  int have_access_entry = FALSE, res = -1;
  pool *acl_pool;
  acl_t facl = acl;
  acl_entry_t ae;
  acl_tag_t ae_type;
  acl_entry_t acl_user_entry = NULL;
  acl_entry_t acl_group_entry = NULL;
  acl_entry_t acl_other_entry = NULL;
  acl_entry_t acl_mask_entry = NULL;
  array_header *acl_groups;
  array_header *acl_users;

  /* Iterate through all of the ACL entries, sorting them for later
   * checking.
   */
  res = acl_get_entry(facl, ACL_FIRST_ENTRY, &ae);
  if (res < 0) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve first ACL entry for '%s': %s",
      path, strerror(errno));
    errno = EACCES;
    return -1;
  }

  if (res == 0) {
    pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s' has no entries!", path);
    errno = EACCES;
    return -1;
  }

  acl_pool = make_sub_pool(p);
  acl_groups = make_array(acl_pool, 1, sizeof(acl_entry_t));
  acl_users = make_array(acl_pool, 1, sizeof(acl_entry_t));

  while (res > 0) {
    if (acl_get_tag_type(ae, &ae_type) < 0) {
      pr_log_debug(DEBUG5,
        "FS: error retrieving type of ACL entry for '%s': %s", path,
        strerror(errno));
      res = acl_get_entry(facl, ACL_NEXT_ENTRY, &ae);
      continue;
    }

    if (ae_type & ACL_USER_OBJ) {
      acl_copy_entry(acl_user_entry, ae);

    } else if (ae_type & ACL_USER) {
      acl_entry_t *ae_dup = push_array(acl_users);
      acl_copy_entry(*ae_dup, ae);

    } else if (ae_type & ACL_GROUP_OBJ) {
      acl_copy_entry(acl_group_entry, ae);

    } else if (ae_type & ACL_GROUP) {
      acl_entry_t *ae_dup = push_array(acl_groups);
      acl_copy_entry(*ae_dup, ae);

    } else if (ae_type & ACL_OTHER) {
      acl_copy_entry(acl_other_entry, ae);

    } else if (ae_type & ACL_MASK) {
      acl_copy_entry(acl_mask_entry, ae);
    }

    res = acl_get_entry(facl, ACL_NEXT_ENTRY, &ae);
  }

  /* Select the ACL entry that determines access. */
  res = -1;

  /* 1. If the given user ID matches the file owner, use that entry for
   *    access.
   */
  if (uid == st->st_uid) {
    /* Check the acl_user_entry for access. */
    acl_copy_entry(ae, acl_user_entry);
    ae_type = ACL_USER_OBJ;
    have_access_entry = TRUE;
  }

  /* 2. If not matched above, and f the given user ID matches one of the
   *    named user entries, use that entry for access.
   */
  for (i = 0; !have_access_entry && i < acl_users->nelts; i++) {
    acl_entry_t e = ((acl_entry_t *) acl_users->elts)[i];

    if (uid == *((uid_t *) acl_get_qualifier(e))) {

      /* Check this entry for access. Note that it'll need to
       * be modified by the mask, if any, later.
       */
      acl_copy_entry(ae, e);
      ae_type = ACL_USER;
      have_access_entry = TRUE;
      break;
    }
  }

  /* 3. If not matched above, and if one of the group IDs matches the
   *    group owner entry, and the group owner entry contains the
   *    requested permissions, use that entry for access.
   */
  if (!have_access_entry &&
      gid == st->st_gid) {

    /* Check the acl_group_entry for access. First though, we need to
     * see if the acl_group_entry contains the requested permissions.
     */
    acl_permset_t perms;
    acl_get_permset(acl_group_entry, &perms);

#  if defined(HAVE_BSD_POSIX_ACL)
    if (acl_get_perm_np(perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
    if (acl_get_perm(perms, mode) == 1) {
#  endif
      acl_copy_entry(ae, acl_group_entry);
      ae_type = ACL_GROUP_OBJ;
      have_access_entry = TRUE;
    }
  }

  if (suppl_gids) {
    for (i = 0; !have_access_entry && i < suppl_gids->nelts; i++) {
      gid_t suppl_gid = ((gid_t *) suppl_gids->elts)[i];

      if (suppl_gid == st->st_gid) {
        /* Check the acl_group_entry for access. First though, we need to
         * see if the acl_group_entry contains the requested permissions.
         */
        acl_permset_t perms;
        acl_get_permset(acl_group_entry, &perms);

#  if defined(HAVE_BSD_POSIX_ACL)
        if (acl_get_perm_np(perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
        if (acl_get_perm(perms, mode) == 1) {
#  endif
          acl_copy_entry(ae, acl_group_entry);
          ae_type = ACL_GROUP_OBJ;
          have_access_entry = TRUE;
          break;
        }
      }
    }
  }

  /* 5. If not matched above, and if one of the group IDs matches one
   *    of the named group entries, and that entry contains the requested
   *    permissions, use that entry for access.
   */
  for (i = 0; !have_access_entry && i < acl_groups->nelts; i++) {
    acl_entry_t e = ((acl_entry_t *) acl_groups->elts)[i];

    if (gid == *((gid_t *) acl_get_qualifier(e))) {

      /* Check this entry for access. Note that it'll need to
       * be modified by the mask, if any, later.
       */
      acl_permset_t perms;
      acl_get_permset(e, &perms);

#  if defined(HAVE_BSD_POSIX_ACL)
      if (acl_get_perm_np(perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
      if (acl_get_perm(perms, mode) == 1) {
#  endif
        acl_copy_entry(ae, e);
        ae_type = ACL_GROUP;
        have_access_entry = TRUE;
        break;
      }
    }

    if (suppl_gids) {
      register unsigned int j;

      for (j = 0; !have_access_entry && j < suppl_gids->nelts; j++) {
        gid_t suppl_gid = ((gid_t *) suppl_gids->elts)[j];

        if (suppl_gid == *((gid_t *) acl_get_qualifier(e))) {
          /* Check this entry for access. Note that it'll need to
           * be modified by the mask, if any, later.
           */
          acl_permset_t perms;
          acl_get_permset(e, &perms);

#  if defined(HAVE_BSD_POSIX_ACL)
          if (acl_get_perm_np(perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
          if (acl_get_perm(perms, mode) == 1) {
#  endif
            acl_copy_entry(ae, e);
            ae_type = ACL_GROUP;
            have_access_entry = TRUE;
            break;
          }
        }
      }
    }
  }

  /* 6. If not matched above, and if one of the group IDs matches
   *    the group owner or any of the named group entries, but neither
   *    the group owner entry nor any of the named group entries contains
   *    the requested permissions, access is denied.
   */

  /* 7. If not matched above, the other entry determines access.
   */
  if (!have_access_entry) {
    acl_copy_entry(ae, acl_other_entry);
    ae_type = ACL_OTHER;
    have_access_entry = TRUE;
  }

  /* Access determination:
   *
   *  If either the user owner entry or other entry were used, and the
   *  entry contains the requested permissions, access is permitted.
   *
   *  Otherwise, if the selected entry and the mask entry both contain
   *  the requested permissions, access is permitted.
   *
   *  Otherwise, access is denied.
   */
  switch (ae_type) {
    case ACL_USER_OBJ:
    case ACL_OTHER: {
      acl_permset_t perms;
      acl_get_permset(ae, &perms);

#  if defined(HAVE_BSD_POSIX_ACL)
      if (acl_get_perm_np(perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
      if (acl_get_perm(perms, mode) == 1) {
#  endif
        res = 0;
      }

      break;
    }

    default: {
      acl_permset_t ent_perms, mask_perms;
      acl_get_permset(ae, &ent_perms);
      acl_get_permset(acl_mask_entry, &mask_perms);

#  if defined(HAVE_BSD_POSIX_ACL)
      if (acl_get_perm_np(ent_perms, mode) == 1 &&
          acl_get_perm_np(mask_perms, mode) == 1) {
#  elif defined(HAVE_LINUX_POSIX_ACL)
      if (acl_get_perm(ent_perms, mode) == 1 &&
          acl_get_perm(mask_perms, mode) == 1) {
#  endif
        res = 0;
      }

      break;
    }
  }

  destroy_pool(acl_pool);

  if (res < 0)
    errno = EACCES;
  return res;

# elif defined(HAVE_SOLARIS_POSIX_ACL)
  register unsigned int i;
  int have_access_entry = FALSE, idx, res = -1;
  pool *acl_pool;
  aclent_t *acls = acl;
  aclent_t ae;
  int ae_type = 0;
  aclent_t acl_user_entry;
  aclent_t acl_group_entry;
  aclent_t acl_other_entry;
  aclent_t acl_mask_entry;
  array_header *acl_groups;
  array_header *acl_users;

  /* In the absence of any clear documentation, I'll assume that
   * Solaris ACLs follow the same selection and checking algorithm
   * as do BSD and Linux.
   */

  res = aclcheck(acls, nents, &idx);
  switch (res) {
    case 0:
      break;

    case GRP_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "too many GROUP entries");
      errno = EACCES;
      return -1;

    case USER_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "too many USER entries");
      errno = EACCES;
      return -1;

    case OTHER_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "too many OTHER entries");
      errno = EACCES;
      return -1;

    case CLASS_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "too many CLASS entries");
      errno = EACCES;
      return -1;

    case DUPLICATE_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "duplicate entries");
      errno = EACCES;
      return -1;

    case MISS_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "missing required entry");
      errno = EACCES;
      return -1;

    case MEM_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "Out of memory!");
      errno = EACCES;
      return -1;

    case ENTRY_ERROR:
      pr_log_debug(DEBUG3, "FS: ill-formed ACL for '%s': %s", path,
        "invalid entry type");
      errno = EACCES;
      return -1;
  }

  /* Iterate through all of the ACL entries, sorting them for later
   * checking.
   */

  acl_pool = make_sub_pool(p);
  acl_groups = make_array(acl_pool, 1, sizeof(aclent_t));
  acl_users = make_array(acl_pool, 1, sizeof(aclent_t));

  for (i = 0; i < nents; i++) {
    if (acls[i].a_type & USER_OBJ) {
      memcpy(&acl_user_entry, &(acls[i]), sizeof(aclent_t));

    } else if (acls[i].a_type & USER) {
      aclent_t *ae_dup = push_array(acl_users);
      memcpy(ae_dup, &(acls[i]), sizeof(aclent_t));

    } else if (acls[i].a_type & GROUP_OBJ) {
      memcpy(&acl_group_entry, &(acls[i]), sizeof(aclent_t));

    } else if (acls[i].a_type & GROUP) {
      aclent_t *ae_dup = push_array(acl_groups);
      memcpy(ae_dup, &(acls[i]), sizeof(aclent_t));

    } else if (acls[i].a_type & OTHER_OBJ) {
      memcpy(&acl_other_entry, &(acls[i]), sizeof(aclent_t));

    } else if (acls[i].a_type & CLASS_OBJ) {
      memcpy(&acl_mask_entry, &(acls[i]), sizeof(aclent_t));
    }
  }

  /* Select the ACL entry that determines access. */
  res = -1;

  /* 1. If the given user ID matches the file owner, use that entry for
   *    access.
   */
  if (uid == st->st_uid) {
    /* Check the acl_user_entry for access. */
    memcpy(&ae, &acl_user_entry, sizeof(aclent_t));
    ae_type = USER_OBJ;
    have_access_entry = TRUE;
  }

  /* 2. If not matched above, and f the given user ID matches one of the
   *    named user entries, use that entry for access.
   */
  for (i = 0; !have_access_entry && i < acl_users->nelts; i++) {
    aclent_t e;
    memcpy(&e, &(((aclent_t *) acl_users->elts)[i]), sizeof(aclent_t));

    if (uid == e.a_id) {

      /* Check this entry for access. Note that it'll need to
       * be modified by the mask, if any, later.
       */
      memcpy(&ae, &e, sizeof(aclent_t));
      ae_type = USER;
      have_access_entry = TRUE;
      break;
    }
  }

  /* 3. If not matched above, and if one of the group IDs matches the
   *    group owner entry, and the group owner entry contains the
   *    requested permissions, use that entry for access.
   */
  if (!have_access_entry &&
      gid == st->st_gid) {

    /* Check the acl_group_entry for access. First though, we need to
     * see if the acl_group_entry contains the requested permissions.
     */
    if (acl_group_entry.a_perm & mode) {
      memcpy(&ae, &acl_group_entry, sizeof(aclent_t));
      ae_type = GROUP_OBJ;
      have_access_entry = TRUE;
    }
  }

  if (suppl_gids) {
    for (i = 0; !have_access_entry && i < suppl_gids->nelts; i++) {
      gid_t suppl_gid = ((gid_t *) suppl_gids->elts)[i];

      if (suppl_gid == st->st_gid) {
        /* Check the acl_group_entry for access. First though, we need to
         * see if the acl_group_entry contains the requested permissions.
         */
        if (acl_group_entry.a_perm & mode) {
          memcpy(&ae, &acl_group_entry, sizeof(aclent_t));
          ae_type = GROUP_OBJ;
          have_access_entry = TRUE;
          break;
        }
      }
    }
  }

  /* 5. If not matched above, and if one of the group IDs matches one
   *    of the named group entries, and that entry contains the requested
   *    permissions, use that entry for access.
   */
  for (i = 0; !have_access_entry && i < acl_groups->nelts; i++) {
    aclent_t e;
    memcpy(&e, &(((aclent_t *) acl_groups->elts)[i]), sizeof(aclent_t));

    if (gid == e.a_id) {

      /* Check this entry for access. Note that it'll need to
       * be modified by the mask, if any, later.
       */
      if (e.a_perm & mode) {
        memcpy(&ae, &e, sizeof(aclent_t));
        ae_type = GROUP;
        have_access_entry = TRUE;
        break;
      }
    }

    if (suppl_gids) {
      register unsigned int j;

      for (j = 0; !have_access_entry && j < suppl_gids->nelts; j++) {
        gid_t suppl_gid = ((gid_t *) suppl_gids->elts)[j];

        if (suppl_gid == e.a_id) {
          /* Check this entry for access. Note that it'll need to
           * be modified by the mask, if any, later.
           */
          if (e.a_perm & mode) {
            memcpy(&ae, &e, sizeof(aclent_t));
            ae_type = GROUP;
            have_access_entry = TRUE;
            break;
          }
        }
      }
    }
  }

  /* 6. If not matched above, and if one of the group IDs matches
   *    the group owner or any of the named group entries, but neither
   *    the group owner entry nor any of the named group entries contains
   *    the requested permissions, access is denied.
   */

  /* 7. If not matched above, the other entry determines access.
   */
  if (!have_access_entry) {
    memcpy(&ae, &acl_other_entry, sizeof(aclent_t));
    ae_type = OTHER_OBJ;
    have_access_entry = TRUE;
  }

  /* Access determination:
   *
   *  If either the user owner entry or other entry were used, and the
   *  entry contains the requested permissions, access is permitted.
   *
   *  Otherwise, if the selected entry and the mask entry both contain
   *  the requested permissions, access is permitted.
   *
   *  Otherwise, access is denied.
   */
  switch (ae_type) {
    case USER_OBJ:
    case OTHER_OBJ:
      if (ae.a_perm & mode)
        res = 0;
      break;

    default: 
      if ((ae.a_perm & mode) &&
          (acl_mask_entry.a_perm & mode))
        res = 0;
      break;
  }

  destroy_pool(acl_pool);

  if (res < 0)
    errno = EACCES;
  return res;
# endif /* HAVE_SOLARIS_POSIX_ACL */
}

/* FSIO handlers
 */

static int facl_fsio_access(pr_fs_t *fs, const char *path, int mode,
    uid_t uid, gid_t gid, array_header *suppl_gids) {
  int nents = 0;
  struct stat st;
  void *acls;

  pr_fs_clear_cache();
  if (pr_fsio_stat(path, &st) < 0)
    return -1;

  /* Look up the acl for this path. */
# if defined(HAVE_BSD_POSIX_ACL) || defined(HAVE_LINUX_POSIX_ACL)
  acls = acl_get_file(path, ACL_TYPE_ACCESS);

  if (!acls) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL for '%s': %s",
      path, strerror(errno));
    return -1;
  }

# elif defined(HAVE_SOLARIS_POSIX_ACL)

  nents = acl(path, GETACLCNT, 0, NULL);
  if (nents < 0) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL count for '%s': %s",
      path, strerror(errno));
    return -1;
  }

  acls = pcalloc(fs->fs_pool, nents * sizeof(aclent_t));

  nents = acl(path, GETACL, nents, acls);
  if (nents < 0) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL for '%s': %s",
      path, strerror(errno));
    return -1;
  }
# endif

  return check_facl(fs->fs_pool, path, mode, acls, nents, &st,
    uid, gid, suppl_gids);
}

static int facl_fsio_faccess(pr_fh_t *fh, int mode, uid_t uid, gid_t gid,
    array_header *suppl_gids) {
  int nents = 0;
  struct stat st;
  void *acls;

  pr_fs_clear_cache();
  if (pr_fsio_fstat(fh, &st) < 0)
    return -1;

  /* Look up the acl for this fd. */
# if defined(HAVE_BSD_POSIX_ACL) || defined(HAVE_LINUX_POSIX_ACL)
  acls = acl_get_fd(PR_FH_FD(fh));

  if (!acls) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL for '%s': %s",
      fh->fh_path, strerror(errno));
    return -1;
  }

# elif defined(HAVE_SOLARIS_POSIX_ACL)

  nents = facl(PR_FH_FD(fh), GETACLCNT, 0, NULL);
  if (nents < 0) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL count for '%s': %s",
      fh->fh_path, strerror(errno));
    return -1;
  }

  acls = pcalloc(fh->fh_fs->fs_pool, nents * sizeof(aclent_t));

  nents = facl(PR_FH_FD(fh), GETACL, nents, acls);
  if (nents < 0) {
    pr_log_debug(DEBUG10, "FS: unable to retrieve ACL for '%s': %s",
      fh->fh_path, strerror(errno));
    return -1;
  }
# endif

  return check_facl(fh->fh_fs->fs_pool, fh->fh_path, mode, acls, nents, &st,
    uid, gid, suppl_gids);
}
#endif /* HAVE_POSIX_ACL */

/* Initialization routines
 */

static int facl_init(void) {
#if defined(PR_USE_FACL) && defined(HAVE_POSIX_ACL)
  pr_fs_t *fs = pr_register_fs(permanent_pool, "facl", "/");
  if (!fs) {
    pr_log_pri(PR_LOG_ERR, MOD_FACL_VERSION ": error registering fs: %s",
      strerror(errno));
    return -1;
  }

  /* Ensure that our ACL-checking handlers are used. */
  fs->access = facl_fsio_access;
  fs->faccess = facl_fsio_faccess;
#endif /* PR_USE_FACL and HAVE_POSIX_ACL */

  return 0;
}

/* Module Tables
 */

module facl_module = {
  /* Always NULL */
  NULL, NULL,

  /* Module API version */
  0x20,

  /* Module name */
  "facl",

  /* Module configuration directive handlers */
  NULL,

  /* Module command handlers */
  NULL,

  /* Module authentication handlers */
  NULL,

  /* Module initialization */
  facl_init,

  /* Session initialization */
  NULL,

  /* Module version */
  MOD_FACL_VERSION
};
Пример #8
0
int sftp_misc_chown_file(pr_fh_t *fh) {
  struct stat st;
  int res, xerrno;
 
  if (fh == NULL) {
    errno = EINVAL;
    return -1;
  }

  /* session.fsgid defaults to -1, so chown(2) won't chgrp unless specifically
   * requested via GroupOwner.
   */
  if (session.fsuid != (uid_t) -1) {

    PRIVS_ROOT
    res = pr_fsio_fchown(fh, session.fsuid, session.fsgid);
    xerrno = errno;
    PRIVS_RELINQUISH

    if (res < 0) {
      (void) pr_log_writefile(sftp_logfd, MOD_SFTP_VERSION,
        "chown(%s) as root failed: %s", fh->fh_path, strerror(xerrno));

    } else {
      if (session.fsgid != (gid_t) -1) {
        (void) pr_log_writefile(sftp_logfd, MOD_SFTP_VERSION,
          "root chown(%s) to UID %lu, GID %lu successful", fh->fh_path,
          (unsigned long) session.fsuid, (unsigned long) session.fsgid);

      } else {
        (void) pr_log_writefile(sftp_logfd, MOD_SFTP_VERSION,
          "root chown(%s) to UID %lu successful", fh->fh_path,
          (unsigned long) session.fsuid);
      }

      pr_fs_clear_cache();
      pr_fsio_fstat(fh, &st);

      /* The chmod happens after the chown because chown will remove the
       * S{U,G}ID bits on some files (namely, directories); the subsequent
       * chmod is used to restore those dropped bits.  This makes it necessary
       * to use root privs when doing the chmod as well (at least in the case
       * of chown'ing the file via root privs) in order to ensure that the mode
       * can be set (a file might be being "given away", and if root privs
       * aren't used, the chmod() will fail because the old owner/session user
       * doesn't have the necessary privileges to do so).
       */
      PRIVS_ROOT
      res = pr_fsio_fchmod(fh, st.st_mode);
      xerrno = errno;
      PRIVS_RELINQUISH

      if (res < 0) {
        (void) pr_log_writefile(sftp_logfd, MOD_SFTP_VERSION,
          "root chmod(%s) to %04o failed: %s", fh->fh_path,
          (unsigned int) st.st_mode, strerror(xerrno));

      } else {
        (void) pr_log_writefile(sftp_logfd, MOD_SFTP_VERSION,
          "root chmod(%s) to %04o successful", fh->fh_path,
          (unsigned int) st.st_mode);
      }
    }

  } else if (session.fsgid != (gid_t) -1) {