Пример #1
0
/*===========================================================================*
 *				privileges_dmp 				     *
 *===========================================================================*/
PUBLIC void privileges_dmp()
{
  register struct proc *rp;
  static struct proc *oldrp = BEG_PROC_ADDR;
  register struct priv *sp;
  static char ipc_to[NR_SYS_PROCS + 1 + NR_SYS_PROCS/8];
  int r, i,j, n = 0;

  /* First obtain a fresh copy of the current process and system table. */
  if ((r = sys_getprivtab(priv)) != OK) {
      report("IS","warning: couldn't get copy of system privileges table", r);
      return;
  }
  if ((r = sys_getproctab(proc)) != OK) {
      report("IS","warning: couldn't get copy of process table", r);
      return;
  }

  printf("\n--nr-id-name---- -flags- -traps- -ipc_to mask------------------------ \n");

  for (rp = oldrp; rp < END_PROC_ADDR; rp++) {
	if (isemptyp(rp)) continue;
	if (++n > 23) break;
	if (proc_nr(rp) == IDLE) 	printf("(%2d) ", proc_nr(rp));  
	else if (proc_nr(rp) < 0) 	printf("[%2d] ", proc_nr(rp));
	else 				printf(" %2d  ", proc_nr(rp));
        r = -1;
        for (sp = &priv[0]; sp < &priv[NR_SYS_PROCS]; sp++) 
            if (sp->s_proc_nr == rp->p_nr) { r ++; break; }
        if (r == -1 && ! (rp->p_rts_flags & SLOT_FREE)) {
	    sp = &priv[USER_PRIV_ID];
        }
	printf("(%02u) %-7.7s %s   %s  ",
	       sp->s_id, rp->p_name,
	       s_flags_str(sp->s_flags), s_traps_str(sp->s_trap_mask) 
        );
        for (i=j=0; i < NR_SYS_PROCS; i++, j++) {
       	    ipc_to[j] = get_sys_bit(sp->s_ipc_to, i) ? '1' : '0';
       	    if (i % 8 == 7) ipc_to[++j] = ' ';
       	}
        ipc_to[j] = '\0';

	printf(" %s \n", ipc_to);
  }
  if (rp == END_PROC_ADDR) rp = BEG_PROC_ADDR; else printf("--more--\r");
  oldrp = rp;

}
void print_proc(struct proc *pp)
{
	endpoint_t dep;

	printf("%d: %s %d prio %d time %d/%d cycles 0x%x%08x cpu %2d "
			"pdbr 0x%lx rts %s misc %s sched %s ",
		proc_nr(pp), pp->p_name, pp->p_endpoint, 
		pp->p_priority, pp->p_user_time,
		pp->p_sys_time, ex64hi(pp->p_cycles),
		ex64lo(pp->p_cycles), pp->p_cpu,
#if defined(__i386__)
		pp->p_seg.p_cr3,
#elif defined(__arm__)
		pp->p_seg.p_ttbr,
#endif
		rtsflagstr(pp->p_rts_flags), miscflagstr(pp->p_misc_flags),
		schedulerstr(pp->p_scheduler));

	print_sigmgr(pp);

	dep = P_BLOCKEDON(pp);
	if(dep != NONE) {
		printf(" blocked on: ");
		print_endpoint(dep);
	}
	printf("\n");
}
static void kernel_call_finish(struct proc * caller, message *msg, int result)
{
  if(result == VMSUSPEND) {
	  /* Special case: message has to be saved for handling
	   * until VM tells us it's allowed. VM has been notified
	   * and we must wait for its reply to restart the call.
	   */
	  assert(RTS_ISSET(caller, RTS_VMREQUEST));
	  assert(caller->p_vmrequest.type == VMSTYPE_KERNELCALL);
	  caller->p_vmrequest.saved.reqmsg = *msg;
	  caller->p_misc_flags |= MF_KCALL_RESUME;
  } else {
	  /*
	   * call is finished, we could have been suspended because of VM,
	   * remove the request message
	   */
	  caller->p_vmrequest.saved.reqmsg.m_source = NONE;
	  if (result != EDONTREPLY) {
		  /* copy the result as a message to the original user buffer */
		  msg->m_source = SYSTEM;
		  msg->m_type = result;		/* report status of call */
#if DEBUG_IPC_HOOK
	hook_ipc_msgkresult(msg, caller);
#endif
		  if (copy_msg_to_user(msg, (message *)caller->p_delivermsg_vir)) {
			  printf("WARNING wrong user pointer 0x%08x from "
					  "process %s / %d\n",
					  caller->p_delivermsg_vir,
					  caller->p_name,
					  caller->p_endpoint);
			  cause_sig(proc_nr(caller), SIGSEGV);
		  }
	  }
  }
}
/*
 * this function checks the basic syscall parameters and if accepted it
 * dispatches its handling to the right handler
 */
void kernel_call(message *m_user, struct proc * caller)
{
  int result = OK;
  message msg;

  caller->p_delivermsg_vir = (vir_bytes) m_user;
  /*
   * the ldt and cr3 of the caller process is loaded because it just've trapped
   * into the kernel or was already set in switch_to_user() before we resume
   * execution of an interrupted kernel call
   */
  if (copy_msg_from_user(m_user, &msg) == 0) {
	  msg.m_source = caller->p_endpoint;
	  result = kernel_call_dispatch(caller, &msg);
  }
  else {
	  printf("WARNING wrong user pointer 0x%08x from process %s / %d\n",
			  m_user, caller->p_name, caller->p_endpoint);
	  cause_sig(proc_nr(caller), SIGSEGV);
	  return;
  }

  
  /* remember who invoked the kcall so we can bill it its time */
  kbill_kcall = caller;

  kernel_call_finish(caller, &msg, result);
}
Пример #5
0
/*===========================================================================*
 *				memmap_dmp    				     *
 *===========================================================================*/
PUBLIC void memmap_dmp()
{
  register struct proc *rp;
  static struct proc *oldrp = proc;
  int r, n = 0;
  phys_clicks size;

  /* First obtain a fresh copy of the current process table. */
  if ((r = sys_getproctab(proc)) != OK) {
      report("IS","warning: couldn't get copy of process table", r);
      return;
  }

  printf("\n-nr/name--- --pc-- --sp-- -----text----- -----data----- ----stack----- --size-\n");
  for (rp = oldrp; rp < END_PROC_ADDR; rp++) {
	if (isemptyp(rp)) continue;
	if (++n > 23) break;
	size = rp->p_memmap[T].mem_len
		+ ((rp->p_memmap[S].mem_phys + rp->p_memmap[S].mem_len)
						- rp->p_memmap[D].mem_phys);
	printf("%3d %-7.7s%7lx%7lx %4x %4x %4x %4x %4x %4x %4x %4x %4x %5uK\n",
	       proc_nr(rp),
	       rp->p_name,
	       (unsigned long) rp->p_reg.pc,
	       (unsigned long) rp->p_reg.sp,
	       rp->p_memmap[T].mem_vir, rp->p_memmap[T].mem_phys, rp->p_memmap[T].mem_len,
	       rp->p_memmap[D].mem_vir, rp->p_memmap[D].mem_phys, rp->p_memmap[D].mem_len,
	       rp->p_memmap[S].mem_vir, rp->p_memmap[S].mem_phys, rp->p_memmap[S].mem_len,
	       click_to_round_k(size));
  }
  if (rp == END_PROC_ADDR) rp = proc; 
  else printf("--more--\r");
  oldrp = rp;
}
Пример #6
0
PUBLIC void proctab_dmp()
{
/* Proc table dump */

  register struct proc *rp;
  static struct proc *oldrp = BEG_PROC_ADDR;
  int r, n = 0;
  phys_clicks text, data, size;

  /* First obtain a fresh copy of the current process table. */
  if ((r = sys_getproctab(proc)) != OK) {
      report("IS","warning: couldn't get copy of process table", r);
      return;
  }

  printf("\n-nr-----gen---endpoint--name--- -prior-quant- -user---sys----size-rts flags-\n");

  for (rp = oldrp; rp < END_PROC_ADDR; rp++) {
	if (isemptyp(rp)) continue;
	if (++n > 23) break;
	text = rp->p_memmap[T].mem_phys;
	data = rp->p_memmap[D].mem_phys;
	size = rp->p_memmap[T].mem_len
		+ ((rp->p_memmap[S].mem_phys + rp->p_memmap[S].mem_len) - data);
	if (proc_nr(rp) == IDLE) 	printf("(%2d) ", proc_nr(rp));  
	else if (proc_nr(rp) < 0) 	printf("[%2d] ", proc_nr(rp));
	else 				printf(" %2d  ", proc_nr(rp));
	printf(" %5d %10d ", _ENDPOINT_G(rp->p_endpoint), rp->p_endpoint);
	printf(" %-8.8s %02u/%02u %02d/%02u %6lu%6lu %6uK %s",
	       rp->p_name,
	       rp->p_priority, rp->p_max_priority,
	       rp->p_ticks_left, rp->p_quantum_size, 
	       rp->p_user_time, rp->p_sys_time,
	       click_to_round_k(size),
	       p_rts_flags_str(rp->p_rts_flags));
	if (rp->p_rts_flags & (SENDING|RECEIVING)) {
		printf(" %-7.7s", proc_name(_ENDPOINT_P(rp->p_getfrom_e)));
	} 
	printf("\n");
  }
  if (rp == END_PROC_ADDR) rp = BEG_PROC_ADDR; else printf("--more--\r");
  oldrp = rp;
}
Пример #7
0
PRIVATE void ser_dump_segs(void)
{
	struct proc *pp;
	for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
	{
		if (isemptyp(pp))
			continue;
		printf("%d: %s ep %d\n", proc_nr(pp), pp->p_name, pp->p_endpoint);
		printseg("cs: ", 1, pp, pp->p_reg.cs);
		printseg("ds: ", 0, pp, pp->p_reg.ds);
		if(pp->p_reg.ss != pp->p_reg.ds) {
			printseg("ss: ", 0, pp, pp->p_reg.ss);
		}
	}
}
Пример #8
0
/*===========================================================================*
 *				sendmask_dmp   				     *
 *===========================================================================*/
PUBLIC void sendmask_dmp()
{
  register struct proc *rp;
  static struct proc *oldrp = BEG_PROC_ADDR;
  int r, i,j, n = 0;

  /* First obtain a fresh copy of the current process table. */
  if ((r = sys_getproctab(proc)) != OK) {
      report("IS","warning: couldn't get copy of process table", r);
      return;
  }

  printf("\n\n");
  printf("Sendmask dump for process table. User processes (*) don't have [].");
  printf("\n");
  printf("The rows of bits indicate to which processes each process may send.");
  printf("\n\n");

#if DEAD_CODE
  printf("              ");
  for (j=proc_nr(BEG_PROC_ADDR); j< INIT_PROC_NR+1; j++) {
     printf("%3d", j);
  }
  printf("  *\n");

  for (rp = oldrp; rp < END_PROC_ADDR; rp++) {
        if (isemptyp(rp)) continue;
        if (++n > 20) break;

    	printf("%8s ", rp->p_name);
	if (proc_nr(rp) == IDLE) 	printf("(%2d) ", proc_nr(rp));  
	else if (proc_nr(rp) < 0) 	printf("[%2d] ", proc_nr(rp));
	else 				printf(" %2d  ", proc_nr(rp));

    	for (j=proc_nr(BEG_PROC_ADDR); j<INIT_PROC_NR+2; j++) {
    	    if (isallowed(rp->p_sendmask, j))	printf(" 1 ");
    	    else 				printf(" 0 ");
    	}
        printf("\n");
  }
  if (rp == END_PROC_ADDR) { printf("\n"); rp = BEG_PROC_ADDR; }
  else printf("--more--\r");
  oldrp = rp;
#endif
}
Пример #9
0
PUBLIC void print_proc(struct proc *pp)
{
	struct proc *depproc = NULL;
	endpoint_t dep;

	printf("%d: %s %d prio %d time %d/%d cycles 0x%x%08x cpu %2d "
			"cr3 0x%lx rts %s misc %s sched %s ",
		proc_nr(pp), pp->p_name, pp->p_endpoint, 
		pp->p_priority, pp->p_user_time,
		pp->p_sys_time, ex64hi(pp->p_cycles),
		ex64lo(pp->p_cycles), pp->p_cpu,
		pp->p_seg.p_cr3,
		rtsflagstr(pp->p_rts_flags), miscflagstr(pp->p_misc_flags),
		schedulerstr(pp->p_scheduler));

	print_sigmgr(pp);

	dep = P_BLOCKEDON(pp);
	if(dep != NONE) {
		printf(" blocked on: ");
		print_endpoint(dep);
	}
	printf("\n");
}
Пример #10
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register struct priv *sp;	/* privilege structure pointer */
  register int i, s;
  int hdrindex;			/* index to array of a.out headers */
  phys_clicks text_base;
  vir_clicks text_clicks, data_clicks;
  reg_t ktsb;			/* kernel task stack base */
  struct exec e_hdr;		/* for a copy of an a.out header */

  /* Initialize the interrupt controller. */
  intr_init(1);

  /* Clear the process table. Anounce each slot as empty and set up mappings 
   * for proc_addr() and proc_nr() macros. Do the same for the table with 
   * privilege structures for the system processes. 
   */
  for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
  	rp->p_rts_flags = SLOT_FREE;		/* initialize free slot */
	rp->p_nr = i;				/* proc number from ptr */
        (pproc_addr + NR_TASKS)[i] = rp;        /* proc ptr from number */
  }
  for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
	sp->s_proc_nr = NONE;			/* initialize as free */
	sp->s_id = i;				/* priv structure index */
	ppriv_addr[i] = sp;			/* priv ptr from number */
  }

  /* Set up proc table entries for processes in boot image.  The stacks of the
   * kernel tasks are initialized to an array in data space.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.  All the
   * processes are in low memory on the 8086.  On the 386 only the kernel
   * is in low memory, the rest is loaded in extended memory.
   */

  /* Task stacks. */
  ktsb = (reg_t) t_stack;

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	ip = &image[i];				/* process' attributes */
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	rp->p_max_priority = ip->priority;	/* max scheduling priority */
	rp->p_priority = ip->priority;		/* current priority */
	rp->p_quantum_size = ip->quantum;	/* quantum size in ticks */
	rp->p_ticks_left = ip->quantum;		/* current credit */
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	(void) get_priv(rp, (ip->flags & SYS_PROC));    /* assign structure */
	priv(rp)->s_flags = ip->flags;			/* process flags */
	priv(rp)->s_trap_mask = ip->trap_mask;		/* allowed traps */
	priv(rp)->s_call_mask = ip->call_mask;		/* kernel call mask */
	priv(rp)->s_ipc_to.chunk[0] = ip->ipc_to;	/* restrict targets */
	if (iskerneln(proc_nr(rp))) {		/* part of the kernel? */ 
		if (ip->stksize > 0) {		/* HARDWARE stack size is 0 */
			rp->p_priv->s_stack_guard = (reg_t *) ktsb;
			*rp->p_priv->s_stack_guard = STACK_GUARD;
		}
		ktsb += ip->stksize;	/* point to high end of stack */
		rp->p_reg.sp = ktsb;	/* this task's initial stack ptr */
		text_base = kinfo.code_base >> CLICK_SHIFT;
					/* processes that are in the kernel */
		hdrindex = 0;		/* all use the first a.out header */
	} else {
		hdrindex = 1 + i-NR_TASKS;	/* servers, drivers, INIT */
	}

	/* The bootstrap loader created an array of the a.out headers at
	 * absolute address 'aout'. Get one element to e_hdr.
	 */
	phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr),
						(phys_bytes) A_MINHDR);
	/* Convert addresses to clicks and build process memory map */
	text_base = e_hdr.a_syms >> CLICK_SHIFT;
	text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
	if (!(e_hdr.a_flags & A_SEP)) text_clicks = 0;	   /* common I&D */
	data_clicks = (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
	rp->p_memmap[T].mem_phys = text_base;
	rp->p_memmap[T].mem_len  = text_clicks;
	rp->p_memmap[D].mem_phys = text_base + text_clicks;
	rp->p_memmap[D].mem_len  = data_clicks;
	rp->p_memmap[S].mem_phys = text_base + text_clicks + data_clicks;
	rp->p_memmap[S].mem_vir  = data_clicks;	/* empty - stack is in data */

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = (reg_t) ip->initial_pc;
	rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down one word
	 * to give crtso.s something to use as "argc".
	 */
	if (isusern(proc_nr(rp))) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		rp->p_reg.sp -= sizeof(reg_t);
	}
	
	/* Set ready. The HARDWARE task is never ready. */
	if (rp->p_nr != HARDWARE) {
		rp->p_rts_flags = 0;		/* runnable if no flags */
		lock_enqueue(rp);		/* add to scheduling queues */
	} else {
		rp->p_rts_flags = NO_MAP;	/* prevent from running */
	}

	/* Code and data segments must be allocated in protected mode. */
	alloc_segments(rp);
  }
Пример #11
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC int main(void)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;
  size_t argsz;			/* size of arguments passed to crtso on stack */

  BKL_LOCK();
   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

  /* Set up proc table entries for processes in boot image.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.
   */

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr));
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
            if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else if(isrootsysn(proc_nr)) {
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }
            /* Priviliges for ordinary process. */
            else {
		NOT_REACHABLE;
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}
	rp->p_memmap[T].mem_vir  = ABS2CLICK(ip->memmap.text_vaddr);
	rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr);
	rp->p_memmap[T].mem_len  = ABS2CLICK(ip->memmap.text_bytes);
	rp->p_memmap[D].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr);
	rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr);
	rp->p_memmap[D].mem_len  = ABS2CLICK(ip->memmap.data_bytes);
	rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = ip->memmap.entry;
	rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down three words
	 * to give crtso.s something to use as "argc", "argv" and "envp".
	 */
	if (isusern(proc_nr)) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		argsz = 3 * sizeof(reg_t);
		rp->p_reg.sp -= argsz;
		phys_memset(rp->p_reg.sp - 
			(rp->p_memmap[S].mem_vir << CLICK_SHIFT) +
			(rp->p_memmap[S].mem_phys << CLICK_SHIFT), 
			0, argsz);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(ip->flags & PROC_FULLVM)
		rp->p_rts_flags |= RTS_VMINHIBIT;

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	alloc_segments(rp);
	DEBUGEXTRA(("done\n"));
  }

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* Architecture-dependent initialization. */
  DEBUGEXTRA(("arch_init()... "));
  arch_init();
  DEBUGEXTRA(("done\n"));

  /* System and processes initialization */
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
  return 1;
}
Пример #12
0
/*===========================================================================*
 *				exception				     *
 *===========================================================================*/
PUBLIC void exception_handler(int is_nested, struct exception_frame * frame)
{
/* An exception or unexpected interrupt has occurred. */
  register struct ex_s *ep;
  struct proc *saved_proc;

  /* Save proc_ptr, because it may be changed by debug statements. */
  saved_proc = get_cpulocal_var(proc_ptr);
  
  ep = &ex_data[frame->vector];

  if (frame->vector == 2) {		/* spurious NMI on some machines */
	printf("got spurious NMI\n");
	return;
  }

  /*
   * handle special cases for nested problems as they might be tricky or filter
   * them out quickly if the traps are not nested
   */
  if (is_nested) {
	/*
	 * if a problem occured while copying a message from userspace because
	 * of a wrong pointer supplied by userland, handle it the only way we
	 * can handle it ...
	 */
	if (((void*)frame->eip >= (void*)copy_msg_to_user &&
			(void*)frame->eip <= (void*)__copy_msg_to_user_end) ||
			((void*)frame->eip >= (void*)copy_msg_from_user &&
			(void*)frame->eip <= (void*)__copy_msg_from_user_end)) {
		switch(frame->vector) {
		/* these error are expected */
		case PAGE_FAULT_VECTOR:
		case PROTECTION_VECTOR:
			frame->eip = (reg_t) __user_copy_msg_pointer_failure;
			return;
		default:
			panic("Copy involving a user pointer failed unexpectedly!");
		}
	}

	/* Pass any error resulting from restoring FPU state, as a FPU
	 * exception to the process.
	 */
	if (((void*)frame->eip >= (void*)fxrstor &&
			(void *)frame->eip <= (void*)__fxrstor_end) ||
			((void*)frame->eip >= (void*)frstor &&
			(void *)frame->eip <= (void*)__frstor_end)) {
		frame->eip = (reg_t) __frstor_failure;
		return;
	}
  }

  if(frame->vector == PAGE_FAULT_VECTOR) {
	pagefault(saved_proc, frame, is_nested);
	return;
  }

  /* If an exception occurs while running a process, the is_nested variable
   * will be zero. Exceptions in interrupt handlers or system traps will make
   * is_nested non-zero.
   */
  if (is_nested == 0 && ! iskernelp(saved_proc)) {
#if 0
	{

  		printf(
  "vec_nr= %d, trap_errno= 0x%lx, eip= 0x%lx, cs= 0x%x, eflags= 0x%lx\n",
			frame->vector, (unsigned long)frame->errcode,
			(unsigned long)frame->eip, frame->cs,
			(unsigned long)frame->eflags);
		printseg("cs: ", 1, saved_proc, frame->cs);
		printseg("ds: ", 0, saved_proc, saved_proc->p_reg.ds);
		if(saved_proc->p_reg.ds != saved_proc->p_reg.ss) {
			printseg("ss: ", 0, saved_proc, saved_proc->p_reg.ss);
		}
		proc_stacktrace(saved_proc);
	}

#endif
	cause_sig(proc_nr(saved_proc), ep->signum);
	return;
  }

  /* Exception in system code. This is not supposed to happen. */
  inkernel_disaster(saved_proc, frame, ep, is_nested);

  panic("return from inkernel_disaster");
}
Пример #13
0
/*===========================================================================*
 *				exception				     *
 *===========================================================================*/
PUBLIC void exception_handler(int is_nested, struct exception_frame * frame)
{
/* An exception or unexpected interrupt has occurred. */

  struct ex_s {
	char *msg;
	int signum;
	int minprocessor;
  };
  static struct ex_s ex_data[] = {
	{ "Divide error", SIGFPE, 86 },
	{ "Debug exception", SIGTRAP, 86 },
	{ "Nonmaskable interrupt", SIGBUS, 86 },
	{ "Breakpoint", SIGEMT, 86 },
	{ "Overflow", SIGFPE, 86 },
	{ "Bounds check", SIGFPE, 186 },
	{ "Invalid opcode", SIGILL, 186 },
	{ "Coprocessor not available", SIGFPE, 186 },
	{ "Double fault", SIGBUS, 286 },
	{ "Coprocessor segment overrun", SIGSEGV, 286 },
	{ "Invalid TSS", SIGSEGV, 286 },
	{ "Segment not present", SIGSEGV, 286 },
	{ "Stack exception", SIGSEGV, 286 },	/* STACK_FAULT already used */
	{ "General protection", SIGSEGV, 286 },
	{ "Page fault", SIGSEGV, 386 },		/* not close */
	{ NULL, SIGILL, 0 },			/* probably software trap */
	{ "Coprocessor error", SIGFPE, 386 },
	{ "Alignment check", SIGBUS, 386 },
	{ "Machine check", SIGBUS, 386 },
	{ "SIMD exception", SIGFPE, 386 },
  };
  register struct ex_s *ep;
  struct proc *saved_proc;

  /* Save proc_ptr, because it may be changed by debug statements. */
  saved_proc = proc_ptr;	
  
  ep = &ex_data[frame->vector];

  if (frame->vector == 2) {		/* spurious NMI on some machines */
	printf("got spurious NMI\n");
	return;
  }

  /*
   * handle special cases for nested problems as they might be tricky or filter
   * them out quickly if the traps are not nested
   */
  if (is_nested) {
	/*
	 * if a problem occured while copying a message from userspace because
	 * of a wrong pointer supplied by userland, handle it the only way we
	 * can handle it ...
	 */
	if (((void*)frame->eip >= (void*)copy_msg_to_user &&
			(void*)frame->eip <= (void*)__copy_msg_to_user_end) ||
			((void*)frame->eip >= (void*)copy_msg_from_user &&
			(void*)frame->eip <= (void*)__copy_msg_from_user_end)) {
		switch(frame->vector) {
		/* these error are expected */
		case PAGE_FAULT_VECTOR:
		case PROTECTION_VECTOR:
			frame->eip = (reg_t) __user_copy_msg_pointer_failure;
			return;
		default:
			panic("Copy involving a user pointer failed unexpectedly!");
		}
	}
  }

  if(frame->vector == PAGE_FAULT_VECTOR) {
	pagefault(saved_proc, frame, is_nested);
	return;
  }

  /* If an exception occurs while running a process, the is_nested variable
   * will be zero. Exceptions in interrupt handlers or system traps will make
   * is_nested non-zero.
   */
  if (is_nested == 0 && ! iskernelp(saved_proc)) {
#if 0
	{

  		printf(
  "vec_nr= %d, trap_errno= 0x%lx, eip= 0x%lx, cs= 0x%x, eflags= 0x%lx\n",
			frame->vector, (unsigned long)frame->errcode,
			(unsigned long)frame->eip, frame->cs,
			(unsigned long)frame->eflags);
		printseg("cs: ", 1, saved_proc, frame->cs);
		printseg("ds: ", 0, saved_proc, saved_proc->p_reg.ds);
		if(saved_proc->p_reg.ds != saved_proc->p_reg.ss) {
			printseg("ss: ", 0, saved_proc, saved_proc->p_reg.ss);
		}
		proc_stacktrace(saved_proc);
	}

#endif
	cause_sig(proc_nr(saved_proc), ep->signum);
	return;
  }

  /* Exception in system code. This is not supposed to happen. */
  if (ep->msg == NULL || machine.processor < ep->minprocessor)
	printf("\nIntel-reserved exception %d\n", frame->vector);
  else
	printf("\n%s\n", ep->msg);
  printf("is_nested = %d ", is_nested);

  printf("vec_nr= %d, trap_errno= 0x%x, eip= 0x%x, "
	"cs= 0x%x, eflags= 0x%x trap_esp 0x%08x\n",
	frame->vector, frame->errcode, frame->eip,
	frame->cs, frame->eflags, frame);
  printf("KERNEL registers :\n");
  printf(
		  "\t%%eax 0x%08x %%ebx 0x%08x %%ecx 0x%08x %%edx 0x%08x\n"
		  "\t%%esp 0x%08x %%ebp 0x%08x %%esi 0x%08x %%edi 0x%08x\n",
		  ((u32_t *)frame)[-1],
		  ((u32_t *)frame)[-2],
		  ((u32_t *)frame)[-3],
		  ((u32_t *)frame)[-4],
		  ((u32_t *)frame)[-5],
		  ((u32_t *)frame)[-6],
		  ((u32_t *)frame)[-7],
		  ((u32_t *)frame)[-8]
	 );
  printseg("ker cs: ", 1, NULL, frame->cs);
  printseg("ker ds: ", 0, NULL, DS_SELECTOR);
  /* TODO should we enable this only when compiled for some debug mode? */
  if (saved_proc) {
	  printf("scheduled was: process %d (%s), ", proc_nr(saved_proc), saved_proc->p_name);
	  printf("pc = %u:0x%x\n", (unsigned) saved_proc->p_reg.cs,
			  (unsigned) saved_proc->p_reg.pc);
	  proc_stacktrace(saved_proc);

	  panic("Unhandled kernel exception");
  }
  else {
	  /* in an early stage of boot process we don't have processes yet */
	  panic("exception in kernel while booting");
  }
}
Пример #14
0
PRIVATE void pagefault( struct proc *pr,
			struct exception_frame * frame,
			int is_nested)
{
	int in_physcopy = 0;

	reg_t pagefaultcr2;
	message m_pagefault;
	int err;

	pagefaultcr2 = read_cr2();

#if 0
	printf("kernel: pagefault in pr %d, addr 0x%lx, his cr3 0x%lx, actual cr3 0x%lx\n",
		pr->p_endpoint, pagefaultcr2, pr->p_seg.p_cr3, read_cr3());
#endif

	in_physcopy = (frame->eip > (vir_bytes) phys_copy) &&
	   (frame->eip < (vir_bytes) phys_copy_fault);

	if((is_nested || iskernelp(pr)) &&
		catch_pagefaults && in_physcopy) {
#if 0
		printf("pf caught! addr 0x%lx\n", pagefaultcr2);
#endif
		if (is_nested) {
			frame->eip = (reg_t) phys_copy_fault_in_kernel;
		}
		else {
			pr->p_reg.pc = (reg_t) phys_copy_fault;
			pr->p_reg.retreg = pagefaultcr2;
		}
	
		return;
	}

	if(is_nested) {
		printf("pagefault in kernel at pc 0x%lx address 0x%lx\n",
			frame->eip, pagefaultcr2);
		inkernel_disaster(pr, frame, NULL, is_nested);
	}

	/* System processes that don't have their own page table can't
	 * have page faults. VM does have its own page table but also
	 * can't have page faults (because VM has to handle them).
	 */
	if((pr->p_endpoint <= INIT_PROC_NR &&
	 !(pr->p_misc_flags & MF_FULLVM)) || pr->p_endpoint == VM_PROC_NR) {
		/* Page fault we can't / don't want to
		 * handle.
		 */
		printf("pagefault for process %d ('%s') on CPU %d, "
			"pc = 0x%x, addr = 0x%x, flags = 0x%x, is_nested %d\n",
			pr->p_endpoint, pr->p_name, cpuid, pr->p_reg.pc,
			pagefaultcr2, frame->errcode, is_nested);
		if(!is_nested) {
			printf("process vir addr of pagefault is 0x%lx\n",
				pagefaultcr2 -
				  (pr->p_memmap[D].mem_phys << CLICK_SHIFT));
		}
		proc_stacktrace(pr);
		printf("pc of pagefault: 0x%lx\n", frame->eip);
		cause_sig(proc_nr(pr), SIGSEGV);

		return;
	}

	/* Don't schedule this process until pagefault is handled. */
	RTS_SET(pr, RTS_PAGEFAULT);

	/* tell Vm about the pagefault */
	m_pagefault.m_source = pr->p_endpoint;
	m_pagefault.m_type   = VM_PAGEFAULT;
	m_pagefault.VPF_ADDR = pagefaultcr2;
	m_pagefault.VPF_FLAGS = frame->errcode;

	if ((err = mini_send(pr, VM_PROC_NR,
					&m_pagefault, FROM_KERNEL))) {
		panic("WARNING: pagefault: mini_send returned %d\n", err);
	}

	return;
}
Пример #15
0
/*===========================================================================*
 *			kmain 	                             		*
 *===========================================================================*/
void kmain(kinfo_t *local_cbi)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;

  /* save a global copy of the boot parameters */
  memcpy(&kinfo, local_cbi, sizeof(kinfo));
  memcpy(&kmess, kinfo.kmess, sizeof(kmess));

#ifdef __arm__
  /* We want to initialize serial before we do any output */
  omap3_ser_init();
#endif
  /* We can talk now */
  printf("MINIX booting\n");

  /* Kernel may use bits of main memory before VM is started */
  kernel_may_alloc = 1;

  assert(sizeof(kinfo.boot_procs) == sizeof(image));
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

  cstart();

  BKL_LOCK();
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

   if(NR_BOOT_MODULES != kinfo.mbi.mods_count)
   	panic("expecting %d boot processes/modules, found %d",
		NR_BOOT_MODULES, kinfo.mbi.mods_count);

  /* Set up proc table entries for processes in boot image. */
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	if(i < NR_TASKS)			/* name (tasks only) */
		strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name));

	if(i >= NR_TASKS) {
		/* Remember this so it can be passed to VM */
		multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS];
		ip->start_addr = mb_mod->mod_start;
		ip->len = mb_mod->mod_end - mb_mod->mod_start;
	}
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) ||
		proc_nr == VM_PROC_NR);
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
	    if(proc_nr == VM_PROC_NR) {
                priv(rp)->s_flags = VM_F;
                priv(rp)->s_trap_mask = SRV_T;
		ipc_to_m = SRV_M;
		kcalls = SRV_KC;
                priv(rp)->s_sig_mgr = SELF;
                rp->p_priority = SRV_Q;
                rp->p_quantum_size_ms = SRV_QT;
	    }
	    else if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else {
	    	assert(isrootsysn(proc_nr));
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}

	/* Arch-specific state initialization. */
	arch_boot_proc(ip, rp);

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* Process isn't scheduled until VM has set up a pagetable for it. */
	if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) {
		rp->p_rts_flags |= RTS_VMINHIBIT;
		rp->p_rts_flags |= RTS_BOOTINHIBIT;
	}

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	DEBUGEXTRA(("done\n"));
  }

  /* update boot procs info for VM */
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  arch_post_init();

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* System and processes initialization */
  memory_init();
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

  /* The bootstrap phase is over, so we can add the physical
   * memory used for it to the free list.
   */
  add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len);

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
}
Пример #16
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register struct priv *sp;	/* privilege structure pointer */
  register int i, s;
  // a.out 头部数组的索引.
  int hdrindex;			/* index to array of a.out headers */
  phys_clicks text_base;
  vir_clicks text_clicks, data_clicks;
  // 内核任务栈的基地址(低端)
  reg_t ktsb;			/* kernel task stack base */
  // 用来放置 a.out 头部的一个副本.
  struct exec e_hdr;		/* for a copy of an a.out header */

  /* Initialize the interrupt controller. */
  // 初始化 8259 中断控制器芯片.
  intr_init(1);

  /* Clear the process table. Anounce each slot as empty and set up mappings 
   * for proc_addr() and proc_nr() macros. Do the same for the table with 
   * privilege structures for the system processes. 
   */
  // 初如化进程表与进程指针表.
  // BEG_PROC_ADDR: 进程表地址;
  for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
	  // 将进程表中每一项都设置为空闲.
  	rp->p_rts_flags = SLOT_FREE;		/* initialize free slot */
	// 进程号, i 的初值为 -NR_TASKS, 可见系统任务拥有负的进程号
	rp->p_nr = i;				/* proc number from ptr */
	// 建立进程数组与进程指针数组之间的映射关系
        (pproc_addr + NR_TASKS)[i] = rp;        /* proc ptr from number */
  }
  // 初始化优先级表
  for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
	sp->s_proc_nr = NONE;			/* initialize as free */
	sp->s_id = i;				/* priv structure index */
	// 建立特权级表与特权级指针表之间的映射关系
	ppriv_addr[i] = sp;			/* priv ptr from number */
  }

  /* Set up proc table entries for tasks and servers.  The stacks of the
   * kernel tasks are initialized to an array in data space.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.  All the
   * processes are in low memory on the 8086.  On the 386 only the kernel
   * is in low memory, the rest is loaded in extended memory.
   */
  /*
   * 为任务和服务进程设置进程表项. 内核任务的栈被初始化成一个在数据空间中的
   * 数组. 服务进程的栈已经由控制器添加到数据段中, 所有它们的栈指针开始时
   * 指向数据段的末尾. 所有的进程都在 8086 的低内存. 对于 386, 只有内核在
   * 低内存, 剩下的都在扩展内存中.
   */

  /* Task stacks. */
  /* 任务栈 */
  ktsb = (reg_t) t_stack;
 // 为那些包含在系统引导映像文件中的程序分配进程表项.
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	ip = &image[i];				/* process' attributes */
	// 获取进程指针
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	// 最大调度优先级
	rp->p_max_priority = ip->priority;	/* max scheduling priority */
	// 当前调度优先级
	rp->p_priority = ip->priority;		/* current priority */
	// 时间片原子值
	rp->p_quantum_size = ip->quantum;	/* quantum size in ticks */
	// 剩余时间片
	rp->p_ticks_left = ip->quantum;		/* current credit */
	// 将程序名复制到进程表项中
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	// 为进程分配一个特权级结构体, 即 从系统特权级表中分配一项
	(void) get_priv(rp, (ip->flags & SYS_PROC));    /* assign structure */
	// 初始化特权级结构体的标志.
	priv(rp)->s_flags = ip->flags;			/* process flags */
	// 初始化特权级结构体的 允许的系统调用陷井
	priv(rp)->s_trap_mask = ip->trap_mask;		/* allowed traps */
	priv(rp)->s_call_mask = ip->call_mask;		/* kernel call mask */
	// 初始化进程的消息发送位图
	priv(rp)->s_ipc_to.chunk[0] = ip->ipc_to;	/* restrict targets */
	// 如果进程是内核任务
	if (iskerneln(proc_nr(rp))) {		/* part of the kernel? */ 
		// 如果进程的栈大小大于 0, 设置进程的栈警戒字, 
		if (ip->stksize > 0) {		/* HARDWARE stack size is 0 */
			// 设置内核任务栈警戒字指针.
			rp->p_priv->s_stack_guard = (reg_t *) ktsb;
			// 指针运算符(->) 要比取值运行符 (*) 的优先级要高.
			// 等价于: 
			// *(rp->p_priv->s_stack_guard) = STACK_GUARD
			// 效果是在栈的最顶端(在低地址)放置一个特殊值,
			// 这个值就是栈警戒字.
			*rp->p_priv->s_stack_guard = STACK_GUARD;
		}
		ktsb += ip->stksize;	/* point to high end of stack */
		// 初始进程的栈指针
		rp->p_reg.sp = ktsb;	/* this task's initial stack ptr */
		// kinfo ???
		// 内核代码的基地址右移 CLICK_SHIFT 位, 赋给 text_base.
		text_base = kinfo.code_base >> CLICK_SHIFT;
					/* processes that are in the kernel */
		// 内核任务使用同一个 a.out 头部信息
		hdrindex = 0;		/* all use the first a.out header */
	} else {
		// 非内核任务, 计算它的 a.out 头部数组索引, 因为 0 号项
		// 留给了内核任务, 所以需 加 1.
		hdrindex = 1 + i-NR_TASKS;	/* servers, drivers, INIT */
	}

	/* The bootstrap loader created an array of the a.out headers at
	 * absolute address 'aout'. Get one element to e_hdr.
	 */
	/*
	 * 引导加载程序会在绝对地址 'aout' 处放置一个 a.out 头部数组.
	 * 从中取一项复制到 e_hdr.
	 */
	phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr),
						(phys_bytes) A_MINHDR);
	/* Convert addresses to clicks and build process memory map */
	/* 将地址转换为以 click 为单位, 并建立进程内存映射 */
	// 既然这里要设置 text_base, 那 146 行附近的 
	// text_base = kinfo.code_base >> CLICK_SHIFT;
	// 岂不是多余的??
	// 将 a.out 头部的符号表大小右移 CLICK_SHIFT 位,赋给 text_base.
	text_base = e_hdr.a_syms >> CLICK_SHIFT;
	// 计算程序文本段大小, 以 click 为单位, 上取整.
	text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
	// 如果 a.out 头部指明它的 I/D 是合并的 ???
	if (!(e_hdr.a_flags & A_SEP)) text_clicks = 0;	   /* common I&D */
	// 计算程序占用的内存量, 以 click 为单位, 上取整.
	data_clicks = (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
	// 初始化进程的内存映射数据结构
	rp->p_memmap[T].mem_phys = text_base;
	rp->p_memmap[T].mem_len  = text_clicks;
	rp->p_memmap[D].mem_phys = text_base + text_clicks;
	rp->p_memmap[D].mem_len  = data_clicks;
	rp->p_memmap[S].mem_phys = text_base + text_clicks + data_clicks;
	rp->p_memmap[S].mem_vir  = data_clicks;	/* empty - stack is in data */

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	/*
	 * 设置寄存器的初始值. 与其他进程相比, 内核任务的处理器状态字
	 * 稍有不同, 因为内核任务可以访问 I/O; 而对于非特权进来来说, 这是不
	 * 允许的.
	 */
	// 初始化进程的 PC 和 processor status word.
	rp->p_reg.pc = (reg_t) ip->initial_pc;
	rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down one word
	 * to give crtso.s something to use as "argc".
	 */
	/*
	 * 初始化服务器进程的栈指针. 下移一个字的空间, 使得 crtso.s 有
	 * 空间放置 "argc".
	 */
	if (isusern(proc_nr(rp))) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		rp->p_reg.sp -= sizeof(reg_t);
	}
	
	/* Set ready. The HARDWARE task is never ready. */
	if (rp->p_nr != HARDWARE) {
		// 如果进程不是 HARDWARE, 清空进程标志, 并加入调度队列.
		rp->p_rts_flags = 0;		/* runnable if no flags */
		lock_enqueue(rp);		/* add to scheduling queues */
	} else {
		// 对于  HARDWARE 任务, 则阻止其运行. ???
		rp->p_rts_flags = NO_MAP;	/* prevent from running */
	}

	/* Code and data segments must be allocated in protected mode. */
	/* 数据与代码段必须在保护模式下分配 */
	alloc_segments(rp);
  }
Пример #17
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register struct priv *sp;	/* privilege structure pointer */
  register int i, j, s;
  int hdrindex;			/* index to array of a.out headers */
  phys_clicks text_base;
  vir_clicks text_clicks, data_clicks, st_clicks;
  reg_t ktsb;			/* kernel task stack base */
  struct exec e_hdr;		/* for a copy of an a.out header */

   /* Architecture-dependent initialization. */
   arch_init();

   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
  /* Clear the process table. Anounce each slot as empty and set up mappings 
   * for proc_addr() and proc_nr() macros. Do the same for the table with 
   * privilege structures for the system processes. 
   */
  for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
  	rp->p_rts_flags = SLOT_FREE;		/* initialize free slot */
#if DEBUG_SCHED_CHECK
	rp->p_magic = PMAGIC;
#endif
	rp->p_nr = i;				/* proc number from ptr */
	rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
  }
  for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
	sp->s_proc_nr = NONE;			/* initialize as free */
	sp->s_id = i;				/* priv structure index */
	ppriv_addr[i] = sp;			/* priv ptr from number */
  }

  /* Set up proc table entries for processes in boot image.  The stacks of the
   * kernel tasks are initialized to an array in data space.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.  All the
   * processes are in low memory on the 8086.  On the 386 only the kernel
   * is in low memory, the rest is loaded in extended memory.
   */

  /* Task stacks. */
  ktsb = (reg_t) t_stack;

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int ci;
	bitchunk_t fv;

	ip = &image[i];				/* process' attributes */
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	rp->p_max_priority = ip->priority;	/* max scheduling priority */
	rp->p_priority = ip->priority;		/* current priority */
	rp->p_quantum_size = ip->quantum;	/* quantum size in ticks */
	rp->p_ticks_left = ip->quantum;		/* current credit */
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	(void) get_priv(rp, (ip->flags & SYS_PROC));    /* assign structure */
	priv(rp)->s_flags = ip->flags;			/* process flags */
	priv(rp)->s_trap_mask = ip->trap_mask;		/* allowed traps */

	/* Warn about violations of the boot image table order consistency. */
	if (priv_id(rp) != s_nr_to_id(ip->proc_nr) && (ip->flags & SYS_PROC))
		kprintf("Warning: boot image table has wrong process order\n");

	/* Initialize call mask bitmap from unordered set.
	 * A single SYS_ALL_CALLS is a special case - it
	 * means all calls are allowed.
	 */
	if(ip->nr_k_calls == 1 && ip->k_calls[0] == SYS_ALL_CALLS)
		fv = ~0;		/* fill call mask */
	else
		fv = 0;			/* clear call mask */

	for(ci = 0; ci < CALL_MASK_SIZE; ci++) 	/* fill or clear call mask */
		priv(rp)->s_k_call_mask[ci] = fv;
	if(!fv)			/* not all full? enter calls bit by bit */
		for(ci = 0; ci < ip->nr_k_calls; ci++)
			SET_BIT(priv(rp)->s_k_call_mask,
				ip->k_calls[ci]-KERNEL_CALL);

	for (j = 0; j < NR_SYS_PROCS && j < BITCHUNK_BITS; j++)
		if (ip->ipc_to & (1 << j))
			set_sendto_bit(rp, j);	/* restrict targets */

	if (iskerneln(proc_nr(rp))) {		/* part of the kernel? */ 
		if (ip->stksize > 0) {		/* HARDWARE stack size is 0 */
			rp->p_priv->s_stack_guard = (reg_t *) ktsb;
			*rp->p_priv->s_stack_guard = STACK_GUARD;
		}
		ktsb += ip->stksize;	/* point to high end of stack */
		rp->p_reg.sp = ktsb;	/* this task's initial stack ptr */
		hdrindex = 0;		/* all use the first a.out header */
	} else {
		hdrindex = 1 + i-NR_TASKS;	/* servers, drivers, INIT */
	}

	/* Architecture-specific way to find out aout header of this
	 * boot process.
	 */
	arch_get_aout_headers(hdrindex, &e_hdr);

	/* Convert addresses to clicks and build process memory map */
	text_base = e_hdr.a_syms >> CLICK_SHIFT;
	text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
	data_clicks = (e_hdr.a_data+e_hdr.a_bss + CLICK_SIZE-1) >> CLICK_SHIFT;
	st_clicks= (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
	if (!(e_hdr.a_flags & A_SEP))
	{
		data_clicks= (e_hdr.a_text+e_hdr.a_data+e_hdr.a_bss +
			CLICK_SIZE-1) >> CLICK_SHIFT;
		text_clicks = 0;	   /* common I&D */
	}
	rp->p_memmap[T].mem_phys = text_base;
	rp->p_memmap[T].mem_len  = text_clicks;
	rp->p_memmap[D].mem_phys = text_base + text_clicks;
	rp->p_memmap[D].mem_len  = data_clicks;
	rp->p_memmap[S].mem_phys = text_base + text_clicks + st_clicks;
	rp->p_memmap[S].mem_vir  = st_clicks;
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = (reg_t) ip->initial_pc;
	rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down one word
	 * to give crtso.s something to use as "argc".
	 */
	if (isusern(proc_nr(rp))) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		rp->p_reg.sp -= sizeof(reg_t);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!proc_ptr) proc_ptr = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(priv(rp)->s_flags & PROC_FULLVM)
		RTS_SET(rp, VMINHIBIT);
	
	/* Set ready. The HARDWARE task is never ready. */
	if (rp->p_nr == HARDWARE) RTS_SET(rp, PROC_STOP);
	RTS_UNSET(rp, SLOT_FREE); /* remove SLOT_FREE and schedule */
	alloc_segments(rp);
  }