/** * \brief Main function for CC26xx-based platforms * * The same main() is used for both Srf+CC26xxEM as well as for the SensorTag */ int main(void) { /* Set the LF XOSC as the LF system clock source */ select_lf_xosc(); /* * Make sure to open the latches - this will be important when returning * from shutdown */ ti_lib_pwr_ctrl_io_freeze_disable(); /* Use DCDC instead of LDO to save current */ ti_lib_pwr_ctrl_source_set(PWRCTRL_PWRSRC_DCDC); lpm_init(); board_init(); /* Enable flash cache and prefetch. */ ti_lib_vims_mode_set(VIMS_BASE, VIMS_MODE_ENABLED); ti_lib_vims_configure(VIMS_BASE, true, true); gpio_interrupt_init(); /* Clock must always be enabled for the semaphore module */ HWREG(AUX_WUC_BASE + AUX_WUC_O_MODCLKEN1) = AUX_WUC_MODCLKEN1_SMPH; leds_init(); fade(LEDS_RED); cc26xx_rtc_init(); clock_init(); rtimer_init(); watchdog_init(); process_init(); random_init(0x1234); /* Character I/O Initialisation */ #if CC26XX_UART_CONF_ENABLE cc26xx_uart_init(); cc26xx_uart_set_input(serial_line_input_byte); #endif serial_line_init(); printf("Starting " CONTIKI_VERSION_STRING "\n"); printf("With DriverLib v%u.%02u.%02u.%u\n", DRIVERLIB_MAJOR_VER, DRIVERLIB_MINOR_VER, DRIVERLIB_PATCH_VER, DRIVERLIB_BUILD_ID); printf(BOARD_STRING " using CC%u\n", CC26XX_MODEL_CPU_VARIANT); process_start(&etimer_process, NULL); ctimer_init(); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); fade(LEDS_YELLOW); printf(" Net: "); printf("%s\n", NETSTACK_NETWORK.name); printf(" MAC: "); printf("%s\n", NETSTACK_MAC.name); printf(" RDC: "); printf("%s", NETSTACK_RDC.name); if(NETSTACK_RDC.channel_check_interval() != 0) { printf(", Channel Check Interval: %u ticks", NETSTACK_RDC.channel_check_interval()); } printf("\n"); netstack_init(); set_rf_params(); #if NETSTACK_CONF_WITH_IPV6 memcpy(&uip_lladdr.addr, &linkaddr_node_addr, sizeof(uip_lladdr.addr)); queuebuf_init(); process_start(&tcpip_process, NULL); #endif /* NETSTACK_CONF_WITH_IPV6 */ fade(LEDS_GREEN); process_start(&sensors_process, NULL); autostart_start(autostart_processes); watchdog_start(); fade(LEDS_ORANGE); while(1) { uint8_t r; do { r = process_run(); watchdog_periodic(); } while(r > 0); /* Drop to some low power mode */ lpm_drop(); } }
/* * Runs all processes associated with a particular test or benchmark. * It returns 1 if the test succeeded, 0 if it failed. * If the test fails it prints diagnostic information. * If benchmark_output is nonzero, the output from the main process is * always shown. */ int run_task(task_entry_t *test, int timeout, int benchmark_output) { int i, result, success; char errmsg[256]; task_entry_t *helper; int process_count; process_info_t processes[MAX_PROCESSES]; process_info_t *main_process; success = 0; process_count = 0; /* Start all helpers for this test first. */ for (helper = (task_entry_t*)&TASKS; helper->main; helper++) { if (helper->is_helper && strcmp(test->task_name, helper->task_name) == 0) { if (process_start(helper->process_name, &processes[process_count]) == -1) { snprintf((char*)&errmsg, sizeof(errmsg), "process `%s` failed to start.", helper->process_name); goto finalize; } process_count++; } } /* Wait a little bit to allow servers to start. Racy. */ uv_sleep(50); /* Start the main test process. */ if (process_start(test->process_name, &processes[process_count]) == -1) { snprintf((char*)&errmsg, sizeof(errmsg), "process `%s` failed to start.", test->process_name); goto finalize; } main_process = &processes[process_count]; process_count++; /* Wait for the main process to terminate. */ result = process_wait(main_process, 1, timeout); if (result == -1) { FATAL("process_wait failed"); } else if (result == -2) { snprintf((char*)&errmsg, sizeof(errmsg), "timeout."); goto finalize; } /* Reap the main process. */ result = process_reap(main_process); if (result != 0) { snprintf((char*)&errmsg, sizeof(errmsg), "exit code %d.", result); goto finalize; } /* Yes! did it. */ success = 1; finalize: /* Kill all (helper) processes that are still running. */ for (i = 0; i < process_count; i++) { /* If terminate fails the process is probably already closed. */ process_terminate(&processes[i]); } /* Wait until all processes have really terminated. */ if (process_wait((process_info_t*)&processes, process_count, -1) < 0) { FATAL("process_wait failed"); } /* Show error and output from processes if the test failed. */ if (!success) { LOGF("\n`%s` failed: %s\n", test->task_name, errmsg); for (i = 0; i < process_count; i++) { switch (process_output_size(&processes[i])) { case -1: LOGF("Output from process `%s`: (unavailable)\n", process_get_name(&processes[i])); break; case 0: LOGF("Output from process `%s`: (no output)\n", process_get_name(&processes[i])); break; default: LOGF("Output from process `%s`:\n", process_get_name(&processes[i])); process_copy_output(&processes[i], fileno(stderr)); break; } } LOG("=============================================================\n"); /* In benchmark mode show concise output from the main process. */ } else if (benchmark_output) { switch (process_output_size(main_process)) { case -1: LOGF("%s: (unavailabe)\n", test->task_name); break; case 0: LOGF("%s: (no output)\n", test->task_name); break; default: //LOGF("%s: ", test->task_name); process_copy_output(main_process, fileno(stderr)); break; } } /* Clean up all process handles. */ for (i = 0; i < process_count; i++) { process_cleanup(&processes[i]); } return success; }
/*---------------------------------------------------------------------------*/ int main(void) { /* Hardware initialization */ bus_init();//ʱÖÓ³õʼ»¯ rtimer_init();//¼ÆʱÆ÷³õʼ»¯ /* model-specific h/w init. */ io_port_init(); /* Init LEDs here */ leds_init();//LED³õʼ»¯ /*LEDS_GREEN indicate LEDs Init finished*/ fade(LEDS_GREEN); /* initialize process manager. */ process_init();//½ø³Ì¹ÜÀí³õʼ»¯ /* Init UART0 * Based on the EJOY MCU CC2430 Circuit Design * */ uart0_init();//UART0´®¿Ú³õʼ»¯ #if DMA_ON dma_init();//DMA³õʼ»¯ #endif #if SLIP_ARCH_CONF_ENABLE /* On cc2430, the argument is not used */ slip_arch_init(0);//SLIP³õʼ»¯ #else uart1_set_input(serial_line_input_byte); serial_line_init(); #endif PUTSTRING("##########################################\n"); putstring(CONTIKI_VERSION_STRING "\n"); // putstring(SENSINODE_MODEL " (CC24"); puthex(((CHIPID >> 3) | 0x20)); putstring("-" FLASH_SIZE ")\n"); #if STARTUP_VERBOSE #ifdef HAVE_SDCC_BANKING PUTSTRING(" With Banking.\n"); #endif /* HAVE_SDCC_BANKING */ #ifdef SDCC_MODEL_LARGE PUTSTRING(" --model-large\n"); #endif /* SDCC_MODEL_LARGE */ #ifdef SDCC_MODEL_HUGE PUTSTRING(" --model-huge\n"); #endif /* SDCC_MODEL_HUGE */ #ifdef SDCC_STACK_AUTO PUTSTRING(" --stack-auto\n"); #endif /* SDCC_STACK_AUTO */ PUTCHAR('\n'); PUTSTRING(" Net: "); PUTSTRING(NETSTACK_NETWORK.name); PUTCHAR('\n'); PUTSTRING(" MAC: "); PUTSTRING(NETSTACK_MAC.name); PUTCHAR('\n'); PUTSTRING(" RDC: "); PUTSTRING(NETSTACK_RDC.name); PUTCHAR('\n'); PUTSTRING("##########################################\n"); #endif watchdog_init();//¿´ÃŹ·³õʼ»¯ /* Initialise the cc2430 RNG engine. */ random_init(0);//Ëæ»úÊýÉú³ÉÆ÷³õʼ»¯ /* start services */ process_start(&etimer_process, NULL);// ctimer_init();//ctimer³õʼ»¯ /* initialize the netstack */ netstack_init();//ÍøÂçµ×²ãÕ»³õʼ»¯ set_rime_addr();//rimeµØÖ·ÉèÖà //there is no sensor for us maintenance #if BUTTON_SENSOR_ON || ADC_SENSOR_ON process_start(&sensors_process, NULL); sensinode_sensors_activate(); #endif //IPV6,YES! #if UIP_CONF_IPV6 memcpy(&uip_lladdr.addr, &rimeaddr_node_addr, sizeof(uip_lladdr.addr)); queuebuf_init(); process_start(&tcpip_process, NULL); //DISCO #if DISCO_ENABLED process_start(&disco_process, NULL); #endif /* DISCO_ENABLED */ //VIZTOOL #if VIZTOOL_CONF_ON process_start(&viztool_process, NULL); #endif #if (!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; uip_ip6addr(&ipaddr, 0x2001, 0x630, 0x301, 0x6453, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); } #endif /* UIP_CONF_IPV6_RPL */ #endif /* UIP_CONF_IPV6 */ /* * Acknowledge the UART1 RX interrupt * now that we're sure we are ready to process it * * We don't need it. by MW */ // model_uart_intr_en(); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); fade(LEDS_RED); #if BATMON_CONF_ON process_start(&batmon_process, NULL); #endif autostart_start(autostart_processes); watchdog_start(); while(1) { do { /* Reset watchdog and handle polls and events */ watchdog_periodic(); /**/ #if !CLOCK_CONF_ACCURATE if(sleep_flag) { if(etimer_pending() && (etimer_next_expiration_time() - count - 1) > MAX_TICKS) { /*core/sys/etimer.c*/ etimer_request_poll(); } sleep_flag = 0; } #endif r = process_run(); } while(r > 0); #if SHORTCUTS_CONF_NETSTACK len = NETSTACK_RADIO.pending_packet(); if(len) { packetbuf_clear(); len = NETSTACK_RADIO.read(packetbuf_dataptr(), PACKETBUF_SIZE); if(len > 0) { packetbuf_set_datalen(len); NETSTACK_RDC.input(); } } #endif #if LPM_MODE #if (LPM_MODE==LPM_MODE_PM2) SLEEP &= ~OSC_PD; /* Make sure both HS OSCs are on */ while(!(SLEEP & HFRC_STB)); /* Wait for RCOSC to be stable */ CLKCON |= OSC; /* Switch to the RCOSC */ while(!(CLKCON & OSC)); /* Wait till it's happened */ SLEEP |= OSC_PD; /* Turn the other one off */ #endif /* LPM_MODE==LPM_MODE_PM2 */ /* * Set MCU IDLE or Drop to PM1. Any interrupt will take us out of LPM * Sleep Timer will wake us up in no more than 7.8ms (max idle interval) */ SLEEP = (SLEEP & 0xFC) | (LPM_MODE - 1); #if (LPM_MODE==LPM_MODE_PM2) /* * Wait 3 NOPs. Either an interrupt occurred and SLEEP.MODE was cleared or * no interrupt occurred and we can safely power down */ __asm nop nop nop __endasm; if (SLEEP & SLEEP_MODE0) { #endif /* LPM_MODE==LPM_MODE_PM2 */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We are only interested in IRQ energest while idle or in LPM */ ENERGEST_IRQ_RESTORE(irq_energest); /* Go IDLE or Enter PM1 */ PCON |= IDLE; /* First instruction upon exiting PM1 must be a NOP */ __asm nop __endasm; /* Remember energest IRQ for next pass */ ENERGEST_IRQ_SAVE(irq_energest); ENERGEST_ON(ENERGEST_TYPE_CPU); ENERGEST_OFF(ENERGEST_TYPE_LPM); #if (LPM_MODE==LPM_MODE_PM2) SLEEP &= ~OSC_PD; /* Make sure both HS OSCs are on */ while(!(SLEEP & XOSC_STB)); /* Wait for XOSC to be stable */ CLKCON &= ~OSC; /* Switch to the XOSC */ /* * On occasion the XOSC is reported stable when in reality it's not. * We need to wait for a safeguard of 64us or more before selecting it */ clock_delay(10); while(CLKCON & OSC); /* Wait till it's happened */ } #endif /* LPM_MODE==LPM_MODE_PM2 */ #endif /* LPM_MODE */ } }
/*---------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); clock_wait(2); uart1_init(115200); /* Must come before first printf */ #if NETSTACK_CONF_WITH_IPV4 slip_arch_init(115200); #endif /* NETSTACK_CONF_WITH_IPV4 */ clock_wait(1); leds_on(LEDS_GREEN); //ds2411_init(); /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible with an Ethernet MAC address - byte 0 (byte 2 in the DS ID) cannot be odd. */ //ds2411_id[2] &= 0xfe; leds_on(LEDS_BLUE); //xmem_init(); leds_off(LEDS_RED); rtimer_init(); /* * Hardware initialization done! */ node_id = NODE_ID; /* Restore node id if such has been stored in external mem */ //node_id_restore(); /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ #ifdef IEEE_802154_MAC_ADDRESS { uint8_t ieee[] = IEEE_802154_MAC_ADDRESS; //memcpy(ds2411_id, ieee, sizeof(uip_lladdr.addr)); //ds2411_id[7] = node_id & 0xff; } #endif //random_init(ds2411_id[0] + node_id); leds_off(LEDS_BLUE); /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); ctimer_init(); init_platform(); set_rime_addr(); cc2520_init(); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2520_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } cc2520_set_channel(RF_CHANNEL); printf(CONTIKI_VERSION_STRING " started. "); if(node_id > 0) { printf("Node id is set to %u.\n", node_id); } else { printf("Node id is not set.\n"); } #if NETSTACK_CONF_WITH_IPV6 /* memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr)); */ memcpy(&uip_lladdr.addr, linkaddr_node_addr.u8, UIP_LLADDR_LEN > LINKADDR_SIZE ? LINKADDR_SIZE : UIP_LLADDR_LEN); /* Setup nullmac-like MAC for 802.15.4 */ /* sicslowpan_init(sicslowmac_init(&cc2520_driver)); */ /* printf(" %s channel %u\n", sicslowmac_driver.name, RF_CHANNEL); */ /* Setup X-MAC for 802.15.4 */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); process_start(&tcpip_process, NULL); printf("Tentative link-local IPv6 address "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* NETSTACK_CONF_WITH_IPV6 */ NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); #endif /* NETSTACK_CONF_WITH_IPV6 */ #if !NETSTACK_CONF_WITH_IPV4 && !NETSTACK_CONF_WITH_IPV6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif leds_off(LEDS_GREEN); #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level((linkaddr_node_addr.u8[0] << 4) + 16); #endif /* TIMESYNCH_CONF_ENABLED */ #if NETSTACK_CONF_WITH_IPV4 process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ process_start(&slip_process, NULL); slip_set_input_callback(set_gateway); { uip_ipaddr_t hostaddr, netmask; uip_init(); uip_ipaddr(&hostaddr, 172,16, linkaddr_node_addr.u8[0],linkaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* uip_fw_register(&slipif);*/ uip_over_mesh_set_gateway_netif(&slipif); uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); printf("uIP started with IP address %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* NETSTACK_CONF_WITH_IPV4 */ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); watchdog_start(); /* Stop the watchdog */ watchdog_stop(); #if !PROCESS_CONF_NO_PROCESS_NAMES print_processes(autostart_processes); #else /* !PROCESS_CONF_NO_PROCESS_NAMES */ putchar('\n'); /* include putchar() */ #endif /* !PROCESS_CONF_NO_PROCESS_NAMES */ autostart_start(autostart_processes); /* * This is the scheduler loop. */ while(1) { int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart1_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } }
/* * The definition of the process. */ PROCESS_THREAD(twamp_tcp_control_server, ev, data) { /* * The process begins here. */ uip_ipaddr_t *ipaddr; PROCESS_BEGIN(); set_global_address(); /* * We start with setting up a listening TCP port. Note how we're * using the UIP_HTONS() macro to convert the port number (862) to * network byte order as required by the tcp_listen() function. */ tcp_listen(UIP_HTONS(862)); /* * We loop for ever, accepting new connections. */ while(1) { /* * We wait until we get the first TCP/IP event, which probably * comes because someone connected to us. */ PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event); /* * If a peer connected with us, we'll initialize the protosocket * with PSOCK_INIT(). */ if(uip_connected()) { /* * The PSOCK_INIT() function initializes the protosocket and * binds the input buffer to the protosocket. */ PSOCK_INIT(&ps, buffer, sizeof(buffer)); printf("Someone connected!\n"); /* * We loop until the connection is aborted, closed, or times out. */ while(!(uip_aborted() || uip_closed() || uip_timedout())) { /* * We wait until we get a TCP/IP event. Remember that we * always need to wait for events inside a process, to let * other processes run while we are waiting. */ PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event); /* * Here is where the real work is taking place: we call the * handle_connection() protothread that we defined above. This * protothread uses the protosocket to receive the data that * we want it to. */ if(state == 1){ connection_setup(&ps); } if(state == 2){ create_test_session(&ps); } if(state == 3){ timesynch(&ps); } if(state == 4){ //PT_INIT(&pthread); //run_test_session(&ps); process_start(&run_test_session,NULL); PROCESS_YIELD_UNTIL(!process_is_running(&run_test_session)); } } } } /* * We must always declare the end of a process. */ PROCESS_END(); }
/*---------------------------------------------------------------------------*/ void contiki_init() { /* Initialize random generator (moved to moteid.c) */ /* Start process handler */ process_init(); /* Start Contiki processes */ procinit_init(); /* Print startup information */ printf(CONTIKI_VERSION_STRING " started. "); if(node_id > 0) { printf("Node id is set to %u.\n", node_id); } else { printf("Node id is not set.\n"); } /* RIME CONFIGURATION */ { int i; rimeaddr_t rimeaddr; /* Init Rime */ ctimer_init(); rimeaddr.u8[0] = node_id & 0xff; rimeaddr.u8[1] = node_id >> 8; rimeaddr_set_node_addr(&rimeaddr); printf("Rime address: "); for(i = 0; i < sizeof(rimeaddr_node_addr.u8) - 1; i++) { printf("%d.", rimeaddr_node_addr.u8[i]); } printf("%d\n", rimeaddr_node_addr.u8[i]); } queuebuf_init(); /* Initialize communication stack */ netstack_init(); printf("MAC %s RDC %s NETWORK %s\n", NETSTACK_MAC.name, NETSTACK_RDC.name, NETSTACK_NETWORK.name); #if WITH_UIP /* IPv4 CONFIGURATION */ { uip_ipaddr_t hostaddr, netmask; process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); process_start(&slip_process, NULL); slip_set_input_callback(set_gateway); uip_init(); uip_fw_init(); uip_ipaddr(&hostaddr, 172,16,rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); uip_over_mesh_set_gateway_netif(&slipif); uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); rs232_set_input(slip_input_byte); printf("IPv4 address: %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* WITH_UIP */ #if WITH_UIP6 /* IPv6 CONFIGURATION */ { int i; uint8_t addr[sizeof(uip_lladdr.addr)]; for (i=0; i < sizeof(uip_lladdr.addr); i++) { addr[i] = node_id & 0xff; } memcpy(&uip_lladdr.addr, addr, sizeof(uip_lladdr.addr)); process_start(&tcpip_process, NULL); printf("Tentative link-local IPv6 address "); { int i, a; for(a = 0; a < UIP_DS6_ADDR_NB; a++) { if (uip_ds6_if.addr_list[a].isused) { for(i = 0; i < 7; ++i) { printf("%02x%02x:", uip_ds6_if.addr_list[a].ipaddr.u8[i * 2], uip_ds6_if.addr_list[a].ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", uip_ds6_if.addr_list[a].ipaddr.u8[14], uip_ds6_if.addr_list[a].ipaddr.u8[15]); } } } if(1) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } } #endif /* WITH_UIP6 */ /* Start serial process */ serial_line_init(); /* Start autostart processes (defined in Contiki application) */ print_processes(autostart_processes); autostart_start(autostart_processes); }
/** * \brief Main routine for the cc2538dk platform */ int main(void) { nvic_init(); ioc_init(); sys_ctrl_init(); clock_init(); lpm_init(); rtimer_init(); gpio_init(); leds_init(); fade(LEDS_YELLOW); process_init(); watchdog_init(); button_sensor_init(); /* * Character I/O Initialisation. * When the UART receives a character it will call serial_line_input_byte to * notify the core. The same applies for the USB driver. * * If slip-arch is also linked in afterwards (e.g. if we are a border router) * it will overwrite one of the two peripheral input callbacks. Characters * received over the relevant peripheral will be handled by * slip_input_byte instead */ #if UART_CONF_ENABLE uart_init(0); uart_init(1); uart_set_input(SERIAL_LINE_CONF_UART, serial_line_input_byte); #endif #if USB_SERIAL_CONF_ENABLE usb_serial_init(); usb_serial_set_input(serial_line_input_byte); #endif serial_line_init(); INTERRUPTS_ENABLE(); fade(LEDS_GREEN); PUTS(CONTIKI_VERSION_STRING); PUTS(BOARD_STRING); PRINTF(" Net: "); PRINTF("%s\n", NETSTACK_NETWORK.name); PRINTF(" MAC: "); PRINTF("%s\n", NETSTACK_MAC.name); PRINTF(" RDC: "); PRINTF("%s\n", NETSTACK_RDC.name); /* Initialise the H/W RNG engine. */ random_init(0); udma_init(); process_start(&etimer_process, NULL); ctimer_init(); set_rf_params(); #if CRYPTO_CONF_INIT crypto_init(); crypto_disable(); #endif netstack_init(); #if NETSTACK_CONF_WITH_IPV6 memcpy(&uip_lladdr.addr, &linkaddr_node_addr, sizeof(uip_lladdr.addr)); queuebuf_init(); process_start(&tcpip_process, NULL); #endif /* NETSTACK_CONF_WITH_IPV6 */ adc_init(); process_start(&sensors_process, NULL); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); autostart_start(autostart_processes); watchdog_start(); fade(LEDS_ORANGE); while(1) { uint8_t r; do { /* Reset watchdog and handle polls and events */ watchdog_periodic(); r = process_run(); } while(r > 0); /* We have serviced all pending events. Enter a Low-Power mode. */ lpm_enter(); } }
/*---------------------------------------------------------------------------*/ int main(void) { /* * Initialize hardware. */ halInit(); clock_init(); uart1_init(115200); // Led initialization leds_init(); INTERRUPTS_ON(); PRINTF("\r\nStarting "); PRINTF(CONTIKI_VERSION_STRING); PRINTF(" on %s\r\n",boardDescription->name); /* * Initialize Contiki and our processes. */ process_init(); #if WITH_SERIAL_LINE_INPUT uart1_set_input(serial_line_input_byte); serial_line_init(); #endif //etimer_process should be started before ctimer init process_start(&etimer_process, NULL); //ctimer and rtimer should be initialized before netstack to enable RDC (cxmac, contikimac, lpp) ctimer_init(); rtimer_init(); netstack_init(); #if !UIP_CONF_IPV6 ST_RadioEnableAutoAck(FALSE); // Because frames are not 802.15.4 compatible. ST_RadioEnableAddressFiltering(FALSE); #endif set_rime_addr(); procinit_init(); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); autostart_start(autostart_processes); watchdog_start(); while(1){ int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); ENERGEST_OFF(ENERGEST_TYPE_CPU); //watchdog_stop(); ENERGEST_ON(ENERGEST_TYPE_LPM); /* Go to idle mode. */ halSleepWithOptions(SLEEPMODE_IDLE,0); /* We are awake. */ //watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } }
/*---------------------------------------------------------------------------*/ int main(void) { /* * Initialize hardware. */ halInit(); clock_init(); uart1_init(115200); // Led initialization leds_init(); INTERRUPTS_ON(); PRINTF("\r\nStarting "); PRINTF(CONTIKI_VERSION_STRING); PRINTF(" on %s\r\n",boardDescription->name); /* * Initialize Contiki and our processes. */ process_init(); #if WITH_SERIAL_LINE_INPUT uart1_set_input(serial_line_input_byte); serial_line_init(); #endif /* rtimer and ctimer should be initialized before radio duty cycling layers*/ rtimer_init(); /* etimer_process should be initialized before ctimer */ process_start(&etimer_process, NULL); ctimer_init(); rtimer_init(); netstack_init(); set_rime_addr(); printf("%s %s, channel check rate %lu Hz\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval())); printf("802.15.4 PAN ID 0x%x, EUI-%d:", IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16); uip_debug_lladdr_print(&rimeaddr_node_addr); printf(", radio channel %u\n", RF_CHANNEL); procinit_init(); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); autostart_start(autostart_processes); watchdog_start(); while(1){ int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); ENERGEST_OFF(ENERGEST_TYPE_CPU); //watchdog_stop(); ENERGEST_ON(ENERGEST_TYPE_LPM); /* Go to idle mode. */ halSleepWithOptions(SLEEPMODE_IDLE,0); /* We are awake. */ //watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } }
/*---------------------------------------------------------------------------*/ void ip64_ipv4_dhcp_init(void) { printf("Starting DHCPv4\n"); process_start(&ip64_ipv4_dhcp_process, NULL); }
/*---------------------------------------------------------------------------*/ void telnetd_init(void) { process_start(&telnetd_process, NULL); }
/*---------------------------------------------------------------------------*/ void init_net(void) { #ifndef WITH_SLIP uint8_t i; id.u32[0] = djb2_hash((const uint8_t *)&(SIM->UIDH), 8); /* Use SIM_UIDH, SIM_UIDMH for first half */ id.u32[1] = djb2_hash((const uint8_t *)&(SIM->UIDML), 8); /* Use SIM_UIDML, SIM_UIDL for second half */ id.u8[0] |= 0x02; /* Set the Local/Universal bit to Local */ #else /* Use fixed address for border router. */ id.u32[0] = 0x00000000; id.u32[1] = 0x00000000; id.u8[0] = 0x02; id.u8[7] = 0x01; #endif #if NETSTACK_CONF_WITH_IPV6 set_rime_addr(); NETSTACK_RADIO.init(); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr); rf230_set_pan_addr(IEEE802154_CONF_PANID, shortaddr, longaddr); } rf230_set_channel(RF_CHANNEL); memcpy(&uip_lladdr.addr, id.u8, sizeof(uip_lladdr.addr)); queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); PRINTF("%s %s, channel check rate %d Hz, radio channel %d\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1 : NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); process_start(&tcpip_process, NULL); PRINTF("Tentative link-local IPv6 address "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { PRINTF("%04x:", lladdr->ipaddr.u8[i * 2] * 256 + lladdr->ipaddr.u8[i * 2 + 1]); } PRINTF("%04x\n", lladdr->ipaddr.u8[14] * 256 + lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xfdfd, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); PRINTF("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { PRINTF("%04x:", ipaddr.u8[i * 2] * 256 + ipaddr.u8[i * 2 + 1]); } PRINTF("%04x\n", ipaddr.u8[7 * 2] * 256 + ipaddr.u8[7 * 2 + 1]); } #else /* If no radio stack should be used only turn on radio and set it to sleep for minimal power consumption */ rf230_init(); rf230_driver.off(); #endif /* NETSTACK_CONF_WITH_IPV6 */ }
/*---------------------------------------------------------------------------*/ static void init(void) { process_start(&rime_udp_process, NULL); }
void host_startApplication(Host* host, Process* application) { MAGIC_ASSERT(host); process_start(application); }
// ----------------------------------------------------------------------- void init_contiki_extdata_radio( void ) { radio_receive_delegate = contiki_extended_receive_delegate_t(); process_start( &contiki_ext_radio_process, 0 ); }
int main(int argc, char *argv[]) { char *unixctl_path = NULL; char *run_command = NULL; struct unixctl_server *unixctl; struct ovsdb_jsonrpc_server *jsonrpc; struct shash remotes; struct ovsdb_error *error; struct ovsdb_file *file; struct ovsdb *db; struct process *run_process; char *file_name; bool exiting; int retval; proctitle_init(argc, argv); set_program_name(argv[0]); signal(SIGPIPE, SIG_IGN); process_init(); parse_options(argc, argv, &file_name, &remotes, &unixctl_path, &run_command); die_if_already_running(); daemonize_start(); error = ovsdb_file_open(file_name, false, &db, &file); if (error) { ovs_fatal(0, "%s", ovsdb_error_to_string(error)); } jsonrpc = ovsdb_jsonrpc_server_create(db); reconfigure_from_db(jsonrpc, db, &remotes); retval = unixctl_server_create(unixctl_path, &unixctl); if (retval) { exit(EXIT_FAILURE); } if (run_command) { char *run_argv[4]; run_argv[0] = "/bin/sh"; run_argv[1] = "-c"; run_argv[2] = run_command; run_argv[3] = NULL; retval = process_start(run_argv, NULL, 0, NULL, 0, &run_process); if (retval) { ovs_fatal(retval, "%s: process failed to start", run_command); } } else { run_process = NULL; } daemonize_complete(); unixctl_command_register("exit", ovsdb_server_exit, &exiting); unixctl_command_register("ovsdb-server/compact", ovsdb_server_compact, file); unixctl_command_register("ovsdb-server/reconnect", ovsdb_server_reconnect, jsonrpc); exiting = false; while (!exiting) { reconfigure_from_db(jsonrpc, db, &remotes); ovsdb_jsonrpc_server_run(jsonrpc); unixctl_server_run(unixctl); ovsdb_trigger_run(db, time_msec()); if (run_process && process_exited(run_process)) { exiting = true; } ovsdb_jsonrpc_server_wait(jsonrpc); unixctl_server_wait(unixctl); ovsdb_trigger_wait(db, time_msec()); if (run_process) { process_wait(run_process); } poll_block(); } ovsdb_jsonrpc_server_destroy(jsonrpc); ovsdb_destroy(db); shash_destroy(&remotes); unixctl_server_destroy(unixctl); if (run_process && process_exited(run_process)) { int status = process_status(run_process); if (status) { ovs_fatal(0, "%s: child exited, %s", run_command, process_status_msg(status)); } } return 0; }
int run_test(const char* test, int timeout, int benchmark_output) { char errmsg[1024] = "no error"; process_info_t processes[1024]; process_info_t *main_proc; task_entry_t* task; int process_count; int result; int status; int i; status = 255; main_proc = NULL; process_count = 0; #ifndef _WIN32 /* Clean up stale socket from previous run. */ remove(TEST_PIPENAME); #endif /* If it's a helper the user asks for, start it directly. */ for (task = TASKS; task->main; task++) { if (task->is_helper && strcmp(test, task->process_name) == 0) { return task->main(); } } /* Start the helpers first. */ for (task = TASKS; task->main; task++) { if (strcmp(test, task->task_name) != 0) { continue; } /* Skip the test itself. */ if (!task->is_helper) { continue; } if (process_start(task->task_name, task->process_name, &processes[process_count], 1 /* is_helper */) == -1) { snprintf(errmsg, sizeof errmsg, "Process `%s` failed to start.", task->process_name); goto out; } process_count++; } /* Give the helpers time to settle. Race-y, fix this. */ uv_sleep(250); /* Now start the test itself. */ for (task = TASKS; task->main; task++) { if (strcmp(test, task->task_name) != 0) { continue; } if (task->is_helper) { continue; } if (process_start(task->task_name, task->process_name, &processes[process_count], 0 /* !is_helper */) == -1) { snprintf(errmsg, sizeof errmsg, "Process `%s` failed to start.", task->process_name); goto out; } main_proc = &processes[process_count]; process_count++; break; } if (main_proc == NULL) { snprintf(errmsg, sizeof errmsg, "No test with that name: %s", test); goto out; } result = process_wait(main_proc, 1, timeout); if (result == -1) { FATAL("process_wait failed"); } else if (result == -2) { /* Don't have to clean up the process, process_wait() has killed it. */ snprintf(errmsg, sizeof errmsg, "timeout"); goto out; } status = process_reap(main_proc); if (status != 0) { snprintf(errmsg, sizeof errmsg, "exit code %d", status); goto out; } if (benchmark_output) { /* Give the helpers time to clean up their act. */ uv_sleep(1000); } out: /* Reap running processes except the main process, it's already dead. */ for (i = 0; i < process_count - 1; i++) { process_terminate(&processes[i]); } if (process_count > 0 && process_wait(processes, process_count - 1, -1) < 0) { FATAL("process_wait failed"); } /* Show error and output from processes if the test failed. */ if (status != 0 || task->show_output) { if (status != 0) { LOGF("\n`%s` failed: %s\n", test, errmsg); } else { LOGF("\n"); } for (i = 0; i < process_count; i++) { switch (process_output_size(&processes[i])) { case -1: LOGF("Output from process `%s`: (unavailable)\n", process_get_name(&processes[i])); break; case 0: LOGF("Output from process `%s`: (no output)\n", process_get_name(&processes[i])); break; default: LOGF("Output from process `%s`:\n", process_get_name(&processes[i])); process_copy_output(&processes[i], fileno(stderr)); break; } } LOG("=============================================================\n"); /* In benchmark mode show concise output from the main process. */ } else if (benchmark_output) { switch (process_output_size(main_proc)) { case -1: LOGF("%s: (unavailable)\n", test); break; case 0: LOGF("%s: (no output)\n", test); break; default: for (i = 0; i < process_count; i++) { process_copy_output(&processes[i], fileno(stderr)); } break; } } /* Clean up all process handles. */ for (i = 0; i < process_count; i++) { process_cleanup(&processes[i]); } return status; }
/*----------------------------------------------------------------------------*/ void coap_receiver_init() { process_start(&coap_receiver, NULL); }
/*---------------------------------------------------------------------------*/ int main(void) { #if UIP_CONF_IPV6 /* A hard coded address overrides the stack default MAC address to allow multiple instances. * uip6.c defines it as {0x00,0x06,0x98,0x00,0x02,0x32} giving an ipv6 address of [fe80::206:98ff:fe00:232] * We make it simpler, {0x02,0x00,0x00 + the last three bytes of the hard coded address (if any are nonzero). * HARD_CODED_ADDRESS can be defined in the contiki-conf.h file, or here to allow quick builds using different addresses. * If HARD_CODED_ADDRESS has a prefix it also applied, unless built as a RPL end node. * E.g. bbbb::12:3456 becomes fe80::ff:fe12:3456 and prefix bbbb::/64 if non-RPL * ::10 becomes fe80::ff:fe00:10 and prefix awaits RA or RPL formation * bbbb:: gives an address of bbbb::206:98ff:fe00:232 if non-RPL */ //#define HARD_CODED_ADDRESS "bbbb::20" #ifdef HARD_CODED_ADDRESS { uip_ipaddr_t ipaddr; uiplib_ipaddrconv(HARD_CODED_ADDRESS, &ipaddr); if ((ipaddr.u8[13]!=0) || (ipaddr.u8[14]!=0) || (ipaddr.u8[15]!=0)) { if (sizeof(uip_lladdr)==6) { //Minimal-net uses ethernet MAC uip_lladdr.addr[0]=0x02;uip_lladdr.addr[1]=0;uip_lladdr.addr[2]=0; uip_lladdr.addr[3]=ipaddr.u8[13];; uip_lladdr.addr[4]=ipaddr.u8[14]; uip_lladdr.addr[5]=ipaddr.u8[15]; } } } #endif #endif process_init(); /* procinit_init initializes RPL which sets a ctimer for the first DIS */ /* We must start etimers and ctimers,before calling it */ process_start(&etimer_process, NULL); ctimer_init(); procinit_init(); autostart_start(autostart_processes); #if RPL_BORDER_ROUTER process_start(&border_router_process, NULL); printf("Border Router Process started\n"); #elif UIP_CONF_IPV6_RPL printf("RPL enabled\n"); #endif /* Set default IP addresses if not specified */ #if !UIP_CONF_IPV6 uip_ipaddr_t addr; uip_gethostaddr(&addr); if (addr.u8[0]==0) { uip_ipaddr(&addr, 10,1,1,1); } printf("IP Address: %d.%d.%d.%d\n", uip_ipaddr_to_quad(&addr)); uip_sethostaddr(&addr); uip_getnetmask(&addr); if (addr.u8[0]==0) { uip_ipaddr(&addr, 255,0,0,0); uip_setnetmask(&addr); } printf("Subnet Mask: %d.%d.%d.%d\n", uip_ipaddr_to_quad(&addr)); uip_getdraddr(&addr); if (addr.u8[0]==0) { uip_ipaddr(&addr, 10,1,1,100); uip_setdraddr(&addr); } printf("Def. Router: %d.%d.%d.%d\n", uip_ipaddr_to_quad(&addr)); #else /* UIP_CONF_IPV6 */ #if !UIP_CONF_IPV6_RPL #ifdef HARD_CODED_ADDRESS uip_ipaddr_t ipaddr; uiplib_ipaddrconv(HARD_CODED_ADDRESS, &ipaddr); if ((ipaddr.u16[0]!=0) || (ipaddr.u16[1]!=0) || (ipaddr.u16[2]!=0) || (ipaddr.u16[3]!=0)) { #if UIP_CONF_ROUTER uip_ds6_prefix_add(&ipaddr, UIP_DEFAULT_PREFIX_LEN, 0, 0, 0, 0); #else /* UIP_CONF_ROUTER */ uip_ds6_prefix_add(&ipaddr, UIP_DEFAULT_PREFIX_LEN, 0); #endif /* UIP_CONF_ROUTER */ #if !UIP_CONF_IPV6_RPL uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF); #endif } #endif /* HARD_CODED_ADDRESS */ #endif #if !RPL_BORDER_ROUTER //Border router process prints addresses later { uint8_t i; for (i=0;i<UIP_DS6_ADDR_NB;i++) { if (uip_ds6_if.addr_list[i].isused) { printf("IPV6 Addresss: ");sprint_ip6(uip_ds6_if.addr_list[i].ipaddr);printf("\n"); } } } #endif #endif /* !UIP_CONF_IPV6 */ /* Make standard output unbuffered. */ setvbuf(stdout, (char *)NULL, _IONBF, 0); while(1) { fd_set fds; int n; struct timeval tv; n = process_run(); /* if(n > 0) { printf("%d processes in queue\n"); }*/ tv.tv_sec = 0; tv.tv_usec = 1; FD_ZERO(&fds); FD_SET(STDIN_FILENO, &fds); select(1, &fds, NULL, NULL, &tv); if(FD_ISSET(STDIN_FILENO, &fds)) { char c; if(read(STDIN_FILENO, &c, 1) > 0) { serial_line_input_byte(c); } } etimer_request_poll(); } return 0; }
void init_platform(void) { process_start(&sensors_process, NULL); }
/*-----------------------------Low level initialization--------------------*/ static void initialize(void) { watchdog_init(); watchdog_start(); #if CONFIG_STACK_MONITOR /* Simple stack pointer highwater monitor. The 'm' command in cdc_task.c * looks for the first overwritten magic number. */ { extern uint16_t __bss_end; uint16_t p=(uint16_t)&__bss_end; do { *(uint16_t *)p = 0x4242; p+=100; } while (p<SP-100); //don't overwrite our own stack } #endif /* Initialize hardware */ // Checks for "finger", jumps to DFU if present. init_lowlevel(); /* Clock */ clock_init(); /* Leds are referred to by number to prevent any possible confusion :) */ /* Led0 Blue Led1 Red Led2 Green Led3 Yellow */ Leds_init(); Led1_on(); /* Get a random (or probably different) seed for the 802.15.4 packet sequence number. * Some layers will ignore duplicates found in a history (e.g. Contikimac) * causing the initial packets to be ignored after a short-cycle restart. */ ADMUX =0x1E; //Select AREF as reference, measure 1.1 volt bandgap reference. ADCSRA=1<<ADEN; //Enable ADC, not free running, interrupt disabled, fastest clock ADCSRA|=1<<ADSC; //Start conversion while (ADCSRA&(1<<ADSC)); //Wait till done PRINTD("ADC=%d\n",ADC); random_init(ADC); ADCSRA=0; //Disable ADC #if USB_CONF_RS232 /* Use rs232 port for serial out (tx, rx, gnd are the three pads behind jackdaw leds */ rs232_init(RS232_PORT_0, USART_BAUD_57600,USART_PARITY_NONE | USART_STOP_BITS_1 | USART_DATA_BITS_8); /* Redirect stdout to second port */ rs232_redirect_stdout(RS232_PORT_0); #if ANNOUNCE PRINTA("\n\n*******Booting %s*******\n",CONTIKI_VERSION_STRING); #endif #endif /* rtimer init needed for low power protocols */ rtimer_init(); /* Process subsystem. */ process_init(); /* etimer process must be started before USB or ctimer init */ process_start(&etimer_process, NULL); Led2_on(); /* Now we can start USB enumeration */ process_start(&usb_process, NULL); /* Start CDC enumeration, bearing in mind that it may fail */ /* Hopefully we'll get a stdout for startup messages, if we don't already */ #if USB_CONF_SERIAL process_start(&cdc_process, NULL); {unsigned short i; for (i=0;i<65535;i++) { process_run(); watchdog_periodic(); if (stdout) break; } #if !USB_CONF_RS232 PRINTA("\n\n*******Booting %s*******\n",CONTIKI_VERSION_STRING); #endif } #endif if (!stdout) Led3_on(); #if RF230BB #if JACKDAW_CONF_USE_SETTINGS PRINTA("Settings manager will be used.\n"); #else {uint8_t x[2]; *(uint16_t *)x = eeprom_read_word((uint16_t *)&eemem_channel); if((uint8_t)x[0]!=(uint8_t)~x[1]) { PRINTA("Invalid EEPROM settings detected. Rewriting with default values.\n"); get_channel_from_eeprom(); } } #endif ctimer_init(); /* Start radio and radio receive process */ /* Note this starts RF230 process, so must be done after process_init */ NETSTACK_RADIO.init(); /* Set addresses BEFORE starting tcpip process */ memset(&tmp_addr, 0, sizeof(rimeaddr_t)); if(get_eui64_from_eeprom(tmp_addr.u8)); //Fix MAC address init_net(); #if UIP_CONF_IPV6 memcpy(&uip_lladdr.addr, &tmp_addr.u8, 8); #endif rf230_set_pan_addr( get_panid_from_eeprom(), get_panaddr_from_eeprom(), (uint8_t *)&tmp_addr.u8 ); rf230_set_channel(get_channel_from_eeprom()); rf230_set_txpower(get_txpower_from_eeprom()); rimeaddr_set_node_addr(&tmp_addr); /* Initialize stack protocols */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); #if ANNOUNCE PRINTA("MAC address %x:%x:%x:%x:%x:%x:%x:%x\n\r",tmp_addr.u8[0],tmp_addr.u8[1],tmp_addr.u8[2],tmp_addr.u8[3],tmp_addr.u8[4],tmp_addr.u8[5],tmp_addr.u8[6],tmp_addr.u8[7]); PRINTA("%s %s, channel %u, panid 0x%X",NETSTACK_MAC.name, NETSTACK_RDC.name, rf230_get_channel(), IEEE802154_PANID); if (NETSTACK_RDC.channel_check_interval) { unsigned short tmp; tmp=CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval == 0 ? 1:\ NETSTACK_RDC.channel_check_interval()); if (tmp<65535) PRINTA(", check rate %u Hz",tmp); } PRINTA("\n"); #endif #if UIP_CONF_IPV6_RPL #if RPL_BORDER_ROUTER process_start(&tcpip_process, NULL); process_start(&border_router_process, NULL); PRINTD ("RPL Border Router Started\n"); #else process_start(&tcpip_process, NULL); PRINTD ("RPL Started\n"); #endif #if RPL_HTTPD_SERVER extern struct process httpd_process; process_start(&httpd_process, NULL); PRINTD ("Webserver Started\n"); #endif #endif /* UIP_CONF_IPV6_RPL */ #else /* RF230BB */ /* The order of starting these is important! */ process_start(&mac_process, NULL); process_start(&tcpip_process, NULL); #endif /* RF230BB */ /* Start ethernet network and storage process */ process_start(&usb_eth_process, NULL); #if USB_CONF_STORAGE process_start(&storage_process, NULL); #endif /* Autostart other processes */ /* There are none in the default build so autostart_processes will be unresolved in the link. */ /* The AUTOSTART_PROCESSES macro which defines it can only be used in the .co module. */ /* See /examples/ravenusbstick/ravenusb.c for an autostart template. */ #if 0 autostart_start(autostart_processes); #endif #if ANNOUNCE #if USB_CONF_RS232 PRINTA("Online.\n"); #else PRINTA("Online. Type ? for Jackdaw menu.\n"); #endif #endif Leds_off(); }
/*---------------------------------------------------------------------------*/ static void init(void) { process_start(&slip_process, NULL); slip_set_input_callback(slip_input_callback); }
/*---------------------------------------------------------------------------*/ const struct mac_driver * rime_udp_init(const struct radio_driver *d) { process_start(&rime_udp_process, NULL); return &rime_udp_driver; }
/*--------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); uart1_init(BAUD2UBR(115200)); /* Must come before first printf */ #if WITH_UIP slip_arch_init(BAUD2UBR(115200)); #endif /* WITH_UIP */ leds_on(LEDS_GREEN); /* xmem_init(); */ rtimer_init(); lcd_init(); PRINTF(CONTIKI_VERSION_STRING "\n"); /* * Hardware initialization done! */ leds_on(LEDS_RED); /* Restore node id if such has been stored in external mem */ // node_id_restore(); #ifdef NODEID node_id = NODEID; #ifdef BURN_NODEID flash_setup(); flash_clear(0x1800); flash_write(0x1800, node_id); flash_done(); #endif /* BURN_NODEID */ #endif /* NODE_ID */ if(node_id == 0) { node_id = *((unsigned short *)0x1800); } memset(node_mac, 0, sizeof(node_mac)); node_mac[6] = node_id >> 8; node_mac[7] = node_id & 0xff; /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ #ifdef MAC_1 { uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 }; memcpy(node_mac, ieee, sizeof(uip_lladdr.addr)); } #endif /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); ctimer_init(); set_rime_addr(); cc2420_init(); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } leds_off(LEDS_ALL); if(node_id > 0) { PRINTF("Node id %u.\n", node_id); } else { PRINTF("Node id not set.\n"); } #if WITH_UIP6 memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %lu %u\n", NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); process_start(&tcpip_process, NULL); printf("IPv6 "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* WITH_UIP6 */ NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %lu %u\n", NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); #endif /* WITH_UIP6 */ #if !WITH_UIP6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level(rimeaddr_node_addr.u8[0]); #endif /* TIMESYNCH_CONF_ENABLED */ /* process_start(&sensors_process, NULL); SENSORS_ACTIVATE(button_sensor);*/ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); print_processes(autostart_processes); autostart_start(autostart_processes); duty_cycle_scroller_start(CLOCK_SECOND * 2); /* * This is the scheduler loop. */ watchdog_start(); watchdog_stop(); /* Stop the wdt... */ while(1) { int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart1_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } }
/*-----------------------------------------------------------------------------------*/ void main(void) { struct ethernet_config *ethernet_config; close(STDIN_FILENO); close(STDOUT_FILENO); #if !UIP_LOGGING && !LOG_CONF_ENABLED close(STDERR_FILENO); #endif /* !UIP_LOGGING && !LOG_CONF_ENABLED */ process_init(); #if 1 ethernet_config = config_read("contiki.cfg"); #else { static struct ethernet_config config = {0xDE08, "cs8900a.eth"}; uip_ipaddr_t addr; uip_ipaddr(&addr, 192,168,0,128); uip_sethostaddr(&addr); uip_ipaddr(&addr, 255,255,255,0); uip_setnetmask(&addr); uip_ipaddr(&addr, 192,168,0,1); uip_setdraddr(&addr); uip_ipaddr(&addr, 192,168,0,1); resolv_conf(&addr); ethernet_config = &config; } #endif #if (WITH_GUI && WITH_MOUSE) { static const u8_t mouse_sprite[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0xE0, 0x00, 0x0F, 0xC0, 0x00, 0x0F, 0x80, 0x00, 0x0F, 0xC0, 0x00, 0x0D, 0xE0, 0x00, 0x08, 0xF0, 0x00, 0x00, 0x78, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x07, 0x80, 0x00, 0x03, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; memcpy((void*)0x0E00, mouse_sprite, sizeof(mouse_sprite)); *(u8_t*)0x07F8 = 0x0E00 / 64; VIC.spr0_color = COLOR_WHITE; } #endif /* WITH_GUI && WITH_MOUSE */ procinit_init(); process_start((struct process *)ðernet_process, (char *)ethernet_config); autostart_start(autostart_processes); log_message("Contiki up and running ...", ""); while(1) { if(process_run() < 2) { etimer_request_poll(); } } }
/** * \brief called by agent at startup */ void routing_chain_init(void) { // Start CL process process_start(&routing_process, NULL); }
/*---------------------------------------------------------------------------*/ void coap_init_engine(void) { process_start(&coap_engine, NULL); }
/*---------------------------------------------------------------------------*/ PROCESS_THREAD(shell_repeat_process, ev, data) { static int reps, period, period_left; static char command[MAX_COMMANDLENGTH]; static struct etimer etimer; static int i; static clock_time_t start_time; const char *args, *next; if(ev == shell_event_input) { struct shell_input *input; input = data; /* printf("shell repeat input %d %d\n", input->len1, input->len2);*/ if(input->len1 + input->len2 != 0) { shell_output(&repeat_command, input->data1, input->len1, input->data2, input->len2); } } PROCESS_BEGIN(); /* printf("data '%s'\n", data);*/ args = data; if(args == NULL) { repeat_print_usage(); PROCESS_EXIT(); } reps = shell_strtolong(args, &next); if(next == args) { repeat_print_usage(); PROCESS_EXIT(); } args = next; period = shell_strtolong(args, &next); if(next == args) { repeat_print_usage(); PROCESS_EXIT(); } args = next; while(*args == ' ') { args++; } strncpy(command, args, MAX_COMMANDLENGTH); if(strlen(command) == 0) { repeat_print_usage(); PROCESS_EXIT(); } /* printf("repeats %d period %d command '%s'\n", reps, period, command);*/ start_time = clock_time(); etimer_set(&etimer, CLOCK_SECOND * period); for(i = 0; reps == 0 || i < reps; ++i) { process_start(&shell_repeat_server_process, command); process_post(&shell_repeat_server_process, PROCESS_EVENT_CONTINUE, &shell_repeat_process); PROCESS_WAIT_UNTIL(ev == PROCESS_EVENT_EXITED && data == &shell_repeat_server_process); PROCESS_WAIT_UNTIL(etimer_expired(&etimer)); etimer_reset(&etimer); /* PROCESS_PAUSE(); for(period_left = period; period_left > 0; period_left -= MIN(PERIOD_INTERVAL, period_left)) { etimer_set(&etimer, CLOCK_SECOND * MIN(PERIOD_INTERVAL, period_left)); PROCESS_WAIT_UNTIL(etimer_expired(&etimer)); }*/ } PROCESS_END(); }
/*---------------------------------------------------------------------------*/ static int init(void) { PRINTF("RF: Init\n"); if(rf_flags & RF_ON) { return 0; } /* Enable clock for the RF Core while Running, in Sleep and Deep Sleep */ REG(SYS_CTRL_RCGCRFC) = 1; REG(SYS_CTRL_SCGCRFC) = 1; REG(SYS_CTRL_DCGCRFC) = 1; REG(RFCORE_XREG_CCACTRL0) = CC2538_RF_CCA_THRES_USER_GUIDE; /* * Changes from default values * See User Guide, section "Register Settings Update" */ REG(RFCORE_XREG_TXFILTCFG) = 0x09; /** TX anti-aliasing filter bandwidth */ REG(RFCORE_XREG_AGCCTRL1) = 0x15; /** AGC target value */ REG(ANA_REGS_IVCTRL) = 0x0B; /** Bias currents */ /* * Defaults: * Auto CRC; Append RSSI, CRC-OK and Corr. Val.; CRC calculation; * RX and TX modes with FIFOs */ REG(RFCORE_XREG_FRMCTRL0) = RFCORE_XREG_FRMCTRL0_AUTOCRC; #if CC2538_RF_AUTOACK REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_AUTOACK; #endif /* If we are a sniffer, turn off frame filtering */ #if CC2538_RF_CONF_SNIFFER REG(RFCORE_XREG_FRMFILT0) &= ~RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN; #endif /* Disable source address matching and autopend */ REG(RFCORE_XREG_SRCMATCH) = 0; /* MAX FIFOP threshold */ REG(RFCORE_XREG_FIFOPCTRL) = CC2538_RF_MAX_PACKET_LEN; /* Set TX Power */ REG(RFCORE_XREG_TXPOWER) = CC2538_RF_TX_POWER; set_channel(rf_channel); /* Acknowledge RF interrupts, FIFOP only */ REG(RFCORE_XREG_RFIRQM0) |= RFCORE_XREG_RFIRQM0_FIFOP; nvic_interrupt_enable(NVIC_INT_RF_RXTX); /* Acknowledge all RF Error interrupts */ REG(RFCORE_XREG_RFERRM) = RFCORE_XREG_RFERRM_RFERRM; nvic_interrupt_enable(NVIC_INT_RF_ERR); if(CC2538_RF_CONF_TX_USE_DMA) { /* Disable peripheral triggers for the channel */ udma_channel_mask_set(CC2538_RF_CONF_TX_DMA_CHAN); /* * Set the channel's DST. SRC can not be set yet since it will change for * each transfer */ udma_set_channel_dst(CC2538_RF_CONF_TX_DMA_CHAN, RFCORE_SFR_RFDATA); } if(CC2538_RF_CONF_RX_USE_DMA) { /* Disable peripheral triggers for the channel */ udma_channel_mask_set(CC2538_RF_CONF_RX_DMA_CHAN); /* * Set the channel's SRC. DST can not be set yet since it will change for * each transfer */ udma_set_channel_src(CC2538_RF_CONF_RX_DMA_CHAN, RFCORE_SFR_RFDATA); } process_start(&cc2538_rf_process, NULL); rf_flags |= RF_ON; ENERGEST_ON(ENERGEST_TYPE_LISTEN); return 1; }
/*---------------------------------------------------------------------------*/ void powertrace_start(clock_time_t period) { process_start(&powertrace_process, (void *)&period); }