Пример #1
0
void
MultiAppProjectionTransfer::toMultiApp()
{
  Moose::out << "Projecting solution" << std::endl;

  for (unsigned int app = 0; app < _multi_app->numGlobalApps(); app++)
  {
    if (_multi_app->hasLocalApp(app))
    {
      MPI_Comm swapped = Moose::swapLibMeshComm(_multi_app->comm());
      projectSolution(*_multi_app->appProblem(app), app);
      Moose::swapLibMeshComm(swapped);
    }
  }
}
Пример #2
0
void
MultiAppProjectionTransfer::fromMultiApp()
{
  Moose::out << "Projecting solution" << std::endl;
  projectSolution(*_multi_app->problem(), 0);
}
Пример #3
0
void
MultiAppProjectionTransfer::execute()
{
  _console << "Beginning projection transfer " << name() << std::endl;

  getAppInfo();

  ////////////////////
  // We are going to project the solutions by solving some linear systems.  In
  // order to assemble the systems, we need to evaluate the "from" domain
  // solutions at quadrature points in the "to" domain.  Some parallel
  // communication is necessary because each processor doesn't necessarily have
  // all the "from" information it needs to set its "to" values.  We don't want
  // to use a bunch of big all-to-all broadcasts, so we'll use bounding boxes to
  // figure out which processors have the information we need and only
  // communicate with those processors.
  //
  // Each processor will
  // 1. Check its local quadrature points in the "to" domains to see which
  //    "from" domains they might be in.
  // 2. Send quadrature points to the processors with "from" domains that might
  //    contain those points.
  // 3. Recieve quadrature points from other processors, evaluate its mesh
  //    functions at those points, and send the values back to the proper
  //    processor
  // 4. Recieve mesh function evaluations from all relevant processors and
  //    decide which one to use at every quadrature point (the lowest global app
  //    index always wins)
  // 5. And use the mesh function evaluations to assemble and solve an L2
  //    projection system on its local elements.
  ////////////////////

  ////////////////////
  // For every combination of global "from" problem and local "to" problem, find
  // which "from" bounding boxes overlap with which "to" elements.  Keep track
  // of which processors own bounding boxes that overlap with which elements.
  // Build vectors of quadrature points to send to other processors for mesh
  // function evaluations.
  ////////////////////

  // Get the bounding boxes for the "from" domains.
  std::vector<MeshTools::BoundingBox> bboxes = getFromBoundingBoxes();

  // Figure out how many "from" domains each processor owns.
  std::vector<unsigned int> froms_per_proc = getFromsPerProc();

  std::vector<std::vector<Point> > outgoing_qps(n_processors());
  std::vector<std::map<std::pair<unsigned int, unsigned int>, unsigned int> > element_index_map(n_processors());
  // element_index_map[i_to, element_id] = index
  // outgoing_qps[index] is the first quadrature point in element

  if (! _qps_cached)
  {
    for (unsigned int i_to = 0; i_to < _to_problems.size(); i_to++)
    {
      MeshBase & to_mesh = _to_meshes[i_to]->getMesh();

      LinearImplicitSystem & system = * _proj_sys[i_to];

      FEType fe_type = system.variable_type(0);
      std::unique_ptr<FEBase> fe(FEBase::build(to_mesh.mesh_dimension(), fe_type));
      QGauss qrule(to_mesh.mesh_dimension(), fe_type.default_quadrature_order());
      fe->attach_quadrature_rule(&qrule);
      const std::vector<Point> & xyz = fe->get_xyz();

      MeshBase::const_element_iterator       el     = to_mesh.local_elements_begin();
      const MeshBase::const_element_iterator end_el = to_mesh.local_elements_end();

      unsigned int from0 = 0;
      for (processor_id_type i_proc = 0;
           i_proc < n_processors();
           from0 += froms_per_proc[i_proc], i_proc++)
      {
        for (el = to_mesh.local_elements_begin(); el != end_el; el++)
        {
          const Elem* elem = *el;
          fe->reinit (elem);

          bool qp_hit = false;
          for (unsigned int i_from = 0;
               i_from < froms_per_proc[i_proc] && ! qp_hit; i_from++)
          {
            for (unsigned int qp = 0;
                 qp < qrule.n_points() && ! qp_hit; qp ++)
            {
              Point qpt = xyz[qp];
              if (bboxes[from0 + i_from].contains_point(qpt + _to_positions[i_to]))
                qp_hit = true;
            }
          }

          if (qp_hit)
          {
            // The selected processor's bounding box contains at least one
            // quadrature point from this element.  Send all qps from this element
            // and remember where they are in the array using the map.
            std::pair<unsigned int, unsigned int> key(i_to, elem->id());
            element_index_map[i_proc][key] = outgoing_qps[i_proc].size();
            for (unsigned int qp = 0; qp < qrule.n_points(); qp ++)
            {
              Point qpt = xyz[qp];
              outgoing_qps[i_proc].push_back(qpt + _to_positions[i_to]);
            }
          }
        }
      }
    }

    if (_fixed_meshes)
      _cached_index_map = element_index_map;
  }
  else
  {
    element_index_map = _cached_index_map;
  }

  ////////////////////
  // Request quadrature point evaluations from other processors and handle
  // requests sent to this processor.
  ////////////////////

  // Non-blocking send quadrature points to other processors.
  std::vector<Parallel::Request> send_qps(n_processors());
  if (! _qps_cached)
    for (processor_id_type i_proc = 0; i_proc < n_processors(); i_proc++)
      if (i_proc != processor_id())
        _communicator.send(i_proc, outgoing_qps[i_proc], send_qps[i_proc]);

  // Get the local bounding boxes.
  std::vector<MeshTools::BoundingBox> local_bboxes(froms_per_proc[processor_id()]);
  {
    // Find the index to the first of this processor's local bounding boxes.
    unsigned int local_start = 0;
    for (processor_id_type i_proc = 0;
         i_proc < n_processors() && i_proc != processor_id();
         i_proc++)
      local_start += froms_per_proc[i_proc];

    // Extract the local bounding boxes.
    for (unsigned int i_from = 0; i_from < froms_per_proc[processor_id()]; i_from++)
      local_bboxes[i_from] = bboxes[local_start + i_from];
  }

  // Setup the local mesh functions.
  std::vector<MeshFunction *> local_meshfuns(froms_per_proc[processor_id()], NULL);
  for (unsigned int i_from = 0; i_from < _from_problems.size(); i_from++)
  {
    FEProblemBase & from_problem = *_from_problems[i_from];
    MooseVariable & from_var = from_problem.getVariable(0, _from_var_name);
    System & from_sys = from_var.sys().system();
    unsigned int from_var_num = from_sys.variable_number(from_var.name());

    MeshFunction * from_func = new MeshFunction(from_problem.es(),
         *from_sys.current_local_solution, from_sys.get_dof_map(), from_var_num);
    from_func->init(Trees::ELEMENTS);
    from_func->enable_out_of_mesh_mode(OutOfMeshValue);
    local_meshfuns[i_from] = from_func;
  }

  // Recieve quadrature points from other processors, evaluate mesh frunctions
  // at those points, and send the values back.
  std::vector<Parallel::Request> send_evals(n_processors());
  std::vector<Parallel::Request> send_ids(n_processors());
  std::vector<std::vector<Real> > outgoing_evals(n_processors());
  std::vector<std::vector<unsigned int> > outgoing_ids(n_processors());
  std::vector<std::vector<Real> > incoming_evals(n_processors());
  std::vector<std::vector<unsigned int> > incoming_app_ids(n_processors());
  for (processor_id_type i_proc = 0; i_proc < n_processors(); i_proc++)
  {
    // Use the cached qps if they're available.
    std::vector<Point> incoming_qps;
    if (! _qps_cached)
    {
      if (i_proc == processor_id())
        incoming_qps = outgoing_qps[i_proc];
      else
        _communicator.receive(i_proc, incoming_qps);
      // Cache these qps for later if _fixed_meshes
      if (_fixed_meshes)
        _cached_qps[i_proc] = incoming_qps;
    }
    else
    {
      incoming_qps = _cached_qps[i_proc];
    }

    outgoing_evals[i_proc].resize(incoming_qps.size(), OutOfMeshValue);
    if (_direction == FROM_MULTIAPP)
      outgoing_ids[i_proc].resize(incoming_qps.size(), libMesh::invalid_uint);
    for (unsigned int qp = 0; qp < incoming_qps.size(); qp++)
    {
      Point qpt = incoming_qps[qp];

      // Loop until we've found the lowest-ranked app that actually contains
      // the quadrature point.
      for (unsigned int i_from = 0; i_from < _from_problems.size(); i_from++)
      {
        if (local_bboxes[i_from].contains_point(qpt))
        {
          outgoing_evals[i_proc][qp] = (* local_meshfuns[i_from])(qpt - _from_positions[i_from]);
          if (_direction == FROM_MULTIAPP)
            outgoing_ids[i_proc][qp] = _local2global_map[i_from];
        }
      }
    }

    if (i_proc == processor_id())
    {
      incoming_evals[i_proc] = outgoing_evals[i_proc];
      if (_direction == FROM_MULTIAPP)
        incoming_app_ids[i_proc] = outgoing_ids[i_proc];
    }
    else
    {
      _communicator.send(i_proc, outgoing_evals[i_proc], send_evals[i_proc]);
      if (_direction == FROM_MULTIAPP)
        _communicator.send(i_proc, outgoing_ids[i_proc], send_ids[i_proc]);
    }
  }

  ////////////////////
  // Gather all of the qp evaluations and pick out the best ones for each qp.
  ////////////////////
  for (processor_id_type i_proc = 0; i_proc < n_processors(); i_proc++)
  {
    if (i_proc == processor_id())
      continue;
    _communicator.receive(i_proc, incoming_evals[i_proc]);
    if (_direction == FROM_MULTIAPP)
      _communicator.receive(i_proc, incoming_app_ids[i_proc]);
  }

  std::vector<std::vector<Real> > final_evals(_to_problems.size());
  std::vector<std::map<unsigned int, unsigned int> > trimmed_element_maps(_to_problems.size());

  for (unsigned int i_to = 0; i_to < _to_problems.size(); i_to++)
  {
    MeshBase & to_mesh = _to_meshes[i_to]->getMesh();
    LinearImplicitSystem & system = * _proj_sys[i_to];

    FEType fe_type = system.variable_type(0);
    std::unique_ptr<FEBase> fe(FEBase::build(to_mesh.mesh_dimension(), fe_type));
    QGauss qrule(to_mesh.mesh_dimension(), fe_type.default_quadrature_order());
    fe->attach_quadrature_rule(&qrule);
    const std::vector<Point> & xyz = fe->get_xyz();

    MeshBase::const_element_iterator       el     = to_mesh.local_elements_begin();
    const MeshBase::const_element_iterator end_el = to_mesh.local_elements_end();

    for (el = to_mesh.active_local_elements_begin(); el != end_el; el++)
    {
      const Elem* elem = *el;
      fe->reinit (elem);

      bool element_is_evaled = false;
      std::vector<Real> evals(qrule.n_points(), 0.);

      for (unsigned int qp = 0; qp < qrule.n_points(); qp++)
      {
        Point qpt = xyz[qp];

        unsigned int lowest_app_rank = libMesh::invalid_uint;
        for (unsigned int i_proc = 0; i_proc < n_processors(); i_proc++)
        {
          // Ignore the selected processor if the element wasn't found in it's
          // bounding box.
          std::map<std::pair<unsigned int, unsigned int>, unsigned int> & map = element_index_map[i_proc];
          std::pair<unsigned int, unsigned int> key(i_to, elem->id());
          if (map.find(key) == map.end())
            continue;
          unsigned int qp0 = map[key];

          // Ignore the selected processor if it's app has a higher rank than the
          // previously found lowest app rank.
          if (_direction == FROM_MULTIAPP)
            if (incoming_app_ids[i_proc][qp0 + qp] >= lowest_app_rank)
              continue;

          // Ignore the selected processor if the qp was actually outside the
          // processor's subapp's mesh.
          if (incoming_evals[i_proc][qp0 + qp] == OutOfMeshValue)
            continue;

          // This is the best meshfunction evaluation so far, save it.
          element_is_evaled = true;
          evals[qp] = incoming_evals[i_proc][qp0 + qp];
        }
      }

      // If we found good evaluations for any of the qps in this element, save
      // those evaluations for later.
      if (element_is_evaled)
      {
        trimmed_element_maps[i_to][elem->id()] = final_evals[i_to].size();
        for (unsigned int qp = 0; qp < qrule.n_points(); qp++)
          final_evals[i_to].push_back(evals[qp]);
      }
    }
  }

  ////////////////////
  // We now have just one or zero mesh function values at all of our local
  // quadrature points.  Stash those values (and a map linking them to element
  // ids) in the equation systems parameters and project the solution.
  ////////////////////

  for (unsigned int i_to = 0; i_to < _to_problems.size(); i_to++)
  {
    _to_es[i_to]->parameters.set<std::vector<Real>*>("final_evals") = & final_evals[i_to];
    _to_es[i_to]->parameters.set<std::map<unsigned int, unsigned int>*>("element_map") = & trimmed_element_maps[i_to];
    projectSolution(i_to);
    _to_es[i_to]->parameters.set<std::vector<Real>*>("final_evals") = NULL;
    _to_es[i_to]->parameters.set<std::map<unsigned int, unsigned int>*>("element_map") = NULL;
  }

  for (unsigned int i = 0; i < _from_problems.size(); i++)
    delete local_meshfuns[i];


  // Make sure all our sends succeeded.
  for (processor_id_type i_proc = 0; i_proc < n_processors(); i_proc++)
  {
    if (i_proc == processor_id())
      continue;
    if (! _qps_cached)
      send_qps[i_proc].wait();
    send_evals[i_proc].wait();
    if (_direction == FROM_MULTIAPP)
      send_ids[i_proc].wait();
  }

  if (_fixed_meshes)
    _qps_cached = true;

  _console << "Finished projection transfer " << name() << std::endl;
}