Пример #1
0
void vrpn_Tracker_DeadReckoning_Rotation::handle_tracker_report(void *userdata,
    const vrpn_TRACKERCB info)
{
    // Find the pointer to the class that registered the callback and get a
    // reference to the RotationState we're supposed to be using.
    vrpn_Tracker_DeadReckoning_Rotation *me =
        static_cast<vrpn_Tracker_DeadReckoning_Rotation *>(userdata);
    if (info.sensor >= me->d_numSensors) {
        me->send_text_message(vrpn_TEXT_WARNING)
            << "Received tracker message from sensor " << info.sensor
            << " but I only have " << me->d_numSensors
            << "sensors.  Discarding.";
        return;
    }
    vrpn_Tracker_DeadReckoning_Rotation::RotationState &state =
        me->d_rotationStates[info.sensor];

    if (!state.d_receivedAngularVelocityReport && me->d_estimateVelocity) {
        // If we have not received any velocity reports, then we estimate
        // the angular velocity using the last report (if any).  The new
        // combined rotation T3 = T2 * T1, where T2 is the difference in
        // rotation between the last time (T1) and now (T3).  We want to
        // solve for T2 (so we can keep applying it going forward).  We
        // find it by right-multiuplying both sides of the equation by
        // T1i (inverse of T1): T3 * T1i = T2.
        if (state.d_lastReportTime.tv_sec != 0) {
            q_type inverted;
            q_invert(inverted, state.d_lastOrientation);
            q_mult(state.d_rotationAmount, info.quat, inverted);
            state.d_rotationInterval = vrpn_TimevalDurationSeconds(
                info.msg_time, state.d_lastReportTime);
            // If we get a zero or negative rotation interval, we're
            // not going to be able to handle it, so we set things back
            // to no rotation over a unit-time interval.
            if (state.d_rotationInterval < 0) {
                state.d_rotationInterval = 1;
                q_make(state.d_rotationAmount, 0, 0, 0, 1);
            }
        }
    }

    // Keep track of the position, orientation and time for the next report
    q_vec_copy(state.d_lastPosition, info.pos);
    q_copy(state.d_lastOrientation, info.quat);
    state.d_lastReportTime = info.msg_time;

    // We have new data, so we send a new prediction.
    me->sendNewPrediction(info.sensor);
}
Пример #2
0
void
q_xyz_quat_invert(q_xyz_quat_type *destPtr, q_xyz_quat_type *srcPtr)
{

    /* invert rotation first  */
    q_invert(destPtr->quat, srcPtr->quat);

    /* vec = -vec	*/
    q_vec_invert(destPtr->xyz, srcPtr->xyz);

    /* rotate translation offsets into inverted system	*/
    q_xform(destPtr->xyz, destPtr->quat, destPtr->xyz);


}	/* q_xyz_quat_invert */
Пример #3
0
void	vrpn_IMU_SimpleCombiner::update_matrix_based_on_values(double time_interval)
{
  //==================================================================
  // Adjust the orientation based on the rotational velocity, which is
  // measured in the rotated coordinate system.  We need to rotate the
  // difference vector back to the canonical orientation, apply the
  // orientation change there, and then rotate back.
  // Be sure to scale by the time value.
  q_type forward, inverse;
  q_copy(forward, d_quat);
  q_invert(inverse, forward);
  // Remember that Euler angles in Quatlib have rotation around Z in
  // the first term.  Compute the time-scaled delta transform in
  // canonical space.
  q_type delta;
  q_from_euler(delta,
    time_interval * d_rotational_vel.values[Q_Z],
    time_interval * d_rotational_vel.values[Q_Y],
    time_interval * d_rotational_vel.values[Q_X]);
  // Bring the delta back into canonical space
  q_type canonical;
  q_mult(canonical, delta, inverse);
  q_mult(canonical, forward, canonical);
  q_mult(d_quat, canonical, d_quat);

  //==================================================================
  // To the extent that the acceleration vector's magnitude is equal
  // to the expected gravity, rotate the orientation so that the vector
  // points downward.  This is measured in the rotated coordinate system,
  // so we need to rotate back to canonical orientation and apply
  // the difference there and then rotate back.  The rate of rotation
  // should be as specified in the gravity-rotation-rate parameter so
  // we don't swing the head around too quickly but only slowly re-adjust.

  double accel = sqrt(
      d_acceleration.values[0] * d_acceleration.values[0] +
      d_acceleration.values[1] * d_acceleration.values[1] +
      d_acceleration.values[2] * d_acceleration.values[2] );
  double diff = fabs(accel - 9.80665);

  // Only adjust if we're close enough to the expected gravity
  // @todo In a more complicated IMU tracker, base this on state and
  // error estimates from a Kalman or other filter.
  double scale = 1.0 - diff;
  if (scale > 0) {
    // Get a new forward and inverse matrix from the current, just-
    // rotated matrix.
    q_copy(forward, d_quat);

    // Change how fast we adjust based on how close we are to the
    // expected value of gravity.  Then further scale this by the
	// amount of time since the last estimate.
    double gravity_scale = scale * d_gravity_restore_rate * time_interval;

	// Rotate the gravity vector by the estimated transform.
	// We expect this direction to match the global down (-Y) vector.
	q_vec_type gravity_global;
	q_vec_set(gravity_global, d_acceleration.values[0],
		d_acceleration.values[1], d_acceleration.values[2]);
	q_vec_normalize(gravity_global, gravity_global);
	q_xform(gravity_global, forward, gravity_global);
	//printf("  XXX Gravity: %lg, %lg, %lg\n", gravity_global[0], gravity_global[1], gravity_global[2]);

	// Determine the rotation needed to take gravity and rotate
	// it into the direction of -Y.
	q_vec_type neg_y;
	q_vec_set(neg_y, 0, -1, 0);
	q_type rot;
	q_from_two_vecs(rot, gravity_global, neg_y);

	// Scale the rotation by the fraction of the orientation we
	// should remove based on the time that has passed, how well our
	// gravity vector matches expected, and the specified rate of
	// correction.
	static q_type identity = { 0, 0, 0, 1 };
	q_type scaled_rot;
	q_slerp(scaled_rot, identity, rot, gravity_scale);
	//printf("XXX Scaling gravity vector by %lg\n", gravity_scale);

    // Rotate by this angle.
    q_mult(d_quat, scaled_rot, d_quat);

    //==================================================================
    // If we are getting compass data, and to the extent that the
    // acceleration vector's magnitude is equal to the expected gravity,
    // compute the cross product of the cross product to find the
    // direction of north perpendicular to down.  This is measured in
    // the rotated coordinate system, so we need to rotate back to the
    // canonical orientation and do the comparison there.
	//  The fraction of rotation should be as specified in the
    // magnetometer-rotation-rate parameter so we don't swing the head
    // around too quickly but only slowly re-adjust.

    if (d_magnetometer.ana != NULL) {
      // Get a new forward and inverse matrix from the current, just-
      // rotated matrix.
      q_copy(forward, d_quat);

      // Find the North vector that is perpendicular to gravity by
      // clearing its Y axis to zero and renormalizing.
	  q_vec_type magnetometer;
      q_vec_set(magnetometer, d_magnetometer.values[0],
        d_magnetometer.values[1], d_magnetometer.values[2]);
	  q_vec_type magnetometer_global;
	  q_xform(magnetometer_global, forward, magnetometer);
	  magnetometer_global[Q_Y] = 0;
	  q_vec_type north_global;
	  q_vec_normalize(north_global, magnetometer_global);
	  //printf("  XXX north_global: %lg, %lg, %lg\n", north_global[0], north_global[1], north_global[2]);

      // Determine the rotation needed to take north and rotate it
	  // into the direction of negative Z.
	  q_vec_type neg_z;
	  q_vec_set(neg_z, 0, 0, -1);
	  q_from_two_vecs(rot, north_global, neg_z);

	  // Change how fast we adjust based on how close we are to the
	  // expected value of gravity.  Then further scale this by the
	  // amount of time since the last estimate.
	  double north_rate = scale * d_north_restore_rate * time_interval;

	  // Scale the rotation by the fraction of the orientation we
	  // should remove based on the time that has passed, how well our
	  // gravity vector matches expected, and the specified rate of
	  // correction.
	  static q_type identity = { 0, 0, 0, 1 };
	  q_slerp(scaled_rot, identity, rot, north_rate);

      // Rotate by this angle.
      q_mult(d_quat, scaled_rot, d_quat);
    }
  }

  //==================================================================
  // Compute and store the velocity information
  // This will be in the rotated coordinate system, so we need to
  // rotate back to the identity orientation before storing.
  // Convert from radians/second into a quaternion rotation as
  // rotated in a hundredth of a second and set the rotational
  // velocity dt to a hundredth of a second so that we don't
  // risk wrapping.
  // Remember that Euler angles in Quatlib have rotation around Z in
  // the first term.  Compute the time-scaled delta transform in
  // canonical space.
  q_from_euler(delta,
    1e-2 * d_rotational_vel.values[Q_Z],
    1e-2 * d_rotational_vel.values[Q_Y],
    1e-2 * d_rotational_vel.values[Q_X]);
  // Bring the delta back into canonical space
  q_mult(canonical, delta, inverse);
  q_mult(vel_quat, forward, canonical);
  vel_quat_dt = 1e-2;
}
Пример #4
0
void vrpn_Tracker_OSVRHackerDevKit::on_data_received(std::size_t bytes,
                                                     vrpn_uint8 *buffer)
{
    if (bytes != 32 && bytes != 16) {
        send_text_message(vrpn_TEXT_WARNING)
            << "Received a report " << bytes
            << " in length, but expected it to be 32 or 16 bytes. Discarding. "
               "(May indicate issues with HID!)";
        return;
    }

    vrpn_uint8 firstByte = vrpn_unbuffer_from_little_endian<vrpn_uint8>(buffer);

    vrpn_uint8 version = vrpn_uint8(0x0f) & firstByte;
    _reportVersion = version;

    switch (version) {
    case 1:
        if (bytes != 32 && bytes != 16) {
            send_text_message(vrpn_TEXT_WARNING)
                << "Received a v1 report " << bytes
                << " in length, but expected it to be 32 or 16 bytes. "
                   "Discarding. "
                   "(May indicate issues with HID!)";
            return;
        }
        break;
    case 2:
        if (bytes != 16) {
            send_text_message(vrpn_TEXT_WARNING)
                << "Received a v2 report " << bytes
                << " in length, but expected it to be 16 bytes. Discarding. "
                   "(May indicate issues with HID!)";
            return;
        }
        break;

    case 3:
        /// @todo once this report format is finalized, tighten up the
        /// requirements.
        if (bytes < 16) {
            send_text_message(vrpn_TEXT_WARNING)
                << "Received a v3 report " << bytes
                << " in length, but expected it to be at least 16 bytes. "
                   "Discarding. "
                   "(May indicate issues with HID!)";
            return;
        }
        break;
    default:
        /// Highlight that we don't know this report version well...
        _knownVersion = false;
        /// Do a minimal check of it.
        if (bytes < 16) {
            send_text_message(vrpn_TEXT_WARNING)
                << "Received a report claiming to be version " << int(version)
                << " that was " << bytes << " in length, but expected it to be "
                                            "at least 16 bytes. Discarding. "
                                            "(May indicate issues with HID!)";
            return;
        }
        break;
    }

    // Report version as analog channel 0.
    channel[0] = version;

    vrpn_uint8 msg_seq = vrpn_unbuffer_from_little_endian<vrpn_uint8>(buffer);

    // Signed, 16-bit, fixed-point numbers in Q1.14 format.
    typedef vrpn::FixedPoint<1, 14> FixedPointValue;
    d_quat[Q_X] =
        FixedPointValue(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
            .get<vrpn_float64>();
    d_quat[Q_Y] =
        FixedPointValue(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
            .get<vrpn_float64>();
    d_quat[Q_Z] =
        FixedPointValue(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
            .get<vrpn_float64>();
    d_quat[Q_W] =
        FixedPointValue(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
            .get<vrpn_float64>();

    vrpn_Tracker::timestamp = _timestamp;
    {
        char msgbuf[512];
        int len = vrpn_Tracker::encode_to(msgbuf);
        if (d_connection->pack_message(len, _timestamp, position_m_id,
                                       d_sender_id, msgbuf,
                                       vrpn_CONNECTION_LOW_LATENCY)) {
            fprintf(stderr, "vrpn_Tracker_OSVRHackerDevKit: cannot write "
                            "message: tossing\n");
        }
    }
    if (version >= 2) {
        // We've got angular velocity in this message too
        // Given XYZ radians per second velocity.
        // Signed Q6.9
        typedef vrpn::FixedPoint<6, 9> VelFixedPoint;
        q_vec_type angVel;
        angVel[0] =
            VelFixedPoint(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
                .get<vrpn_float64>();
        angVel[1] =
            VelFixedPoint(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
                .get<vrpn_float64>();
        angVel[2] =
            VelFixedPoint(vrpn_unbuffer_from_little_endian<vrpn_int16>(buffer))
                .get<vrpn_float64>();

        //==================================================================
        // Determine the rotational velocity, which is
        // measured in the rotated coordinate system.  We need to rotate the
        // difference Euler angles back to the canonical orientation, apply
        // the change, and then rotate back to change our coordinates.
        // Be sure to scale by the time value vrpn_HDK_DT.
        q_type forward, inverse;
        q_copy(forward, d_quat);
        q_invert(inverse, forward);
        // Remember that Euler angles in Quatlib have rotation around Z in
        // the first term.  Compute the time-scaled delta transform in
        // canonical space.
        q_type delta;
        {
            delta[Q_W] = 0;
            delta[Q_X] = angVel[Q_X] * vrpn_HDK_DT * 0.5;
            delta[Q_Y] = angVel[Q_Y] * vrpn_HDK_DT * 0.5;
            delta[Q_Z] = angVel[Q_Z] * vrpn_HDK_DT * 0.5;
            q_exp(delta, delta);
            q_normalize(delta, delta);
        }
        // Bring the delta back into canonical space
        q_type canonical;
        q_mult(canonical, delta, inverse);
        q_mult(vel_quat, forward, canonical);

        // Send the rotational velocity information.
        // The dt value was set once, in the constructor.
        char msgbuf[512];
        int len = vrpn_Tracker::encode_vel_to(msgbuf);
        if (d_connection->pack_message(len, _timestamp, velocity_m_id,
                                       d_sender_id, msgbuf,
                                       vrpn_CONNECTION_LOW_LATENCY)) {
            fprintf(stderr, "vrpn_Tracker_OSVRHackerDevKit: cannot write "
                            "message: tossing\n");
        }
    }
    if (version < 3) {
        // No status info hidden in the first byte.
        channel[1] = STATUS_UNKNOWN;
    }
    else {
        // v3+: We've got status info in the upper nibble of the first byte.
        bool gotVideo = (firstByte & (0x01 << 4)) != 0;    // got video?
        bool gotPortrait = (firstByte & (0x01 << 5)) != 0; // portrait mode?
        if (!gotVideo) {
            channel[1] = STATUS_NO_VIDEO_INPUT;
        }
        else {
            if (gotPortrait) {
                channel[1] = STATUS_PORTRAIT_VIDEO_INPUT;
            }
            else {
                channel[1] = STATUS_LANDSCAPE_VIDEO_INPUT;
            }
        }
    }

    if (_messageCount == 0) {
        // When _messageCount overflows, send a report whether or not there was
        // a change.
        vrpn_Analog::report();
    }
    else {
        // otherwise just report if we have a change.
        vrpn_Analog::report_changes();
    };
    _messageCount = (_messageCount + 1) % vrpn_HDK_STATUS_STRIDE;
}