Пример #1
0
/*
 * Difference logic triple (x - y + d)
 * - x and y are vertices
 */
void print_idl_triple(FILE *f, dl_triple_t *triple) {
  bool space;

  space = false;
  if (triple->target >= 0) {
    print_idl_vertex(f, triple->target); // x
    space = true;
  }
  if (triple->source >= 0) {
    if (space) fputc(' ', f);
    fputs("- ", f);
    print_idl_vertex(f, triple->source); // y
    space = true;
  }

  if (! space) {
    q_print(f, &triple->constant);
  } else if (q_is_pos(&triple->constant)) {
    fprintf(f, " + ");
    q_print(f, &triple->constant);
  } else if (q_is_neg(&triple->constant)) {
    fprintf(f, " - ");
    q_print_abs(f, &triple->constant);
  }
}
Пример #2
0
/*
 * Print a triple
 */
static void print_dl_triple(dl_triple_t *t) {
  bool space;

  space = false;
  if (t->target >= 0) {
    printf("x!%"PRId32, t->target);
    space = true;
  }
  if (t->source >= 0) {
    if (space) printf(" ");
    printf("- x!%"PRId32, t->source);
  }


  if (! space) {
    q_print(stdout, &t->constant);
  } else if (q_is_pos(&t->constant)) {
    printf(" + ");
    q_print(stdout, &t->constant);
  } else if (q_is_neg(&t->constant)) {
    printf(" - ");
    q_print_abs(stdout, &t->constant);
  }
}
Пример #3
0
/*
 * Check whether b is constant and positive, negative, etc.
 * - b must be normalized
 */
bool arith_buffer_is_pos(arith_buffer_t *b) {
  return b->nterms == 1 && b->list->prod == empty_pp &&
    q_is_pos(&b->list->coeff);
}
Пример #4
0
bool polynomial_is_nonneg(polynomial_t *p) {
  return p->nterms == 0 ||
    (p->nterms == 1 && p->mono[0].var == const_idx
     && q_is_pos(&p->mono[0].coeff));
}
Пример #5
0
/*
 * Phase and period of p
 * - p is c + (a_1/b_1) x_1 + ... + (a_n/b_n) x_n where
 *   a_i/b_i is an irreducible fraction
 * - let D = gcd(a_1,..., a_n) and L = lcm(b_1,...,b_n)
 *   then period = D/L and phase = c - floor(c/period) * period
 */
void monarray_period_and_phase(monomial_t *p, rational_t *period, rational_t *phase) {
  rational_t aux;
  monomial_t *c;
  int32_t v;

  /*
   * c := the constant monomial of p or NULL if p's constant is zero
   */
  c = NULL;
  v = p->var;
  if (v == const_idx) {
    c = p;
    p ++;
    v = p->var;
  }

  if (v < max_idx) {
    /*
     * p is not a constant: compute D and L
     * we use period for D and phase for L
     */
    q_get_num(period, &p->coeff); // D := |a_1|
    if (q_is_neg(period)) {
      q_neg(period);
    }

    q_get_den(phase, &p->coeff);  // L := b_1
    q_init(&aux);

    for (;;) {
      p ++;
      v = p->var;
      if (v >= max_idx) break;
      q_get_num(&aux, &p->coeff);
      q_gcd(period, &aux);        // D := gcd(D, a_i)
      q_get_den(&aux, &p->coeff);
      q_lcm(phase, &aux);         // L := lcm(L, b_i)
    }

    assert(q_is_pos(period) && q_is_pos(phase));
    q_div(period, phase);        // period := D/L

    /*
     * Phase: constant modulo D/L
     */
    if (c == NULL) {
      q_clear(phase);  // no constant: phase = 0
    } else {
      q_set(&aux, &c->coeff);
      q_div(&aux, period);
      q_floor(&aux);             // aux = floor(c/period)
      q_set(phase, &c->coeff);
      q_submul(phase, &aux, period); // phase = c - aux * period

      assert(q_is_nonneg(phase) && q_lt(phase, period));
    }

    q_clear(&aux);

  } else {
    /*
     * p is constant: period := 0, phase = constant coeff
     */
    q_clear(period);
    if (c == NULL) {
      q_clear(phase);
    } else {
      q_set(phase, &c->coeff);
    }
  }

}