/** * @brief Initializes the buffer module. * * This function initializes the buffer module. * This function should be called before using any other functionality * of buffer module. */ void bmm_buffer_init(void) { uint8_t index; /* Initialize free buffer queue for large buffers */ #if (TOTAL_NUMBER_OF_LARGE_BUFS > 0) #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&free_large_buffer_q, TOTAL_NUMBER_OF_LARGE_BUFS); #else qmm_queue_init(&free_large_buffer_q); #endif /* ENABLE_QUEUE_CAPACITY */ #endif /* Initialize free buffer queue for small buffers */ #if (TOTAL_NUMBER_OF_SMALL_BUFS > 0) #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&free_small_buffer_q, TOTAL_NUMBER_OF_SMALL_BUFS); #else qmm_queue_init(&free_small_buffer_q); #endif /* ENABLE_QUEUE_CAPACITY */ #endif #if (TOTAL_NUMBER_OF_LARGE_BUFS > 0) for (index = 0; index < TOTAL_NUMBER_OF_LARGE_BUFS; index++) { /* * Initialize the buffer body pointer with address of the * buffer body */ buf_header[index].body = buf_pool + (index * LARGE_BUFFER_SIZE); /* Append the buffer to free large buffer queue */ qmm_queue_append(&free_large_buffer_q, &buf_header[index]); } #endif #if (TOTAL_NUMBER_OF_SMALL_BUFS > 0) for (index = 0; index < TOTAL_NUMBER_OF_SMALL_BUFS; index++) { /* * Initialize the buffer body pointer with address of the * buffer body */ buf_header[index + TOTAL_NUMBER_OF_LARGE_BUFS].body \ = buf_pool + (TOTAL_NUMBER_OF_LARGE_BUFS * LARGE_BUFFER_SIZE) + \ (index * SMALL_BUFFER_SIZE); /* Append the buffer to free small buffer queue */ qmm_queue_append(&free_small_buffer_q, &buf_header[index + \ TOTAL_NUMBER_OF_LARGE_BUFS]); } #endif }
retval_t wpan_init(void) { /* Init queue used for MAC to next higher layer communication */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&mac_nhle_q, MAC_NHLE_QUEUE_CAPACITY); #else qmm_queue_init(&mac_nhle_q); #endif /* ENABLE_QUEUE_CAPACITY */ /* * Initialize MAC. */ return mac_init(); }
/** * @brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } if (trx_init() != MAC_SUCCESS) { return FAILURE; } #if (EXTERN_EEPROM_AVAILABLE == 1) pal_ps_get(EXTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #else pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #endif /* * Do the reset stuff. * Set the default PIBs. * Generate random seed. */ if (internal_tal_reset(true) != MAC_SUCCESS) { return FAILURE; } #ifndef DISABLE_IEEE_ADDR_CHECK /* Check if a valid IEEE address is available. */ /* * This while loop is on purpose, since just in the * rare case that such an address is randomly * generated again, we must repeat this. */ while ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF) ) { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to 8 bit, * and running the loop 8 timers (instead of only 4 times) * may look cumbersome, it turns out that the code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } #endif /* #ifndef DISABLE_IEEE_ADDR_CHECK */ /* * Configure interrupt handling. * Install handlers for the transceiver interrupts. */ pal_trx_irq_init_rx_end((FUNC_PTR)trx_rx_end_handler_cb); pal_trx_irq_init_tx_end((FUNC_PTR)trx_tx_end_handler_cb); pal_trx_irq_init_awake((FUNC_PTR)trx_awake_handler_cb); #if (defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP) /* Configure time stamp interrupt. */ pal_trx_irq_init_tstamp((FUNC_PTR)trx_irq_timestamp_handler_cb); #endif /* (defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP) */ /* Initialize the buffer management module and get a buffer to store reveived frames. */ bmm_buffer_init(); tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE); /* Init incoming frame queue */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY); #else qmm_queue_init(&tal_incoming_frame_queue); #endif /* ENABLE_QUEUE_CAPACITY */ #ifdef ENABLE_TFA tfa_init(); #endif return MAC_SUCCESS; } /* tal_init() */
/** * @brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ #ifdef ENABLE_RP /* * The ranging processor (RP) only performs a minimalistic * initialization here. */ pal_basic_init(); #else /* !ENABLE_RP */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } if (trx_init() != MAC_SUCCESS) { return FAILURE; } #if (EXTERN_EEPROM_AVAILABLE == 1) pal_ps_get(EXTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #else #if (USER_SIGN_AVAILABLE == 1) pal_ps_get(USER_SIGNATURE, USER_SIGNATURES_START + 2, 8, &tal_pib.IeeeAddress); //http://www.atmel.com/Images/Atmel-42172-Wireless-ZigBit-ATZB-X0-256-3-0-C_Datasheet.pdf #else pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #endif #endif /* * Do the reset stuff. * Set the default PIBs. * Generate random seed. */ if (internal_tal_reset(true) != MAC_SUCCESS) { return FAILURE; } #ifndef DISABLE_IEEE_ADDR_CHECK /* Check if a valid IEEE address is available. */ /* * This while loop is on purpose, since just in the * rare case that such an address is randomly * generated again, we must repeat this. */ while ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF)) { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to 8 bit, * and running the loop 8 timers (instead of only 4 times) * may look cumbersome, it turns out that the code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } #endif /* #ifndef DISABLE_IEEE_ADDR_CHECK */ #endif /* ENABLE_RP */ /* * Configure interrupt handling. * Install a handler for the transceiver interrupt. */ pal_trx_irq_init(trx_irq_handler_cb); #ifndef ENABLE_RP pal_trx_irq_en(); /* Enable transceiver main interrupt. */ #endif #if ((defined BEACON_SUPPORT) || (defined ENABLE_TSTAMP)) && (DISABLE_TSTAMP_IRQ == 0) /* Configure time stamp interrupt. */ pal_trx_irq_init_tstamp(trx_irq_timestamp_handler_cb); #ifndef ENABLE_RP pal_trx_irq_en_tstamp(); /* Enable timestamp interrupt. */ #endif #endif /* Initialize the buffer management module and get a buffer to store received frames. */ bmm_buffer_init(); tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE); #if DEBUG > 0 if (tal_rx_buffer == NULL) { return FAILURE; } #endif /* Init incoming frame queue */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY); #else qmm_queue_init(&tal_incoming_frame_queue); #endif /* ENABLE_QUEUE_CAPACITY */ #ifdef ENABLE_TFA tfa_init(); #endif return MAC_SUCCESS; } /* tal_init() */
/* * \brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * \return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } if (trx_init() != MAC_SUCCESS) { return FAILURE; } if (tal_timer_init() != MAC_SUCCESS) { return FAILURE; } #ifdef ENABLE_STACK_NVM pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #endif /* * For systems including the AT86RF230B the random seed generation * cannot be done using a dedicated hardware feature. * Therefore all random seed generation needs to be done by special * means (e.g. utilization of ADC) that generate a random value only * within a certain range. * * In case the node already has a valid IEEE address (i.e. an IEEE * address which is different from 0x0000000000000000 or * 0xFFFFFFFFFFFFFFFF), this IEEE address (the lower 16 bit) * shall be used as seed for srand(), since each node should have a *unique * IEEE address. * In this case srand() is called directly and function *tal_generate_rand_seed() * is not called. * * Note: This behaviour is different in all other TALs, since in these * cases the seed for srand() is always generated based on transceiver * hardware support. */ #ifndef DISABLE_IEEE_ADDR_CHECK if ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF) ) { /* * Generate a seed for the random number generator in function *rand(). * This is required (for example) as seed for the CSMA-CA *algorithm. */ tal_generate_rand_seed(); /* * Now that we have generated a random seed, we can generate a *random * IEEE address for this node. */ do { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been *generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to *8 bit, * and running the loop 8 timers (instead of *only 4 times) * may look cumbersome, it turns out that the *code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } /* Check if a valid IEEE address is available. */ while ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF) ); } else { /* Valid IEEE address, so no need to generate a new random seed. **/ uint16_t cur_rand_seed = (uint16_t)tal_pib.IeeeAddress; srand(cur_rand_seed); } #else /* * No check for a valid IEEE address done, so directly create a seed * for srand(). */ tal_generate_rand_seed(); #endif /* * Do the reset stuff. * Set the default PIBs. */ if (internal_tal_reset(true) != MAC_SUCCESS) { return FAILURE; } pal_trx_reg_read(RG_IRQ_STATUS); /* clear pending irqs, dummy read */ /* * Configure interrupt handling. * Install a handler for the transceiver interrupt. */ pal_trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ /* Initialize the buffer management module and get a buffer to store *reveived frames. */ bmm_buffer_init(); tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE); /* Init incoming frame queue */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY); #else qmm_queue_init(&tal_incoming_frame_queue); #endif /* ENABLE_QUEUE_CAPACITY */ return MAC_SUCCESS; } /* tal_init() */
/** * @brief Initializes the MAC sublayer * * @return MAC_SUCCESS if TAL is intialized successfully else FAILURE */ retval_t mac_init(void) { #ifdef GTS_DEBUG struct port_config config_port_pin; config_port_pin.direction = PORT_PIN_DIR_OUTPUT; port_pin_set_config(DEBUG_PIN1, &config_port_pin); port_pin_set_config(DEBUG_PIN2, &config_port_pin); port_pin_set_config(DEBUG_PIN3, &config_port_pin); port_pin_set_config(DEBUG_PIN4, &config_port_pin); port_pin_set_config(DEBUG_PIN5, &config_port_pin); port_pin_set_config(DEBUG_PIN6, &config_port_pin); port_pin_set_config(DEBUG_PIN7, &config_port_pin); port_pin_set_config(DEBUG_PIN8, &config_port_pin); port_pin_set_config(DEBUG_PIN9, &config_port_pin); port_pin_set_config(DEBUG_PIN10, &config_port_pin); port_pin_set_config(DEBUG_PIN11, &config_port_pin); port_pin_set_config(DEBUG_PIN12, &config_port_pin); port_pin_set_config(DEBUG_PIN13, &config_port_pin); port_pin_set_config(DEBUG_PIN14, &config_port_pin); port_pin_set_config(DEBUG_PIN15, &config_port_pin); /*ioport_configure_pin(DEBUG_PIN1, IOPORT_DIR_OUTPUT | * IOPORT_INIT_LOW); * ioport_configure_pin(DEBUG_PIN2, IOPORT_DIR_OUTPUT | * IOPORT_INIT_LOW); * ioport_configure_pin(DEBUG_PIN3, IOPORT_DIR_OUTPUT | * IOPORT_INIT_LOW); * ioport_configure_pin(DEBUG_PIN4, IOPORT_DIR_OUTPUT | * IOPORT_INIT_LOW);*/ #endif /* Initialize TAL */ if (tal_init() != MAC_SUCCESS) { return FAILURE; } #ifdef STB_ON_SAL stb_init(); #endif #ifdef ENABLE_RTB /* Initialize RTB */ if (rtb_init() != RTB_SUCCESS) { return FAILURE; } #endif /* ENABLE_RTB */ /* Calibrate MCU's RC oscillator */ if (!pal_calibrate_rc_osc()) { return FAILURE; } if (MAC_SUCCESS != mac_timers_init()) { return FAILURE; } mac_soft_reset(true); /* Set radio to sleep if allowed */ mac_sleep_trans(); /* Initialize the queues */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&nhle_mac_q, NHLE_MAC_QUEUE_CAPACITY); qmm_queue_init(&tal_mac_q, TAL_MAC_QUEUE_CAPACITY); #if (MAC_INDIRECT_DATA_FFD == 1) qmm_queue_init(&indirect_data_q, INDIRECT_DATA_QUEUE_CAPACITY); #endif /* (MAC_INDIRECT_DATA_FFD == 1) */ #if (MAC_START_REQUEST_CONFIRM == 1) #ifdef BEACON_SUPPORT qmm_queue_init(&broadcast_q, BROADCAST_QUEUE_CAPACITY); #endif /* BEACON_SUPPORT */ #endif /* (MAC_START_REQUEST_CONFIRM == 1) */ #else qmm_queue_init(&nhle_mac_q); qmm_queue_init(&tal_mac_q); #if (MAC_INDIRECT_DATA_FFD == 1) qmm_queue_init(&indirect_data_q); #endif /* (MAC_INDIRECT_DATA_FFD == 1) */ #if (MAC_START_REQUEST_CONFIRM == 1) #ifdef BEACON_SUPPORT qmm_queue_init(&broadcast_q); #endif /* BEACON_SUPPORT */ #endif /* (MAC_START_REQUEST_CONFIRM == 1) */ #endif /* ENABLE_QUEUE_CAPACITY */ return MAC_SUCCESS; }
/** * @brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } /* Reset trx */ if (trx_reset(RFBOTH) != MAC_SUCCESS) { return FAILURE; } /* Check if RF215 is connected */ if ((trx_reg_read( RG_RF_PN) != 0x34) || (trx_reg_read( RG_RF_VN) != 0x01)) { return FAILURE; } /* Initialize trx */ trx_init(); if (tal_timer_init() != MAC_SUCCESS) { return FAILURE; } /* Initialize the buffer management */ bmm_buffer_init(); /* Configure both trx and set default PIB values */ for (uint8_t trx_id = 0; trx_id < NUM_TRX; trx_id++) { /* Configure transceiver */ trx_config((trx_id_t)trx_id); #ifdef RF215V1 /* Calibrate LO */ calibrate_LO((trx_id_t)trx_id); #endif /* Set the default PIB values */ init_tal_pib((trx_id_t)trx_id); /* see 'tal_pib.c' */ calculate_pib_values((trx_id_t)trx_id); /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx((trx_id_t)trx_id); /* see 'tal_pib.c' **/ config_phy((trx_id_t)trx_id); tal_rx_buffer[trx_id] = bmm_buffer_alloc(LARGE_BUFFER_SIZE); if (tal_rx_buffer[trx_id] == NULL) { return FAILURE; } /* Init incoming frame queue */ qmm_queue_init(&tal_incoming_frame_queue[trx_id]); tal_state[trx_id] = TAL_IDLE; tx_state[trx_id] = TX_IDLE; } /* Init seed of rand() */ tal_generate_rand_seed(); #ifndef DISABLE_IEEE_ADDR_CHECK for (uint8_t trx_id = 0; trx_id < 2; trx_id++) { /* Check if a valid IEEE address is available. */ /* * This while loop is on purpose, since just in the * rare case that such an address is randomly * generated again, we must repeat this. */ while ((tal_pib[trx_id].IeeeAddress == 0x0000000000000000) || (tal_pib[trx_id].IeeeAddress == ((uint64_t)-1))) { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been *generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib[trx_id].IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to *8 bit, * and running the loop 8 timers (instead of *only 4 times) * may look cumbersome, it turns out that the *code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } } #endif #ifdef IQ_RADIO /* Init BB IRQ handler */ pal_trx_irq_flag_clr(RF215_BB); trx_irq_init(RF215_BB, bb_irq_handler_cb); pal_trx_irq_en(RF215_BB); /* Init RF IRQ handler */ pal_trx_irq_flag_clr(RF215_RF); trx_irq_init(RF215_RF, rf_irq_handler_cb); pal_trx_irq_en(RF215_RF); #else /* * Configure interrupt handling. * Install a handler for the radio and the baseband interrupt. */ pal_trx_irq_flag_clr(); trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ #endif #if ((defined SUPPORT_FSK) && (defined SUPPORT_MODE_SWITCH)) init_mode_switch(); #endif return MAC_SUCCESS; } /* tal_init() */