MAX_UNSIGNED
quantum_measure(quantum_reg reg)
{
  double r;
  int i;

  if(quantum_objcode_put(MEASURE))
    return 0;

  /* Get a random number between 0 and 1 */
  
  r = quantum_frand();

  for (i=0; i<reg.size; i++)
    {
      /* If the random number is less than the probability of the
	 given base state - r, return the base state as the
	 result. Otherwise, continue with the next base state. */

      r -= quantum_prob_inline(reg.node[i].amplitude);
      if(0.0 >= r)
		return reg.node[i].state;
    }

  /* The sum of all probabilities is less than 1. Usually, the cause
     for this is the application of a non-normalized matrix, but there
     is a slim chance that rounding errors may lead to this as
     well. */

  return -1;
}
Пример #2
0
quantum_reg quantum_state_collapse( int pos, int value, quantum_reg reg )
{
  int i, j, k;
  int size = 0;
  double d = 0.000000000000;
  unsigned long long lpat = 0, rpat = 0, pos2 = (long long)1 << pos;
  quantum_reg out;
  i = 0;
  for ( ; i < reg.size; i++ )
  {
    if ( ( ( reg.node[ i ].state & pos2 ) != 0 && value != 0 ) || ( ( reg.node[ i ].state & pos2 ) == 0 && value == 0 ) )
    {
      d += quantum_prob_inline( reg.node[ i ].amplitude );
      size++;
    }
    //i++;
  }
  out.width = reg.width - 1;
  out.size = size;
  out.node = calloc( size, sizeof( quantum_reg_node ) );
  if ( out.node == 0 )
    quantum_error( 2 );
  quantum_memman( size << 4 );
  out.hashw = reg.hashw;
  out.hash = reg.hash;
  i = 0;
  j = 0;
  for ( ; i < reg.size; i++ )
  {
    if ( ( ( reg.node[ i ].state & pos2 ) != 0 && value != 0 ) || ( ( reg.node[ i ].state & pos2 ) == 0 && value == 0 ) )
    {
      k = 0;
      rpat = 0;
      for ( ; k < pos; k++ )
      {
        rpat += (long long)1 << k;
        //k++;
      }
      rpat &= reg.node[ i ].state;
      k = 63;
      lpat = 0;
      for ( ; pos < k; k-- )
      {
        lpat += (long long)1 << k;
        //k--;
      }
      lpat &= reg.node[ i ].state;
      out.node[ j ].state = rpat | ( lpat >> 1 );
      if ( (bit)( 0 ) )
      {
      }
      out.node[ j ].amplitude = reg.node[ i ].amplitude / sqrt( d );
      j++;
    }
    //i++;
  }
Пример #3
0
void quantum_reduced_density_op( int pos, quantum_density_op *rho )
{
  int i, j;
  double p0 = 0.000000000000, ptmp;
  unsigned long long pos2;
  quantum_reg rtmp;
  rho->prob = realloc( rho->prob, rho->num << 3 );
  if ( rho->prob == 0 )
    quantum_error( 2 );
  rho->reg = realloc( rho->reg, rho->num * 40 );
  if ( rho->reg == 0 )
    quantum_error( 2 );
  quantum_memman( rho->num * 24 );
  pos2 = (long long)1 << pos;
  i = 0;
  for ( ; i < rho->num; i++ )
  {
    ptmp = rho->prob[ i ];
    rtmp.width = rho->reg[ i ].width;
    rtmp.size = rho->reg[ i ].size;
    rtmp.hashw = rho->reg[ i ].hashw;
    rtmp.node = rho->reg[ i ].node;
    rtmp.hash = rho->reg[ i ].hash;
    p0 = 0.000000000000;
    j = 0;
    for ( ; j < rho->reg[ i ].size; j++ )
    {
      if ( ( rho->reg[ i ].node[ j ].state & pos2 ) == 0 )
      {
        p0 += quantum_prob_inline( rho->reg[ i ].node[ j ].amplitude );
      }
      //j++;
    }
    rho->prob[ i ] = ptmp * p0;
    rho->prob[ rho->num + i ] = ptmp * ( 1.000000000000 - p0 );
    rho->reg[ i ] = quantum_state_collapse( pos, 0, rtmp );
    rho->reg[ rho->num + i ] = quantum_state_collapse( pos, 1, rtmp );
    quantum_delete_qureg_hashpreserve( &rtmp );
    //i++;
  }
  rho->num <<= 1;
  return;
}
int
quantum_bmeasure(int pos, quantum_reg *reg)
{
  int i;
  int result=0;
  double pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;
  
  if(quantum_objcode_put(BMEASURE, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->node[i].state & pos2))
	pa += quantum_prob_inline(reg->node[i].amplitude);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  out = quantum_state_collapse(pos, result, *reg);

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;

  return result;
}
Пример #5
0
void quantum_print_qureg( quantum_reg reg )
{
  int i = 0, j;
  for ( ; i < reg.size; i++ )
  {
    printf( "% f %+fi|%lli&gt; (%e) (|", quantum_real( reg.node[ i ].amplitude ), quantum_imag( reg.node[ i ].amplitude ), reg.node[ i ].state, quantum_prob_inline( reg.node[ i ].amplitude ) );
    j = reg.width - 1;
    for ( ; j >= 0; j-- )
    {
      if ( ( j % 4 ) == 3 )
        putchar( 32 );
      printf( "%i", (int)( reg.node[ i ].state >> (unsigned char)( j ) ) & 1 );
      //j--;
    }
    puts( "&gt;)" );
    //i++;
  }
  putchar( 10 );
  return;
}
int
quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
{
  int i, j;
  int size=0, result=0;
  double d=0, pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;

  if(quantum_objcode_put(BMEASURE_P, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->node[i].state & pos2))
	pa += quantum_prob_inline(reg->node[i].amplitude);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  /* Eradicate all amplitudes of base states which have been ruled out
     by the measurement and get the absolute of the new register */

  for(i=0;i<reg->size;i++)
    {
      if(reg->node[i].state & pos2)
	{
	  if(!result)
	    reg->node[i].amplitude = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->node[i].amplitude);
	      size++;
	    }
	}
      else
	{
	  if(result)
	    reg->node[i].amplitude = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->node[i].amplitude);
	      size++;
	    }
	}
    }

  /* Build the new quantum register */

  out.size = size;
  out.node = calloc(size, sizeof(quantum_reg_node));
  if(!out.node)
    {
      printf("Not enough memory for %i-sized qubit!\n", size);
      exit(1);
    }
  quantum_memman(size * sizeof(quantum_reg_node));
  out.hashw = reg->hashw;
  out.hash = reg->hash;
  out.width = reg->width;

  /* Determine the numbers of the new base states and norm the quantum
     register */
  
  for(i=0, j=0; i<reg->size; i++)
    {
      if(reg->node[i].amplitude)
	{
	  out.node[j].state = reg->node[i].state;
	  out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
	
	  j++;
	}
    }

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;
  return result;
}