void debug_print_ref(const ref *pref) { if ( r_is_packed(pref) ) debug_print_packed_ref((const ref_packed *)pref); else debug_print_full_ref(pref); fflush(dstderr); }
static CLEAR_MARKS_PROC(change_clear_marks) { alloc_change_t *const ptr = (alloc_change_t *)vptr; if (r_is_packed(&ptr->contents)) r_clear_pmark((ref_packed *) & ptr->contents); else r_clear_attrs(&ptr->contents, l_mark); }
} RELOC_PTRS_END /* ------ Unmarking phase ------ */ /* Unmark a single ref. */ void ptr_ref_unmark(enum_ptr_t *pep, gc_state_t * ignored) { ref_packed *rpp = (ref_packed *)pep->ptr; if (r_is_packed(rpp)) r_clear_pmark(rpp); else r_clear_attrs((ref *)rpp, l_mark); }
/* Mark a ref. Return true if new mark. */ bool ptr_ref_mark(enum_ptr_t *pep, gc_state_t * ignored) { ref_packed *rpp = (void *)pep->ptr; if (r_is_packed(rpp)) { if (r_has_pmark(rpp)) return false; r_set_pmark(rpp); } else { ref *const pref = (ref *)rpp; if (r_has_attr(pref, l_mark)) return false; r_set_attrs(pref, l_mark); } return true; }
/* Clear the relocation for a ref object. */ static void refs_clear_reloc(obj_header_t *hdr, uint size) { ref_packed *rp = (ref_packed *) (hdr + 1); ref_packed *end = (ref_packed *) ((byte *) rp + size); while (rp < end) { if (r_is_packed(rp)) rp++; else { /* Full-size ref. Store the relocation here if possible. */ ref *const pref = (ref *)rp; if (!ref_type_uses_size_or_null(r_type(pref))) { if_debug1('8', " [8]clearing reloc at 0x%lx\n", (ulong) rp); r_set_size(pref, 0); } rp += packed_per_ref; } } }
/* Dump an array. */ void debug_dump_array(const ref *array) { const ref_packed *pp; unsigned int type = r_type(array); uint len; switch (type) { default: dprintf2 ("%s at 0x%lx isn't an array.\n", (type < countof(type_strings) ? type_strings[type] : "????"), (ulong)array); return; case t_oparray: /* This isn't really an array, but we'd like to see */ /* its contents anyway. */ debug_dump_array(op_array_table.value.refs + op_index(array) - op_def_count); return; case t_array: case t_mixedarray: case t_shortarray: ; } /* This "packed" loop works for all array-types. */ for ( len = r_size (array), pp = array->value.packed; len > 0; len--, pp = packed_next(pp)) { ref temp; packed_get(pp, &temp); dprintf3("..%04x%c 0x%02x ", (uint)pp & 0xffff, ((r_is_packed(pp)) ? '*' : ':'), r_type(&temp)); debug_dump_one_ref(&temp); dputc ('\n'); } }
/* Unmarking routine for ref objects. */ static void refs_clear_marks(const gs_memory_t *cmem, void /*obj_header_t */ *vptr, uint size, const gs_memory_struct_type_t * pstype) { ref_packed *rp = (ref_packed *) vptr; ref_packed *end = (ref_packed *) ((byte *) vptr + size); /* Since the last ref is full-size, we only need to check for */ /* the end of the block when we see one of those. */ for (;;) { if (r_is_packed(rp)) { #ifdef DEBUG if (gs_debug_c('8')) { dlprintf1(" [8]unmark packed 0x%lx ", (ulong) rp); debug_print_ref(cmem, (const ref *)rp); dputs("\n"); } #endif r_clear_pmark(rp); rp++; } else { /* full-size ref */ ref *const pref = (ref *)rp; #ifdef DEBUG if (gs_debug_c('8')) { dlprintf1(" [8]unmark ref 0x%lx ", (ulong) rp); debug_print_ref(cmem, pref); dputs("\n"); } #endif r_clear_attrs(pref, l_mark); rp += packed_per_ref; if (rp >= (ref_packed *) end) break; } } }
ref_packed * igc_reloc_ref_ptr(const ref_packed * prp, gc_state_t *gcst) { /* * Search forward for relocation. This algorithm is intrinsically very * inefficient; we hope eventually to replace it with a better one. */ const ref_packed *rp = prp; #ifdef ALIGNMENT_ALIASING_BUG const ref *rpref; # define RP_REF(rp) (rpref = (const ref *)rp, rpref) #else # define RP_REF(rp) ((const ref *)rp) #endif /* * Iff this pointer points into a space that wasn't traced, * the referent won't be marked. In this case, we shouldn't * do any relocation. Check for this first. */ if (r_is_packed(rp)) { if (!r_has_pmark(rp)) goto ret_rp; } else { if (!r_has_attr(RP_REF(rp), l_mark)) goto ret_rp; } return igc_reloc_ref_ptr_nocheck(prp, gcst); ret_rp: /* Use a severely deprecated pun to remove the const property. */ { union { const ref_packed *r; ref_packed *w; } u; u.r = rp; return u.w; } }
static int zbind(i_ctx_t *i_ctx_p) { os_ptr op = osp; uint depth = 1; ref defn; register os_ptr bsp; switch (r_type(op)) { case t_array: if (!r_has_attr(op, a_write)) { return 0; /* per PLRM3 */ } case t_mixedarray: case t_shortarray: defn = *op; break; case t_oparray: defn = *op->value.const_refs; break; default: return_op_typecheck(op); } push(1); *op = defn; bsp = op; /* * We must not make the top-level procedure read-only, * but we must bind it even if it is read-only already. * * Here are the invariants for the following loop: * `depth' elements have been pushed on the ostack; * For i < depth, p = ref_stack_index(&o_stack, i): * *p is an array (or packedarray) ref. */ while (depth) { while (r_size(bsp)) { ref_packed *const tpp = (ref_packed *)bsp->value.packed; /* break const */ r_dec_size(bsp, 1); if (r_is_packed(tpp)) { /* Check for a packed executable name */ ushort elt = *tpp; if (r_packed_is_exec_name(&elt)) { ref nref; ref *pvalue; name_index_ref(imemory, packed_name_index(&elt), &nref); if ((pvalue = dict_find_name(&nref)) != 0 && r_is_ex_oper(pvalue) ) { store_check_dest(bsp, pvalue); /* * Always save the change, since this can only * happen once. */ ref_do_save(bsp, tpp, "bind"); *tpp = pt_tag(pt_executable_operator) + op_index(pvalue); } } bsp->value.packed = tpp + 1; } else { ref *const tp = bsp->value.refs++; switch (r_type(tp)) { case t_name: /* bind the name if an operator */ if (r_has_attr(tp, a_executable)) { ref *pvalue; if ((pvalue = dict_find_name(tp)) != 0 && r_is_ex_oper(pvalue) ) { store_check_dest(bsp, pvalue); ref_assign_old(bsp, tp, pvalue, "bind"); } } break; case t_array: /* push into array if writable */ if (!r_has_attr(tp, a_write)) break; case t_mixedarray: case t_shortarray: if (r_has_attr(tp, a_executable)) { /* Make reference read-only */ r_clear_attrs(tp, a_write); if (bsp >= ostop) { /* Push a new stack block. */ ref temp; int code; temp = *tp; osp = bsp; code = ref_stack_push(&o_stack, 1); if (code < 0) { ref_stack_pop(&o_stack, depth); return_error(code); } bsp = osp; *bsp = temp; } else *++bsp = *tp; depth++; } } } } bsp--; depth--; if (bsp < osbot) { /* Pop back to the previous stack block. */ osp = bsp; ref_stack_pop_block(&o_stack); bsp = osp; } } osp = bsp; return 0; }
/* Remove the marks at the same time. */ static void refs_compact(const gs_memory_t *mem, obj_header_t * pre, obj_header_t * dpre, uint size) { ref_packed *dest; ref_packed *src; ref_packed *end; uint new_size; /* The next switch controls an optimization for the loop termination condition. It was useful during the development, when some assumptions were temporary wrong. We keep it for records. */ src = (ref_packed *) (pre + 1); end = (ref_packed *) ((byte *) src + size); /* * We know that a block of refs always ends with a * full-size ref, so we only need to check for reaching the end * of the block when we see one of those. */ if (dpre == pre) /* Loop while we don't need to copy. */ for (;;) { if (r_is_packed(src)) { if (!r_has_pmark(src)) break; if_debug1('8', " [8]packed ref 0x%lx \"copied\"\n", (ulong) src); *src &= ~lp_mark; src++; } else { /* full-size ref */ ref *const pref = (ref *)src; if (!r_has_attr(pref, l_mark)) break; if_debug1('8', " [8]ref 0x%lx \"copied\"\n", (ulong) src); r_clear_attrs(pref, l_mark); src += packed_per_ref; } } else *dpre = *pre; dest = (ref_packed *) ((char *)dpre + ((char *)src - (char *)pre)); for (;;) { if (r_is_packed(src)) { if (r_has_pmark(src)) { if_debug2('8', " [8]packed ref 0x%lx copied to 0x%lx\n", (ulong) src, (ulong) dest); *dest++ = *src & ~lp_mark; } src++; } else { /* full-size ref */ if (r_has_attr((ref *) src, l_mark)) { ref rtemp; if_debug2('8', " [8]ref 0x%lx copied to 0x%lx\n", (ulong) src, (ulong) dest); /* We can't just use ref_assign_inline, */ /* because the source and destination */ /* might overlap! */ ref_assign_inline(&rtemp, (ref *) src); r_clear_attrs(&rtemp, l_mark); ref_assign_inline((ref *) dest, &rtemp); src += packed_per_ref; dest += packed_per_ref; } else { /* check for end of block */ src += packed_per_ref; if (src >= end) break; } } } new_size = (byte *) dest - (byte *) (dpre + 1) + sizeof(ref); #ifdef DEBUG /* Check that the relocation came out OK. */ /* NOTE: this check only works within a single chunk. */ if ((byte *) src - (byte *) dest != r_size((ref *) src - 1) + sizeof(ref)) { lprintf3("Reloc error for refs 0x%lx: reloc = %lu, stored = %u\n", (ulong) dpre, (ulong) ((byte *) src - (byte *) dest), (uint) r_size((ref *) src - 1)); gs_abort(mem); } #endif /* Pad to a multiple of sizeof(ref). */ while (new_size & (sizeof(ref) - 1)) *dest++ = pt_tag(pt_integer), new_size += sizeof(ref_packed); /* We want to make the newly freed space into a free block, */ /* but we can only do this if we have enough room. */ if (size - new_size < sizeof(obj_header_t)) { /* Not enough room. Pad to original size. */ while (new_size < size) *dest++ = pt_tag(pt_integer), new_size += sizeof(ref_packed); } else { obj_header_t *pfree = (obj_header_t *) ((ref *) dest + 1); pfree->o_alone = 0; pfree->o_size = size - new_size - sizeof(obj_header_t); pfree->o_type = &st_bytes; } /* Re-create the final ref. */ r_set_type((ref *) dest, t_integer); dpre->o_size = new_size; }
/* See gsmemory.h for why the argument is const and the result is not. */ ref_packed * igc_reloc_ref_ptr_nocheck(const ref_packed * prp, gc_state_t *gcst) { /* * Search forward for relocation. This algorithm is intrinsically very * inefficient; we hope eventually to replace it with a better one. */ const ref_packed *rp = prp; uint dec = 0; #ifdef ALIGNMENT_ALIASING_BUG const ref *rpref; # define RP_REF(rp) (rpref = (const ref *)rp, rpref) #else # define RP_REF(rp) ((const ref *)rp) #endif for (;;) { if (r_is_packed(rp)) { /* * Normally, an unmarked packed ref will be an * integer whose value is the amount of relocation. * However, the relocation value might have been * too large to fit. If this is the case, for * each such unmarked packed ref we pass over, * we have to decrement the final relocation. */ rputc((*rp & lp_mark ? '1' : '0')); if (!(*rp & lp_mark)) { if (*rp != pt_tag(pt_integer) + packed_max_value) { /* This is a stored relocation value. */ rputc('\n'); rp = print_reloc(prp, "ref", (const ref_packed *) ((const char *)prp - (*rp & packed_value_mask) + dec)); break; } /* * We know this is the first of an aligned block * of packed refs. Skip over the entire block, * decrementing the final relocation. */ dec += sizeof(ref_packed) * align_packed_per_ref; rp += align_packed_per_ref; } else rp++; continue; } if (!ref_type_uses_size_or_null(r_type(RP_REF(rp)))) { /* reloc is in r_size */ rputc('\n'); rp = print_reloc(prp, "ref", (const ref_packed *) (r_size(RP_REF(rp)) == 0 ? prp : (const ref_packed *)((const char *)prp - r_size(RP_REF(rp)) + dec))); break; } rputc('u'); rp += packed_per_ref; } /* Use a severely deprecated pun to remove the const property. */ { union { const ref_packed *r; ref_packed *w; } u; u.r = rp; return u.w; } #undef RP_REF }
/* untraced space, so relocate all refs, not just marked ones. */ void igc_reloc_refs(ref_packed * from, ref_packed * to, gc_state_t * gcst) { int min_trace = gcst->min_collect; ref_packed *rp = from; bool do_all = gcst->relocating_untraced; vm_spaces spaces = gcst->spaces; const gs_memory_t *cmem = space_system->stable_memory; while (rp < to) { ref *pref; #ifdef DEBUG const void *before = 0; const void *after = 0; # define DO_RELOC(var, stat)\ BEGIN before = (var); stat; after = (var); END # define SET_RELOC(var, expr)\ BEGIN before = (var); after = (var) = (expr); END #else # define DO_RELOC(var, stat) stat # define SET_RELOC(var, expr) var = expr #endif if (r_is_packed(rp)) { rp++; continue; } /* The following assignment is logically unnecessary; */ /* we do it only for convenience in debugging. */ pref = (ref *) rp; if_debug3('8', " [8]relocating %s %d ref at 0x%lx\n", (r_has_attr(pref, l_mark) ? "marked" : "unmarked"), r_btype(pref), (ulong) pref); if ((r_has_attr(pref, l_mark) || do_all) && r_space(pref) >= min_trace ) { switch (r_type(pref)) { /* Struct cases */ case t_file: DO_RELOC(pref->value.pfile, RELOC_VAR(pref->value.pfile)); break; case t_device: DO_RELOC(pref->value.pdevice, RELOC_VAR(pref->value.pdevice)); break; case t_fontID: case t_struct: case t_astruct: DO_RELOC(pref->value.pstruct, RELOC_VAR(pref->value.pstruct)); break; /* Non-trivial non-struct cases */ case t_dictionary: rputc('d'); SET_RELOC(pref->value.pdict, (dict *)igc_reloc_ref_ptr((ref_packed *)pref->value.pdict, gcst)); break; case t_array: { uint size = r_size(pref); if (size != 0) { /* value.refs might be NULL */ /* * If the array is large, we allocated it in its * own object (at least originally -- this might * be a pointer to a subarray.) In this case, * we know it is the only object in its * containing st_refs object, so we know that * the mark containing the relocation appears * just after it. */ if (size < max_size_st_refs / sizeof(ref)) { rputc('a'); SET_RELOC(pref->value.refs, (ref *) igc_reloc_ref_ptr( (ref_packed *) pref->value.refs, gcst)); } else { rputc('A'); /* * See the t_shortarray case below for why we * decrement size. */ --size; SET_RELOC(pref->value.refs, (ref *) igc_reloc_ref_ptr( (ref_packed *) (pref->value.refs + size), gcst) - size); } } } break; case t_mixedarray: if (r_size(pref) != 0) { /* value.refs might be NULL */ rputc('m'); SET_RELOC(pref->value.packed, igc_reloc_ref_ptr(pref->value.packed, gcst)); } break; case t_shortarray: { uint size = r_size(pref); /* * Since we know that igc_reloc_ref_ptr works by * scanning forward, and we know that all the * elements of this array itself are marked, we can * save some scanning time by relocating the pointer * to the end of the array rather than the * beginning. */ if (size != 0) { /* value.refs might be NULL */ rputc('s'); /* * igc_reloc_ref_ptr has to be able to determine * whether the pointer points into a space that * isn't being collected. It does this by * checking whether the referent of the pointer * is marked. For this reason, we have to pass * a pointer to the last real element of the * array, rather than just beyond it. */ --size; SET_RELOC(pref->value.packed, igc_reloc_ref_ptr(pref->value.packed + size, gcst) - size); } } break; case t_name: { void *psub = name_ref_sub_table(cmem, pref); void *rsub = RELOC_OBJ(psub); /* gcst implicit */ SET_RELOC(pref->value.pname, (name *) ((char *)rsub + ((char *)pref->value.pname - (char *)psub))); } break; case t_string: { gs_string str; str.data = pref->value.bytes; str.size = r_size(pref); DO_RELOC(str.data, RELOC_STRING_VAR(str)); pref->value.bytes = str.data; } break; case t_oparray: rputc('o'); SET_RELOC(pref->value.const_refs, (const ref *)igc_reloc_ref_ptr((const ref_packed *)pref->value.const_refs, gcst)); break; default: goto no_reloc; /* don't print trace message */ } if_debug2('8', " [8]relocated 0x%lx => 0x%lx\n", (ulong)before, (ulong)after); } no_reloc: rp += packed_per_ref; } }
/* Set the relocation for a ref object. */ static bool refs_set_reloc(obj_header_t * hdr, uint reloc, uint size) { ref_packed *rp = (ref_packed *) (hdr + 1); ref_packed *end = (ref_packed *) ((byte *) rp + size); uint freed = 0; /* * We have to be careful to keep refs aligned properly. * For the moment, we do this by either keeping or discarding * an entire (aligned) block of align_packed_per_ref packed elements * as a unit. We know that align_packed_per_ref <= packed_per_ref, * and we also know that packed refs are always allocated in blocks * of align_packed_per_ref, so this makes things relatively easy. */ while (rp < end) { if (r_is_packed(rp)) { #if align_packed_per_ref == 1 if (r_has_pmark(rp)) { if_debug1('8', " [8]packed ref 0x%lx is marked\n", (ulong) rp); rp++; } else { #else int i; /* * Note: align_packed_per_ref is typically * 2 or 4 for 32-bit processors. */ #define all_marked (align_packed_per_ref * lp_mark) # if align_packed_per_ref == 2 # if arch_sizeof_int == arch_sizeof_short * 2 # undef all_marked # define all_marked ( (lp_mark << (sizeof(short) * 8)) + lp_mark ) # define marked (*(int *)rp & all_marked) # else # define marked ((*rp & lp_mark) + (rp[1] & lp_mark)) # endif # else # if align_packed_per_ref == 4 # define marked ((*rp & lp_mark) + (rp[1] & lp_mark) +\ (rp[2] & lp_mark) + (rp[3] & lp_mark)) # else /* * The value of marked is logically a uint, not an int: * we declare it as int only to avoid a compiler warning * message about using a non-int value in a switch statement. */ int marked = *rp & lp_mark; for (i = 1; i < align_packed_per_ref; i++) marked += rp[i] & lp_mark; # endif # endif /* * Now marked is lp_mark * the number of marked * packed refs in the aligned block, except for * a couple of special cases above. */ switch (marked) { case all_marked: if_debug2('8', " [8]packed refs 0x%lx..0x%lx are marked\n", (ulong) rp, (ulong) (rp + (align_packed_per_ref - 1))); rp += align_packed_per_ref; break; default: /* At least one packed ref in the block */ /* is marked: Keep the whole block. */ for (i = align_packed_per_ref; i--; rp++) { r_set_pmark(rp); if_debug1('8', " [8]packed ref 0x%lx is marked\n", (ulong) rp); } break; case 0: #endif if_debug2('8', " [8]%d packed ref(s) at 0x%lx are unmarked\n", align_packed_per_ref, (ulong) rp); { uint rel = reloc + freed; /* Change this to an integer so we can */ /* store the relocation here. */ *rp = pt_tag(pt_integer) + min(rel, packed_max_value); } rp += align_packed_per_ref; freed += sizeof(ref_packed) * align_packed_per_ref; } } else { /* full-size ref */ uint rel = reloc + freed; /* The following assignment is logically */ /* unnecessary; we do it only for convenience */ /* in debugging. */ ref *pref = (ref *) rp; if (!r_has_attr(pref, l_mark)) { if_debug1('8', " [8]ref 0x%lx is unmarked\n", (ulong) pref); /* Change this to a mark so we can */ /* store the relocation. */ r_set_type(pref, t_mark); r_set_size(pref, rel); freed += sizeof(ref); } else { if_debug1('8', " [8]ref 0x%lx is marked\n", (ulong) pref); /* Store the relocation here if possible. */ if (!ref_type_uses_size_or_null(r_type(pref))) { if_debug2('8', " [8]storing reloc %u at 0x%lx\n", rel, (ulong) pref); r_set_size(pref, rel); } } rp += packed_per_ref; } } if_debug3('7', " [7]at end of refs 0x%lx, size = %u, freed = %u\n", (ulong) (hdr + 1), size, freed); if (freed == size) return false; #if arch_sizeof_int > arch_sizeof_short /* * If the final relocation can't fit in the r_size field * (which can't happen if the object shares a chunk with * any other objects, so we know reloc = 0 in this case), * we have to keep the entire object unless there are no * references to any ref in it. */ if (freed <= max_ushort) return true; /* * We have to mark all surviving refs, but we also must * overwrite any non-surviving refs with something that * doesn't contain any pointers. */ rp = (ref_packed *) (hdr + 1); while (rp < end) { if (r_is_packed(rp)) { if (!r_has_pmark(rp)) *rp = pt_tag(pt_integer) | lp_mark; ++rp; } else { /* The following assignment is logically */ /* unnecessary; we do it only for convenience */ /* in debugging. */ ref *pref = (ref *) rp; if (!r_has_attr(pref, l_mark)) { r_set_type_attrs(pref, t_mark, l_mark); r_set_size(pref, reloc); } else { if (!ref_type_uses_size_or_null(r_type(pref))) r_set_size(pref, reloc); } rp += packed_per_ref; } } /* The last ref has to remain unmarked. */ r_clear_attrs((ref *) rp - 1, l_mark); #endif return true; }