void parse1(){ unsigned int i; expr e; double x; e = parse("x^2+1"); for(i = 0; i<1000; i++){ x = random_(); ASSERT_SIM(eval(e, x, 0), f1(x)); } e = parse("sin(x)^4"); for(i = 0; i<1000; i++){ x = random_(); ASSERT_SIM(eval(e, x, 0), f2(x)); } e = parse("2^(sin(x)^2)"); for(i = 0; i<1000; i++){ x = random_(); ASSERT_SIM(eval(e, x, 0), f3(x)); } e = parse("(x-2)^2 + 1"); for(i = 0; i<1000; i++){ x = random_(); ASSERT_SIM(eval(e, x, 0), f4(x)); } }
double likelihood_z(int s_id, int q_id) { double s_id_sample = 0; double q_id_sample = 0; double sum_new = 0; for (int i=0; i<o.size(); i++) { double s_ = s[o[i].get_sid()].last(); double q_ = q[o[i].get_qid()].last(); if (o[i].get_sid() == s_id) { s_ = s[s_id].sample(); s_id_sample = s_; } if (o[i].get_qid() == q_id) { q_ = q[q_id].sample(); q_id_sample = q_; } sum_new -= (log(1 + exp(-(s_-q_))) + (1-o[i].get_response())*(s_-q_)); sum_new -= 0.5*s_*s_; sum_new -= 0.5*q_*q_; } double sum_old = 0; for (int i=0; i<o.size(); i++) { double s_ = s[o[i].get_sid()].last(); double q_ = q[o[i].get_qid()].last(); sum_old -= (log(1 + exp(-(s_-q_))) + (1-o[i].get_response())*(s_-q_)); sum_old -= 0.5*s_*s_; sum_old -= 0.5*q_*q_; } double r = exp(sum_new - sum_old); if (random_(0, 1) < r) { for (int i=0; i<s.size(); i++) { if (i==s_id) s[i].insert(s_id_sample); else s[i].insert(s[i].last()); } for (int i=0; i<q.size(); i++) { if (i==q_id) q[i].insert(q_id_sample); else q[i].insert(q[i].last()); } } else { for (int i=0; i<s.size(); i++) { s[i].insert(s[i].last()); } for (int i=0; i<q.size(); i++) { q[i].insert(q[i].last()); } } }
void generate_random_clusters( const std::vector<sample_type>& samples) { typedef boost::variate_generator<boost::mt19937&, boost::uniform_int<> > random_type; random_type random_( random_generator_, boost::uniform_int<>(0, samples.size() - 1)); for( int i = 0; i < K_; ++i) { while( 1) { int indx = random_(); if( labels_[indx] == 0) { clusters_.push_back( cluster_t( samples[indx])); labels_[indx] = &(clusters_.back()); break; } } } }
std::tuple<Move, Value> AperyBook::probe(const Position &pos, const std::string &fname, bool pick_best) { AperyBookEntry entry; uint16_t best = 0; uint32_t sum = 0; Move move = kMoveNone; Key key = book_key(pos); Value min_book_score = static_cast<Value>(static_cast<int>(Options["Min_Book_Score"])); Value score = kValueZero; if (file_name_ != fname && !open(fname.c_str())) return std::make_tuple(kMoveNone, kValueZero); binary_search(key); while (read(reinterpret_cast<char*>(&entry), sizeof(entry)), entry.key == key && good()) { best = std::max(best, entry.count); sum += entry.count; if ( min_book_score <= entry.score && ( (random_() % sum < entry.count) || (pick_best && entry.count == best) ) ) { Square to = to_square(entry.from_to_pro & 0x007fU); int from_raw = (entry.from_to_pro >> 7) & 0x007fU; if (from_raw >= kBoardSquare) { move = move_init(to, to_drop_piece_type(static_cast<Square>(from_raw))); } else { Square from = to_square(from_raw); PieceType pt_from = type_of(pos.square(from)); if (entry.from_to_pro & kPromoted) move = move_init(from, to, pt_from, type_of(pos.square(to)), true); else move = move_init(from, to, pt_from, type_of(pos.square(to)), false); } score = entry.score; } }
/* Subroutine */ int bsynz_(real *coef, integer *ip, integer *iv, real *sout, real *rms, real *ratio, real *g2pass, struct lpc10_decoder_state *st) { /* Initialized data */ integer *ipo; real *rmso; static integer kexc[25] = { 8,-16,26,-48,86,-162,294,-502,718,-728,184, 672,-610,-672,184,728,718,502,294,162,86,48,26,16,8 }; real *exc; real *exc2; real *lpi1; real *lpi2; real *lpi3; real *hpi1; real *hpi2; real *hpi3; /* System generated locals */ integer i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real gain, xssq; integer i__, j, k; real noise[166], pulse; integer px; real sscale; extern integer random_(struct lpc10_decoder_state *); real xy, sum, ssq; real lpi0, hpi0; /* $Log: bsynz.c,v $ /* Revision 1.1 2007/10/22 07:40:49 shorne /* *** empty log message *** /* /* Revision 1.2 2006/08/01 13:06:49 rjongbloed /* Added a raft of unvalidated audio codecs from OpenH323 tree /* /* Revision 1.1.2.1 2006/07/22 14:03:14 rjongbloed /* Added more plug ins /* /* Revision 1.1.2.1 2006/05/08 13:49:57 rjongbloed /* Imported all the audio codec plug ins from OpenH323 /* /* Revision 1.1 2004/05/04 11:16:42 csoutheren /* Initial version /* /* Revision 1.2 2002/02/15 03:57:55 yurik /* Warnings removed during compilation, patch courtesy of Jehan Bing, [email protected] /* /* Revision 1.1 2000/06/05 04:45:12 robertj /* Added LPC-10 2400bps codec /* * Revision 1.2 1996/08/20 20:18:55 jaf * Removed all static local variables that were SAVE'd in the Fortran * code, and put them in struct lpc10_decoder_state that is passed as an * argument. * * Removed init function, since all initialization is now done in * init_lpc10_decoder_state(). * * Revision 1.1 1996/08/19 22:32:58 jaf * Initial revision * */ /* Revision 1.3 1996/03/29 22:03:47 jaf */ /* Removed definitions for any constants that were no longer used. */ /* Revision 1.2 1996/03/26 19:34:33 jaf */ /* Added comments indicating which constants are not needed in an */ /* application that uses the LPC-10 coder. */ /* Revision 1.1 1996/02/07 14:43:51 jaf */ /* Initial revision */ /* LPC Configuration parameters: */ /* Frame size, Prediction order, Pitch period */ /* Arguments */ /* $Log: bsynz.c,v $ /* Revision 1.1 2007/10/22 07:40:49 shorne /* *** empty log message *** /* /* Revision 1.2 2006/08/01 13:06:49 rjongbloed /* Added a raft of unvalidated audio codecs from OpenH323 tree /* /* Revision 1.1.2.1 2006/07/22 14:03:14 rjongbloed /* Added more plug ins /* /* Revision 1.1.2.1 2006/05/08 13:49:57 rjongbloed /* Imported all the audio codec plug ins from OpenH323 /* /* Revision 1.1 2004/05/04 11:16:42 csoutheren /* Initial version /* /* Revision 1.2 2002/02/15 03:57:55 yurik /* Warnings removed during compilation, patch courtesy of Jehan Bing, [email protected] /* /* Revision 1.1 2000/06/05 04:45:12 robertj /* Added LPC-10 2400bps codec /* * Revision 1.2 1996/08/20 20:18:55 jaf * Removed all static local variables that were SAVE'd in the Fortran * code, and put them in struct lpc10_decoder_state that is passed as an * argument. * * Removed init function, since all initialization is now done in * init_lpc10_decoder_state(). * * Revision 1.1 1996/08/19 22:32:58 jaf * Initial revision * */ /* Revision 1.3 1996/03/29 22:05:55 jaf */ /* Commented out the common block variables that are not needed by the */ /* embedded version. */ /* Revision 1.2 1996/03/26 19:34:50 jaf */ /* Added comments indicating which constants are not needed in an */ /* application that uses the LPC-10 coder. */ /* Revision 1.1 1996/02/07 14:44:09 jaf */ /* Initial revision */ /* LPC Processing control variables: */ /* *** Read-only: initialized in setup */ /* Files for Speech, Parameter, and Bitstream Input & Output, */ /* and message and debug outputs. */ /* Here are the only files which use these variables: */ /* lpcsim.f setup.f trans.f error.f vqsetup.f */ /* Many files which use fdebug are not listed, since it is only used in */ /* those other files conditionally, to print trace statements. */ /* integer fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /* LPC order, Frame size, Quantization rate, Bits per frame, */ /* Error correction */ /* Subroutine SETUP is the only place where order is assigned a value, */ /* and that value is 10. It could increase efficiency 1% or so to */ /* declare order as a constant (i.e., a Fortran PARAMETER) instead of as */ /* a variable in a COMMON block, since it is used in many places in the */ /* core of the coding and decoding routines. Actually, I take that back. */ /* At least when compiling with f2c, the upper bound of DO loops is */ /* stored in a local variable before the DO loop begins, and then that is */ /* compared against on each iteration. */ /* Similarly for lframe, which is given a value of MAXFRM in SETUP. */ /* Similarly for quant, which is given a value of 2400 in SETUP. quant */ /* is used in only a few places, and never in the core coding and */ /* decoding routines, so it could be eliminated entirely. */ /* nbits is similar to quant, and is given a value of 54 in SETUP. */ /* corrp is given a value of .TRUE. in SETUP, and is only used in the */ /* subroutines ENCODE and DECODE. It doesn't affect the speed of the */ /* coder significantly whether it is .TRUE. or .FALSE., or whether it is */ /* a constant or a variable, since it is only examined once per frame. */ /* Leaving it as a variable that is set to .TRUE. seems like a good */ /* idea, since it does enable some error-correction capability for */ /* unvoiced frames, with no change in the coding rate, and no noticeable */ /* quality difference in the decoded speech. */ /* integer quant, nbits */ /* *** Read/write: variables for debugging, not needed for LPC algorithm */ /* Current frame, Unstable frames, Output clip count, Max onset buffer, */ /* Debug listing detail level, Line count on listing page */ /* nframe is not needed for an embedded LPC10 at all. */ /* nunsfm is initialized to 0 in SETUP, and incremented in subroutine */ /* ERROR, which is only called from RCCHK. When LPC10 is embedded into */ /* an application, I would recommend removing the call to ERROR in RCCHK, */ /* and remove ERROR and nunsfm completely. */ /* iclip is initialized to 0 in SETUP, and incremented in entry SWRITE in */ /* sread.f. When LPC10 is embedded into an application, one might want */ /* to cause it to be incremented in a routine that takes the output of */ /* SYNTHS and sends it to an audio device. It could be optionally */ /* displayed, for those that might want to know what it is. */ /* maxosp is never initialized to 0 in SETUP, although it probably should */ /* be, and it is updated in subroutine ANALYS. I doubt that its value */ /* would be of much interest to an application in which LPC10 is */ /* embedded. */ /* listl and lincnt are not needed for an embedded LPC10 at all. */ /* integer nframe, nunsfm, iclip, maxosp, listl, lincnt */ /* common /contrl/ fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /* common /contrl/ quant, nbits */ /* common /contrl/ nframe, nunsfm, iclip, maxosp, listl, lincnt */ /* Function return value definitions */ /* Parameters/constants */ /* KEXC is not a Fortran PARAMETER, but it is an array initialized */ /* with a DATA statement that is never modified. */ /* Local variables that need not be saved */ /* NOISE is declared with range (1:MAXPIT+MAXORD), but only indices */ /* ORDER+1 through ORDER+IP are ever used, and I think that IP */ /* .LE. MAXPIT. Why not declare it to be in the range (1:MAXPIT) */ /* and use that range? */ /* Local state */ /* I believe that only indices 1 through ORDER of EXC need to be */ /* saved from one invocation to the next, but we may as well save */ /* the whole array. */ /* None of these local variables were given initial values in the */ /* original code. I'm guessing that 0 is a reasonable initial */ /* value for all of them. */ /* Parameter adjustments */ if (coef) { --coef; } if (sout) { --sout; } /* Function Body */ ipo = &(st->ipo); exc = &(st->exc[0]); exc2 = &(st->exc2[0]); lpi1 = &(st->lpi1); lpi2 = &(st->lpi2); lpi3 = &(st->lpi3); hpi1 = &(st->hpi1); hpi2 = &(st->hpi2); hpi3 = &(st->hpi3); rmso = &(st->rmso_bsynz); /* MAXPIT+MAXORD=166 */ /* Calculate history scale factor XY and scale filter state */ /* Computing MIN */ r__1 = *rmso / (*rms + 1e-6f); xy = min(r__1,8.f); *rmso = *rms; i__1 = contrl_1.order; for (i__ = 1; i__ <= i__1; ++i__) { exc2[i__ - 1] = exc2[*ipo + i__ - 1] * xy; } *ipo = *ip; if (*iv == 0) { /* Generate white noise for unvoiced */ i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { exc[contrl_1.order + i__ - 1] = (real) (random_(st) / 64); } /* Impulse doublet excitation for plosives */ /* (RANDOM()+32768) is in the range 0 to 2**16-1. Therefore the */ /* following expression should be evaluated using integers with at */ /* least 32 bits (16 isn't enough), and PX should be in the rang e */ /* ORDER+1+0 through ORDER+1+(IP-2) .EQ. ORDER+IP-1. */ px = (random_(st) + 32768) * (*ip - 1) / 65536 + contrl_1.order + 1; r__1 = *ratio / 4 * 1.f; pulse = r__1 * 342; if (pulse > 2e3f) { pulse = 2e3f; } exc[px - 1] += pulse; exc[px] -= pulse; /* Load voiced excitation */ } else { sscale = (real)sqrt((real) (*ip)) / 6.928f; i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { exc[contrl_1.order + i__ - 1] = 0.f; if (i__ <= 25) { exc[contrl_1.order + i__ - 1] = sscale * kexc[i__ - 1]; } lpi0 = exc[contrl_1.order + i__ - 1]; r__2 = exc[contrl_1.order + i__ - 1] * .125f + *lpi1 * .75f; r__1 = r__2 + *lpi2 * .125f; exc[contrl_1.order + i__ - 1] = r__1 + *lpi3 * 0.f; *lpi3 = *lpi2; *lpi2 = *lpi1; *lpi1 = lpi0; } i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { noise[contrl_1.order + i__ - 1] = random_(st) * 1.f / 64; hpi0 = noise[contrl_1.order + i__ - 1]; r__2 = noise[contrl_1.order + i__ - 1] * -.125f + *hpi1 * .25f; r__1 = r__2 + *hpi2 * -.125f; noise[contrl_1.order + i__ - 1] = r__1 + *hpi3 * 0.f; *hpi3 = *hpi2; *hpi2 = *hpi1; *hpi1 = hpi0; } i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { exc[contrl_1.order + i__ - 1] += noise[contrl_1.order + i__ - 1]; } } /* Synthesis filters: */ /* Modify the excitation with all-zero filter 1 + G*SUM */ xssq = 0.f; i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { k = contrl_1.order + i__; sum = 0.f; i__2 = contrl_1.order; for (j = 1; j <= i__2; ++j) { sum += coef[j] * exc[k - j - 1]; } sum *= *g2pass; exc2[k - 1] = sum + exc[k - 1]; } /* Synthesize using the all pole filter 1 / (1 - SUM) */ i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { k = contrl_1.order + i__; sum = 0.f; i__2 = contrl_1.order; for (j = 1; j <= i__2; ++j) { sum += coef[j] * exc2[k - j - 1]; } exc2[k - 1] = sum + exc2[k - 1]; xssq += exc2[k - 1] * exc2[k - 1]; } /* Save filter history for next epoch */ i__1 = contrl_1.order; for (i__ = 1; i__ <= i__1; ++i__) { exc[i__ - 1] = exc[*ip + i__ - 1]; exc2[i__ - 1] = exc2[*ip + i__ - 1]; } /* Apply gain to match RMS */ r__1 = *rms * *rms; ssq = r__1 * *ip; gain = (real)sqrt(ssq / xssq); i__1 = *ip; for (i__ = 1; i__ <= i__1; ++i__) { sout[i__] = gain * exc2[contrl_1.order + i__ - 1]; } return 0; } /* bsynz_ */
int main() { const int n_steps = 20000; const int n_burn = 4000; std::cout << "Students, Questions, Errors, Confidence " << std::endl; for (int n_students=10; n_students<11; n_students++) { for (int n_questions=5; n_questions<20; n_questions++) { s.clear(); q.clear(); o.clear(); for (int i=0; i<n_students; i++) { Normal norm; norm.set_params(random_(0, 5), 0.1); s.push_back(norm); } for (int i=0; i<n_questions; i++) { Normal norm; norm.set_params(random_(0, 5), 0.1); q.push_back(norm); } for (int i=0; i<n_students; i++) { for (int j=0; j<n_questions; j++) { Observation obs; if (s[i].last() > q[j].last()) obs.set(i, j, 1); else obs.set(i, j, 0); o.push_back(obs); } } Gibbs h; h.run(n_steps, n_burn); int error_sum = 0; for (int i=0; i<o.size(); i++) { double proficiency = s[o[i].get_sid()].mean(); double hardness = q[o[i].get_qid()].mean(); if (proficiency > hardness && o[i].get_response() == 0) error_sum++; if (proficiency < hardness && o[i].get_response() == 1) error_sum++; } double var = 0; for (int i=0; i<s.size(); i++) { var += (1.0/s[i].mean_variance()); } for (int i=0; i<q.size(); i++) { var += (1.0/q[i].mean_variance()); } var = sqrt(1.0/var); std::cout << n_students << ", "; std::cout << n_questions << ", "; std::cout << error_sum << ", "; std::cout << var << std::endl; } // n_questions } // n_students }
int Random::sampleU(int max) { return random_() % (max + 1); }
int Random::sampleU(int min, int max) { return random_() % (max - min + 1) + min; }
double Random::sampleU(double min, double max) { return (double)random_()/random_.max() * (max - min) + min; }
double Random::sampleU(double max) { return (double)random_()/random_.max() * max; }
unsigned int operator()(unsigned int N) { return static_cast<unsigned int>(N * random_()); }
void GetArray( boost::array<T, N>& array ) { for( size_t i = 0; i < N; ++i ) { array[i] = static_cast<T>( random_() ); } }
typename Distribution::result_type operator()() { return random_(); }