Пример #1
0
// process segments from interpreter (ld.so or ld-linux.so)
static bool read_interp_segments(struct ps_prochandle* ph) {
   ELF_EHDR interp_ehdr;

   if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
       print_debug("interpreter is not a valid ELF file\n");
       return false;
   }

   if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
       print_debug("can't read segments of interpreter\n");
       return false;
   }

   return true;
}
Пример #2
0
int open_elf(const char *filename, elf_bin_t *bin)
{
	int err;

	bin->fd = -1;

	if ( (err = open_exec(filename)) < 0 )
		return err;

	bin->fd = err;

	if ( (err = read_elf_header(bin->fd, &bin->hdr)) < 0 )
		return err;

	return 0;
}
Пример #3
0
/* Main entry point of elf-parser */
int32_t main(int32_t argc, char *argv[])
{

	int32_t fd;
	Elf32_Ehdr eh;		/* elf-header is fixed size */

	if(argc!=2) {
		printf("Usage: elf-parser <ELF-file>\n");
		return 0;
	}

	fd = open(argv[1], O_RDONLY|O_SYNC);
	if(fd<0) {
		printf("Error %d Unable to open %s\n", fd, argv[1]);
		return 0;
	}

	/* ELF header : at start of file */
	read_elf_header(fd, &eh);
	if(!is_ELF(eh)) {
		return 0;
	}
	if(is64Bit(eh)){
		Elf64_Ehdr eh64;	/* elf-header is fixed size */
		Elf64_Shdr* sh_tbl;	/* section-header table is variable size */

		read_elf_header64(fd, &eh64);
		print_elf_header64(eh64);

		/* Section header table :  */
		sh_tbl = malloc(eh64.e_shentsize * eh64.e_shnum);
		if(!sh_tbl) {
			printf("Failed to allocate %d bytes\n",
					(eh64.e_shentsize * eh64.e_shnum));
		}
		read_section_header_table64(fd, eh64, sh_tbl);
		print_section_headers64(fd, eh64, sh_tbl);

		/* Symbol tables :
		 * sh_tbl[i].sh_type
		 * |`- SHT_SYMTAB
		 *  `- SHT_DYNSYM
		 */
		print_symbols64(fd, eh64, sh_tbl);

		/* Save .text section as text.S
		*/
		save_text_section64(fd, eh64, sh_tbl);

		/* Disassemble .text section
		 * Logs asm instructions to stdout
		 * Currently supports ARMv7
		 */
		disassemble64(fd, eh64, sh_tbl);

	} else{
		Elf32_Shdr* sh_tbl;	/* section-header table is variable size */
		print_elf_header(eh);

		/* Section header table :  */
		sh_tbl = malloc(eh.e_shentsize * eh.e_shnum);
		if(!sh_tbl) {
			printf("Failed to allocate %d bytes\n",
					(eh.e_shentsize * eh.e_shnum));
		}
		read_section_header_table(fd, eh, sh_tbl);
		print_section_headers(fd, eh, sh_tbl);

		/* Symbol tables :
		 * sh_tbl[i].sh_type
		 * |`- SHT_SYMTAB
		 *  `- SHT_DYNSYM
		 */
		print_symbols(fd, eh, sh_tbl);

		/* Save .text section as text.S
		*/
		save_text_section(fd, eh, sh_tbl);

		/* Disassemble .text section
		 * Logs asm instructions to stdout
		 * Currently supports ARMv7
		 */
		disassemble(fd, eh, sh_tbl);
	}

	return 0;

}
Пример #4
0
// the one and only one exposed stuff from this file
struct ps_prochandle* Pgrab_core(const char* exec_file, const char* core_file) {
   ELF_EHDR core_ehdr;
   ELF_EHDR exec_ehdr;
   ELF_EHDR lib_ehdr;

   struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
   if (ph == NULL) {
      print_debug("can't allocate ps_prochandle\n");
      return NULL;
   }

   if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
      free(ph);
      print_debug("can't allocate ps_prochandle\n");
      return NULL;
   }

   // initialize ph
   ph->ops = &core_ops;
   ph->core->core_fd   = -1;
   ph->core->exec_fd   = -1;
   ph->core->interp_fd = -1;

   // open the core file
   if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
      print_debug("can't open core file\n");
      goto err;
   }

   // read core file ELF header
   if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
      print_debug("core file is not a valid ELF ET_CORE file\n");
      goto err;
   }

   if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
      print_debug("can't open executable file\n");
      goto err;
   }

   if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true || exec_ehdr.e_type != ET_EXEC) {
      print_debug("executable file is not a valid ELF ET_EXEC file\n");
      goto err;
   }

   // process core file segments
   if (read_core_segments(ph, &core_ehdr) != true)
      goto err;

   // process exec file segments
   if (read_exec_segments(ph, &exec_ehdr) != true)
      goto err;

   // exec file is also treated like a shared object for symbol search
   if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
                       (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL)
      goto err;

   // allocate and sort maps into map_array, we need to do this
   // here because read_shared_lib_info needs to read from debuggee
   // address space
   if (sort_map_array(ph) != true)
      goto err;

   if (read_shared_lib_info(ph) != true)
      goto err;

   // sort again because we have added more mappings from shared objects
   if (sort_map_array(ph) != true)
      goto err;

   if (init_classsharing_workaround(ph) != true)
      goto err;

   return ph;

err:
   Prelease(ph);
   return NULL;
}
Пример #5
0
// read shared library info from runtime linker's data structures.
// This work is done by librtlb_db in Solaris
static bool read_shared_lib_info(struct ps_prochandle* ph) {
   uintptr_t addr = ph->core->dynamic_addr;
   uintptr_t debug_base;
   uintptr_t first_link_map_addr;
   uintptr_t ld_base_addr;
   uintptr_t link_map_addr;
   uintptr_t lib_base_diff;
   uintptr_t lib_base;
   uintptr_t lib_name_addr;
   char lib_name[BUF_SIZE];
   ELF_DYN dyn;
   ELF_EHDR elf_ehdr;
   int lib_fd;

   // _DYNAMIC has information of the form
   //         [tag] [data] [tag] [data] .....
   // Both tag and data are pointer sized.
   // We look for dynamic info with DT_DEBUG. This has shared object info.
   // refer to struct r_debug in link.h

   dyn.d_tag = DT_NULL;
   while (dyn.d_tag != DT_DEBUG) {
      if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
         print_debug("can't read debug info from _DYNAMIC\n");
         return false;
      }
      addr += sizeof(ELF_DYN);
   }

   // we have got Dyn entry with DT_DEBUG
   debug_base = dyn.d_un.d_ptr;
   // at debug_base we have struct r_debug. This has first link map in r_map field
   if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
                 &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
      print_debug("can't read first link map address\n");
      return false;
   }

   // read ld_base address from struct r_debug
   if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
                 sizeof(uintptr_t)) != PS_OK) {
      print_debug("can't read ld base address\n");
      return false;
   }
   ph->core->ld_base_addr = ld_base_addr;

   print_debug("interpreter base address is 0x%lx\n", ld_base_addr);

   // now read segments from interp (i.e ld.so or ld-linux.so)
   if (read_interp_segments(ph) != true)
      return false;

   // after adding interpreter (ld.so) mappings sort again
   if (sort_map_array(ph) != true)
      return false;

   print_debug("first link map is at 0x%lx\n", first_link_map_addr);

   link_map_addr = first_link_map_addr;
   while (link_map_addr != 0) {
      // read library base address of the .so. Note that even though <sys/link.h> calls
      // link_map->l_addr as "base address",  this is * not * really base virtual
      // address of the shared object. This is actually the difference b/w the virtual
      // address mentioned in shared object and the actual virtual base where runtime
      // linker loaded it. We use "base diff" in read_lib_segments call below.

      if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
                   &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read shared object base address diff\n");
         return false;
      }

      // read address of the name
      if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
                    &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read address of shared object name\n");
         return false;
      }

      // read name of the shared object
      lib_name[0] = '\0';
      if (lib_name_addr != 0 &&
          read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
         print_debug("can't read shared object name\n");
         // don't let failure to read the name stop opening the file.  If something is really wrong
         // it will fail later.
      }

      if (lib_name[0] != '\0') {
         // ignore empty lib names
         lib_fd = pathmap_open(lib_name);

         if (lib_fd < 0) {
            print_debug("can't open shared object %s\n", lib_name);
            // continue with other libraries...
         } else {
            if (read_elf_header(lib_fd, &elf_ehdr)) {
               lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
               print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
                           lib_name, lib_base, lib_base_diff);
               // while adding library mappings we need to use "base difference".
               if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
                  print_debug("can't read shared object's segments\n");
                  close(lib_fd);
                  return false;
               }
               add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
               // Map info is added for the library (lib_name) so
               // we need to re-sort it before calling the p_pdread.
               if (sort_map_array(ph) != true)
                  return false;
            } else {
               print_debug("can't read ELF header for shared object %s\n", lib_name);
               close(lib_fd);
               // continue with other libraries...
            }
         }
      }

      // read next link_map address
      if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
                        &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read next link in link_map\n");
         return false;
      }
   }

   return true;
}
Пример #6
0
/*
  Map the built-in lisp core sections.

  NOTE!  We need to do this without using malloc because the memory layout
  is not set until some time after this is done.
*/
void
map_core_sections(const char *exec_name)
{
    int exec_fd;
    Elf_Shdr sh;		/* A section header entry. */
    Elf_Shdr strsecent;
    char nambuf[10];
    int soff;
    int strsecoff;		/* File offset to string table section. */
    int sections_remaining = 3;
    int i, j;
    extern int
	image_dynamic_space_size,
	image_static_space_size,
	image_read_only_space_size;

    if (!(exec_fd = open(exec_name, O_RDONLY))) {
	perror("Can't open executable!");
	exit(-1);
    }

    read_elf_header(exec_fd, &eh);

    /* Find the section name string section.	Save its file offset. */
    soff = eh.e_shoff + eh.e_shstrndx * eh.e_shentsize;
    elseek(exec_fd, soff, __func__);
    read_section_header_entry(exec_fd, &strsecent);
    strsecoff = strsecent.sh_offset;

    for (i = 0; i < eh.e_shnum && sections_remaining > 0; i++) {

	/* Read an entry from the section header table. */
	elseek(exec_fd, eh.e_shoff + i * eh.e_shentsize, __func__);
	read_section_header_entry(exec_fd, &sh);

	/* Read the name from the string section. */
	elseek(exec_fd, strsecoff + sh.sh_name, __func__);
	eread(exec_fd, nambuf, 6, __func__);

	if (sh.sh_type == SHT_PROGBITS) {
	    /* See if this section is one of the lisp core sections. */
	    for (j = 0; j < 3; j++) {
		if (!strncmp(nambuf, section_names[j], 6)) {
		    os_vm_address_t addr;
		    /*
                     * Found a core section. Map it!
                     *
                     * Although the segment may contain the correct
                     * address for the start of the segment, we don't
                     * care.  We infer the address from the segment
                     * name.  (The names better be unique!!!!)  This
                     * approach allows for a possibly simpler linking
                     * operation because we don't have to figure out
                     * how to get the linker to give segments the
                     * correct address.
		     */
		    addr = section_addr[j];
		    if ((os_vm_address_t) os_map(exec_fd, sh.sh_offset,
						 addr, sh.sh_size)
			== (os_vm_address_t) -1) {
			fprintf(stderr, "%s: Can't map section %s\n", __func__, section_names[j]);
			exit(-1);
		    }
		    switch(j) {
                      case 0: /* Dynamic space. */
                          /* Dynamic space variables are set in lisp.c. */
                          image_dynamic_space_size = sh.sh_size;
                          break;
                      case 1: /* Static space. */
                          image_static_space_size = sh.sh_size;
                          break;
                      case 2: /* Read-only space. */
                          image_read_only_space_size = sh.sh_size;
                          break;
                      default:
                          /* Should never get here. */
                          abort();
                          break;
		    }

		    sections_remaining--;
		    /* Found a core section, don't check the other core section names. */
		    break;
		}
	    }
	}
    }

    close(exec_fd);

    if (sections_remaining != 0) {
	fprintf(stderr, "Couldn't map all core sections!	Exiting!\n");
	exit(-1);
    }
}
Пример #7
0
// read symbol table from given fd.
struct symtab* build_symtab(int fd) {
  ELF_EHDR ehdr;
  struct symtab* symtab = NULL;

  // Reading of elf header
  struct elf_section *scn_cache = NULL;
  int cnt = 0;
  ELF_SHDR* shbuf = NULL;
  ELF_SHDR* cursct = NULL;
  ELF_PHDR* phbuf = NULL;
  int symtab_found = 0;
  int dynsym_found = 0;
  uint32_t symsection = SHT_SYMTAB;

  uintptr_t baseaddr = (uintptr_t)-1;

  lseek(fd, (off_t)0L, SEEK_SET);
  if (! read_elf_header(fd, &ehdr)) {
    // not an elf
    return NULL;
  }

  // read ELF header
  if ((shbuf = read_section_header_table(fd, &ehdr)) == NULL) {
    goto quit;
  }

  baseaddr = find_base_address(fd, &ehdr);

  scn_cache = calloc(ehdr.e_shnum, sizeof(*scn_cache));
  if (scn_cache == NULL) {
    goto quit;
  }

  for (cursct = shbuf, cnt = 0; cnt < ehdr.e_shnum; cnt++) {
    scn_cache[cnt].c_shdr = cursct;
    if (cursct->sh_type == SHT_SYMTAB ||
        cursct->sh_type == SHT_STRTAB ||
        cursct->sh_type == SHT_DYNSYM) {
      if ( (scn_cache[cnt].c_data = read_section_data(fd, &ehdr, cursct)) == NULL) {
         goto quit;
      }
    }

    if (cursct->sh_type == SHT_SYMTAB)
       symtab_found++;

    if (cursct->sh_type == SHT_DYNSYM)
       dynsym_found++;

    cursct++;
  }

  if (!symtab_found && dynsym_found)
     symsection = SHT_DYNSYM;

  for (cnt = 1; cnt < ehdr.e_shnum; cnt++) {
    ELF_SHDR *shdr = scn_cache[cnt].c_shdr;

    if (shdr->sh_type == symsection) {
      ELF_SYM  *syms;
      int j, n;
      size_t size;

      // FIXME: there could be multiple data buffers associated with the
      // same ELF section. Here we can handle only one buffer. See man page
      // for elf_getdata on Solaris.

      // guarantee(symtab == NULL, "multiple symtab");
      symtab = calloc(1, sizeof(*symtab));
      if (symtab == NULL) {
         goto quit;
      }
      // the symbol table
      syms = (ELF_SYM *)scn_cache[cnt].c_data;

      // number of symbols
      n = shdr->sh_size / shdr->sh_entsize;

      // create hash table, we use berkeley db to
      // manipulate the hash table.
      symtab->hash_table = dbopen(NULL, O_CREAT | O_RDWR, 0600, DB_HASH, NULL);
      // guarantee(symtab->hash_table, "unexpected failure: dbopen");
      if (symtab->hash_table == NULL)
        goto bad;

      // shdr->sh_link points to the section that contains the actual strings
      // for symbol names. the st_name field in ELF_SYM is just the
      // string table index. we make a copy of the string table so the
      // strings will not be destroyed by elf_end.
      size = scn_cache[shdr->sh_link].c_shdr->sh_size;
      symtab->strs = malloc(size);
      if (symtab->strs == NULL)
        goto bad;
      memcpy(symtab->strs, scn_cache[shdr->sh_link].c_data, size);

      // allocate memory for storing symbol offset and size;
      symtab->num_symbols = n;
      symtab->symbols = calloc(n , sizeof(*symtab->symbols));
      if (symtab->symbols == NULL)
        goto bad;

      // copy symbols info our symtab and enter them info the hash table
      for (j = 0; j < n; j++, syms++) {
        DBT key, value;
        char *sym_name = symtab->strs + syms->st_name;

        // skip non-object and non-function symbols
        int st_type = ELF_ST_TYPE(syms->st_info);
        if ( st_type != STT_FUNC && st_type != STT_OBJECT)
           continue;
        // skip empty strings and undefined symbols
        if (*sym_name == '\0' || syms->st_shndx == SHN_UNDEF) continue;

        symtab->symbols[j].name   = sym_name;
        symtab->symbols[j].offset = syms->st_value - baseaddr;
        symtab->symbols[j].size   = syms->st_size;

        key.data = sym_name;
        key.size = strlen(sym_name) + 1;
        value.data = &(symtab->symbols[j]);
        value.size = sizeof(symtab_symbol);
        (*symtab->hash_table->put)(symtab->hash_table, &key, &value, 0);
      }
    }
  }
  goto quit;

bad:
  destroy_symtab(symtab);
  symtab = NULL;

quit:
  if (shbuf) free(shbuf);
  if (phbuf) free(phbuf);
  if (scn_cache) {
    for (cnt = 0; cnt < ehdr.e_shnum; cnt++) {
      if (scn_cache[cnt].c_data != NULL) {
        free(scn_cache[cnt].c_data);
      }
    }
    free(scn_cache);
  }
  return symtab;
}
Пример #8
0
void
elf_mod_symload(int strtablen)
{
	Elf_Ehdr ehdr;
	char *shstrtab;
	struct elf_section *head, *s;
	char *symbuf, *strbuf;

	/*
	 * Seek to the text offset to start loading...
	 */
	if (lseek(modfd, 0, SEEK_SET) == -1)
		err(12, "lseek");
	if (read_elf_header(modfd, &ehdr) < 0)
		return;

	shstrtab = read_shstring_table(modfd, &ehdr);
	read_sections(modfd, &ehdr, shstrtab, &head);

	for (s = head; s; s = s->next) {
		struct elf_section *p = s;

		if ((p->type == SHT_SYMTAB) || (p->type == SHT_DYNSYM)) {
			if (debug)
				fprintf(stderr, "loading `%s': addr = %p, "
				    "size = %#lx\n",
				    s->name, s->addr, (u_long)s->size);
			/*
			 * Seek to the file offset to start loading it...
			 */
			if (lseek(modfd, p->offset, SEEK_SET) == -1)
				err(12, "lseek");
			symbuf = malloc(p->size);
			if (symbuf == 0)
				err(13, "malloc");
			if (read(modfd, symbuf, p->size) != p->size)
				err(14, "read");

			loadsym(symbuf, p->size);
			free(symbuf);
		}
	}

	for (s = head; s; s = s->next) {
		struct elf_section *p = s;

		if ((p->type == SHT_STRTAB) &&
		    (strcmp(p->name, ".strtab") == 0 )) {
			if (debug)
				fprintf(stderr, "loading `%s': addr = %p, "
				    "size = %#lx\n",
				    s->name, s->addr, (u_long)s->size);
			/*
			 * Seek to the file offset to start loading it...
			 */
			if (lseek(modfd, p->offset, SEEK_SET) == -1)
				err(12, "lseek");
			strbuf = malloc(p->size);
			if (strbuf == 0)
				err(13, "malloc");
			if (read(modfd, strbuf, p->size) != p->size)
				err(14, "read");

			loadsym(strbuf, p->size);
			free(strbuf);
		}
	}

	free(shstrtab);
	free_sections(head);
	return;
}
Пример #9
0
/* load a prelinked module; returns entry point */
void *
elf_mod_load(int fd)
{
	Elf_Ehdr ehdr;
	size_t zero_size = 0;
	size_t b;
	ssize_t n;
	char *shstrtab;
	struct elf_section *head, *s;
	char buf[10 * BUFSIZ];
	void *addr = NULL;

	if (read_elf_header(fd, &ehdr) < 0)
		return NULL;

	shstrtab = read_shstring_table(fd, &ehdr);
	read_sections(fd, &ehdr, shstrtab, &head);

	for (s = head; s; s = s->next) {
		if (s->type != SHT_STRTAB && s->type != SHT_SYMTAB &&
		    s->type != SHT_DYNSYM) {
			if (debug)
				fprintf(stderr, "loading `%s': addr = %p, "
				    "size = %#lx\n",
				    s->name, s->addr, (u_long)s->size);
			if (s->type == SHT_NOBITS) {
				/* skip some space */
				zero_size += s->size;
			} else {
				if (addr != NULL) {
					/*
					 * if there is a gap in the prelinked
					 * module, transfer some empty space.
					 */
					zero_size += (char*)s->addr -
					    (char*)addr;
				}
				if (zero_size) {
					loadspace(zero_size);
					zero_size = 0;
				}
				b = s->size;
				if (lseek(fd, s->offset, SEEK_SET) == -1)
					err(1, "lseek");
				while (b) {
					n = read(fd, buf, MIN(b, sizeof(buf)));
					if (n == 0)
						errx(1, "unexpected EOF");
					if (n < 0)
						err(1, "read");
					loadbuf(buf, n);
					b -= n;
				}
				addr = (char*)s->addr + s->size;
			}
		}
	}
	if (zero_size)
		loadspace(zero_size);

	free_sections(head);
	free(shstrtab);
	return (void *)ehdr.e_entry;
}
Пример #10
0
/* return size needed by the module */
int
elf_mod_sizes(int fd, size_t *modsize, int *strtablen,
    struct lmc_resrv *resrvp, struct stat *sp)
{
	Elf_Ehdr ehdr;
	ssize_t off = 0;
	size_t data_hole = 0;
	char *shstrtab, *strtab;
	struct elf_section *head, *s, *stab;

	if (read_elf_header(fd, &ehdr) < 0)
		return -1;
	shstrtab = read_shstring_table(fd, &ehdr);
	read_sections(fd, &ehdr, shstrtab, &head);

	for (s = head; s; s = s->next) {
		/* XXX impossible! */
		if (s->type == SHT_STRTAB && s->type == SHT_SYMTAB &&
		    s->type == SHT_DYNSYM)
			continue;
		if (debug)
			fprintf(stderr,
			    "%s: addr = %p size = %#lx align = %#lx\n",
			    s->name, s->addr, (u_long)s->size, (u_long)s->align);
		/*
		 * XXX try to get rid of the hole before the data
		 * section that GNU-ld likes to put there
		 */
		if (strcmp(s->name, ".data") == 0 && s->addr > (void *)off) {
			data_offset = roundup(off, s->align);
			if (debug)
				fprintf(stderr, ".data section forced to "
				    "offset %p (was %p)\n",
				    (void *)data_offset, s->addr);
			/* later remove size of compressed hole from off */
			data_hole = (ssize_t)s->addr - data_offset;
		}
		off = (ssize_t)s->addr + s->size;
	}
	off -= data_hole;

	/* XXX round to pagesize? */
	*modsize = roundup(off, sysconf(_SC_PAGESIZE));

	/* get string table length */
	strtab = read_string_table(fd, head, strtablen);
	free(shstrtab);
	free(strtab);

	/* get symbol table sections */
	get_symtab(&head);
	stab = head;
	resrvp->sym_symsize = 0;
	while (stab) {
		resrvp->sym_symsize += stab->size;
		stab = stab->next;
	}
	resrvp->sym_size = resrvp->sym_symsize + *strtablen;
	free_sections(head);

	return (0);
}