Пример #1
0
void init_move_tables(void) {
    unsigned row;

    memset(row_left_table, 0, sizeof(row_left_table));
    memset(row_right_table, 0, sizeof(row_right_table));
    memset(col_up_table, 0, sizeof(col_up_table));
    memset(col_down_table, 0, sizeof(col_down_table));

    for(row = 0; row < 65536; row++) {
        unsigned int line[4] = {row & 0xf, (row >> 4) & 0xf, (row >> 8) & 0xf, (row >> 12) & 0xf};
        row_t result;
        int i, j;

        /* execute a move to the left */
        for(i=0; i<3; i++) {
            for(j=i+1; j<4; j++) {
                if(line[j] != 0)
                    break;
            }
            if(j == 4)
                break; // no more tiles to the right

            if(line[i] == 0) {
                line[i] = line[j];
                line[j] = 0;
                i--; // retry this entry
            } else if(line[i] == line[j] && line[i] != 0xf) {
                line[i]++;
                line[j] = 0;
            }
        }

        result = (line[0]) | (line[1] << 4) | (line[2] << 8) | (line[3] << 12);

        row_left_table[row] = row ^ result;
        row_right_table[reverse_row(row)] = reverse_row(row) ^ reverse_row(result);
        col_up_table[row] = unpack_col(row) ^ unpack_col(result);
        col_down_table[reverse_row(row)] = unpack_col(reverse_row(row)) ^ unpack_col(reverse_row(result));
    }
}
Пример #2
0
/* Core algorithm */
int cluster (FILE *fw, Edge **el, int n)
{
	int block_id = 0;
	Block **bb;
	int allocated = po->SCH_BLOCK;
	AllocArray(bb, allocated);

	Edge *e;
	Block *b;
	struct dyStack *genes, *scores, *b_genes, *allincluster;
	
	int i, j, k, components;

	AllocArray(profile, cols);
	for (j = 0; j < cols; j++) AllocArray(profile[j], sigma);

	genes = dsNew(rows);
	scores = dsNew(rows);
	allincluster = dsNew(rows);
    
	bool *candidates;
	AllocArray(candidates, rows);

	e = *el; i = 0;
	while (i++ < n)
	{	
		e = *el++;
        /*printf("a:%d b:%d score:%d\n",e->gene_one,e->gene_two,e->score);*/

		/* check if both genes already enumerated in previous blocks */
		bool flag = TRUE;
		/* speed up the program if the rows bigger than 200 */
	        if (rows > 200)
		{ 
			if ( isInStack(allincluster,e->gene_one) && isInStack(allincluster,e->gene_two) )
			flag = FALSE;
		}
		else   
                    {
		     flag = check_seed(e, bb, block_id);
		    }
		if (!flag) continue;

		for (j = 0; j < cols; j++)
			for (k = 0; k < sigma; k++) profile[j][k] = 0;

		AllocVar(b);
                b->score = MIN(2, e->score);
	
		/* initialize the stacks genes and scores */		
		int ii;		
		dsClear(genes);
		dsClear(scores);		
		for(ii = 0; ii < rows; ii ++)
		{
			dsPush(genes,-1);
			dsPush(scores,-1);
		}		
		dsClear(genes);
		dsClear(scores);
		
		dsPush(genes, e->gene_one);
		dsPush(genes, e->gene_two);
		dsPush(scores, 1);
		dsPush(scores, b->score);

		/* branch-and-cut condition for seed expansion */
		int cand_threshold = floor(po->COL_WIDTH * po->TOLERANCE);
                if (cand_threshold < 2) cand_threshold = 2;

		/* maintain a candidate list to avoid looping through all rows */		
		for (j = 0; j < rows; j++) candidates[j] = TRUE;
		candidates[e->gene_one] = candidates[e->gene_two] = FALSE;
		
		components = 2;

		/* expansion step, generate a bicluster without noise */
		block_init(e, b, genes, scores, candidates, cand_threshold, &components, allincluster);

		/* track back to find the best score that which genes makes it */
		for(k = 0; k < components; k++)
			if ((dsItem(scores,k) == b->score)&&(dsItem(scores,k+1)!= b->score)) break;
		components = k + 1;

		int ki;
		for (ki=0; ki < rows; ki++)
		candidates[ki] = TRUE;

		for (ki=0; ki < components - 1 ; ki++)
		{
			seed_update(arr_c[dsItem(genes,ki)]);
			candidates[dsItem(genes,ki)] = FALSE;
		}
		candidates[dsItem(genes,k)] = FALSE;
		genes->top = k ;
		int cnt = 0;
		bool *colcand;
		AllocArray(colcand, cols);
		for(ki = 0; ki < cols; ki++) colcand[ki] = FALSE;             
    
        /* add columns satisfy the conservative r */ 
		seed_current_modify(arr_c[dsItem(genes,k)], colcand, &cnt, components);
		
        /* add some new possible genes */
		int m_cnt;
		for ( ki = 0; ki < rows; ki++)
		{
			m_cnt = intersect_row(colcand, arr_c[dsItem(genes,0)], arr_c[ki]);
			if ( candidates[ki] && (m_cnt >= floor(cnt* po->TOLERANCE)) )
			{
				dsPush(genes,ki);
				components++;
				candidates[ki] = FALSE;
			}
		}
                b->block_rows_pre = components;
		
        /* add genes that negative regulated to the consensus */
		for ( ki = 0; ki < rows; ki++)
		{
			m_cnt = reverse_row(colcand, arr_c[dsItem(genes,0)], arr_c[ki]);
			if ( candidates[ki] && (m_cnt >= floor(cnt * po->TOLERANCE)) )
			{
				dsPush(genes,ki);
				components++;
				candidates[ki] = FALSE;
			}
		}
		free(colcand);

		/* save the current cluster*/
		b_genes = dsNew(b->block_rows_pre);
		for (ki = 0; ki < b->block_rows_pre; ki++)
			dsPush(b_genes, dsItem(genes,ki));

		/* store gene arrays inside block */
		b->genes = dsNew(components);
		b->conds = dsNew(cols);
	
		scan_block(b_genes, b);
		if (b->block_cols == 0) continue;
		b->block_rows = components;
                b->score = b->block_rows * b->block_cols;		
		dsClear(b->genes);
		for ( ki=0; ki < components; ki++)
			dsPush(b->genes,dsItem(genes,ki));
		for(ki = 0; ki < components; ki++)
			if(!isInStack(allincluster, dsItem(genes,ki))) dsPush(allincluster,dsItem(genes,ki));	

		bb[block_id++] = b;

        /* reaching the results number limit */
		if (block_id == po->SCH_BLOCK) break;
		verboseDot();	

	}

	putchar('\n');
    /* free-up the candidate list */
	free(candidates);
	free(allincluster);

	return report_blocks(fw, bb, block_id);
}
Пример #3
0
/* Core algorithm */
int cluster (FILE *fw, Edge **el, int n)
{
	int block_id = 0;
	Block **bb;
	int allocated = po->SCH_BLOCK;
	AllocArray(bb, allocated);

	Edge *e;
	Block *b;
	struct dyStack *genes, *scores, *b_genes, *allincluster;
	
	int i, j, k, components;
	AllocArray(profile, cols);
	for (j = 0; j < cols; j++) 
		AllocArray(profile[j], sigma);

	genes = dsNew(rows);
	scores = dsNew(rows);
	allincluster = dsNew(rows);

    

	bool *candidates;
	AllocArray(candidates, rows);

	e = *el; 
	i = 0;
	while (i++ < n)
	{	
		/*printf ("%d\n",i);*/
		e = *el++;
		/* check if both genes already enumerated in previous blocks */
		bool flag = TRUE;
		/* speed up the program if the rows bigger than 200 */
	        if (rows > 250)
		{ 
			if ( isInStack(allincluster,e->gene_one) && isInStack(allincluster,e->gene_two) )
				flag = FALSE;
			else if ((po->IS_TFname)&&(e->gene_one!= TFindex)&&(e->gene_two!=TFindex))
				flag = FALSE;
			else if ((po->IS_list)&&(!sublist[e->gene_one] || !sublist[e->gene_two]))
				flag =FALSE;
		}
		else   
		{
			flag = check_seed(e, bb, block_id);
			if ((po->IS_TFname)&&(e->gene_one!= TFindex)&&(e->gene_two!=TFindex))
				flag = FALSE;
			if ((po->IS_list)&&(!sublist[e->gene_one] || !sublist[e->gene_two]))
				flag = FALSE;
		}
		if (!flag) continue;

		for (j = 0; j < cols; j++)
			for (k = 0; k < sigma; k++) 
				profile[j][k] = 0;

		/*you must allocate a struct if you want to use the pointers related to it*/
		AllocVar(b);
		/*initial the b->score*/
                b->score = MIN(2, e->score);
	
		/* initialize the stacks genes and scores */		
		int ii;		
		dsClear(genes);
		dsClear(scores);		
		for(ii = 0; ii < rows; ii ++)
		{
			dsPush(genes,-1);
			dsPush(scores,-1);
		}		
		dsClear(genes);
		dsClear(scores);
		
		/*printf ("%d\t%d\n",e->gene_one,e->gene_two);*/
		dsPush(genes, e->gene_one);
		dsPush(genes, e->gene_two);
		dsPush(scores, 1);
		dsPush(scores, b->score);

		/* branch-and-cut condition for seed expansion */
		int cand_threshold = floor(po->COL_WIDTH * po->TOLERANCE);
                if (cand_threshold < 2) 
			cand_threshold = 2;

		/* maintain a candidate list to avoid looping through all rows */		
		for (j = 0; j < rows; j++) 
			candidates[j] = TRUE;
		candidates[e->gene_one] = candidates[e->gene_two] = FALSE;
		components = 2;

		/* expansion step, generate a bicluster without noise */
		block_init(e, b, genes, scores, candidates, cand_threshold, &components, allincluster);

		/* track back to find the genes by which we get the best score*/
		for(k = 0; k < components; k++)
		{
/*			printf ("******%d\t%d\n",dsItem(scores,k),b->score);*/
			if ((dsItem(scores,k) == b->score)&&(dsItem(scores,k+1)!= b->score)) break;
		}
		components = k + 1;
		/*printf ("%d",components);*/
		int ki;
		for (ki=0; ki < rows; ki++)
			candidates[ki] = TRUE;

		for (ki=0; ki < components - 1 ; ki++)
		{
			seed_update(arr_c[dsItem(genes,ki)]);
			candidates[dsItem(genes,ki)] = FALSE;
		}
		candidates[dsItem(genes,k)] = FALSE;
		genes->top = k ;
		int cnt = 0;
		bool *colcand;
		AllocArray(colcand, cols);
		for(ki = 0; ki < cols; ki++) 
			colcand[ki] = FALSE;             
    
		/* add columns satisfy the conservative r */ 
		seed_current_modify(arr_c[dsItem(genes,k)], colcand, &cnt, components);
		
		/* add some new possible genes */
		int m_cnt=0;
		continuous KL_score=0;
		discrete *sub_array;
		for ( ki = 0; ki < rows; ki++)
		{
			if (po->IS_list && !sublist[ki]) continue;
			m_cnt = intersect_row(colcand, arr_c[dsItem(genes,0)], arr_c[ki]);
			if ( candidates[ki] && (m_cnt >= floor(cnt* po->TOLERANCE)) )
			{
				sub_array = get_intersect_row(colcand,arr_c[dsItem(genes,0)],arr_c[ki],m_cnt);
				KL_score = get_KL (sub_array, arr_c[ki], m_cnt, cols);
				/*printf ("%d\t%.2f\n",m_cnt,KL_score);*/
				if (KL_score>=b->significance * po->TOLERANCE)
				{
					dsPush(genes,ki);
					components++;
					candidates[ki] = FALSE;
				}
			}
		}

                b->block_rows_pre = components;
		
		/* add genes that negative regulated to the consensus */
		for ( ki = 0; ki < rows; ki++)
		{
			if (po->IS_list && !sublist[ki]) continue;
			m_cnt = reverse_row(colcand, arr_c[dsItem(genes,0)], arr_c[ki]);
			if ( candidates[ki] && (m_cnt >= floor(cnt * po->TOLERANCE)) )
			{
				sub_array = get_intersect_reverse_row(colcand,arr_c[dsItem(genes,0)],arr_c[ki],m_cnt);
				KL_score = get_KL (sub_array, arr_c[ki], m_cnt, cols);
				if (KL_score>=b->significance * po->TOLERANCE)
				{
					dsPush(genes,ki);
					components++;
					candidates[ki] = FALSE;
				}
			}
		}
		free(colcand);

		/* save the current cluster*/
		b_genes = dsNew(b->block_rows_pre);
		for (ki = 0; ki < b->block_rows_pre; ki++)
			dsPush(b_genes, dsItem(genes,ki));

		/* store gene arrays inside block */
		b->genes = dsNew(components);
		b->conds = dsNew(cols);
	
		scan_block(b_genes, b);
		if (b->block_cols == 0) continue;
		b->block_rows = components;

		b->score = b->score;
		/*	b->score = b->block_rows * b->block_cols;		*/

		dsClear(b->genes);
		for ( ki=0; ki < components; ki++)
			dsPush(b->genes,dsItem(genes,ki));
		for(ki = 0; ki < components; ki++)
			if(!isInStack(allincluster, dsItem(genes,ki))) 
				dsPush(allincluster,dsItem(genes,ki));	
		/*save the current block b to the block list bb so that we can sort the blocks by their score*/
		bb[block_id++] = b;

		/* reaching the results number limit */
		if (block_id == po->SCH_BLOCK) break;
		verboseDot();	
	}
	/* writes character to the current position in the standard output (stdout) and advances the internal file position indicator to the next position.
	 * It is equivalent to putc(character,stdout).*/
	putchar('\n');
	/* free-up the candidate list */
	free(candidates);
	free(allincluster);
	block_enrichment(fw, bb, block_id);
	return report_blocks(fw, bb, block_id);
}
Пример #4
0
}
/* Read the .block file, get components and colcand */
void read_and_solve_blocks(FILE *fb, const char *fn)
{
	init_expand();
	size_t n;
	int col;
	char *line = NULL;
	int bnumber = 0;
	struct dyStack *ge, *co;
	int i, components, m_cnt;
	bool *colcand;
	bool *candidates;
	Block *b;
	AllocVar(b);
	AllocArray(colcand, another_cols);
	AllocArray(candidates, another_rows);
	ge = dsNew(another_rows);
	co = dsNew(another_cols);
	FILE *fo = mustOpen(fn, "w");

	/* main course starts here */
	while (getline(&line, &n, fb) != -1)
	{
	        /* fast forward to a line that contains BC*/
		/* strncmp compares up to num characters of the C string str1 to those of the C string str2
		 * strncmp ( const char * str1, const char * str2, size_t num )*/
		while (strncmp(line, "BC", 2)!=0) 
		{
			if (getline(&line, &n, fb)==-1) 
				exit(0);
		}
		components = 0;
		col = 0;
		dsClear(ge);
		dsClear(co);
		for (i=0; i< another_cols; i++)
			colcand[i] = FALSE;
		for (i=0; i< another_rows; i++)
			candidates[i] = TRUE;
		/* read genes from block */		
		getline(&line, &n, fb);
		atom = strtok(line, delims);
		atom = strtok(NULL, delims);
		while((atom = strtok(NULL, delims)) != NULL)
		{
			/* look up for genes number */
			if (strlen(atom) == 0) continue;			
			for(i=0; i<another_rows; i++)
			{
				if (strcmp(atom ,another_genes[i]) == 0) break;
			}
			candidates[i] = FALSE;			
			dsPush(ge, i);
			components++;
		}
		/* read conditions from block */
		getline(&line, &n, fb);
		atom = strtok(line, delims);
		atom = strtok(NULL, delims);
		while((atom = strtok(NULL, delims)) != NULL)
		{
			/*if (strlen(atom) < 5) break;*/			
			if (strlen(atom) == 0) continue;			
			for(i=0; i<another_cols; i++)
				if (strcmp(atom, another_conds[i]) == 0) break;
			colcand[i] = TRUE;
			dsPush(co, i);
			col++;
		}
		
		b->block_rows_pre = components;
		/* add some possible genes */
		for( i = 0; i < another_rows; i++)
		{
			m_cnt = intersect_row(colcand, another_arr_c[dsItem(ge,0)], another_arr_c[i], another_cols);
			printf ("%d\n",m_cnt);
			if( candidates[i] && (m_cnt >= (int)floor( (double)col * po->TOLERANCE)) )
			{
				dsPush(ge,i);
				components++;
				candidates[i] = FALSE;
			}
		}
		/* add genes that negative regulated to the consensus */
		for( i = 0; i < another_rows; i++)
		{
			m_cnt = reverse_row(colcand, another_arr_c[dsItem(ge,0)], another_arr_c[i], another_cols);
			if( candidates[i] && (m_cnt >= (int)floor( (double)col * po->TOLERANCE)) )
			{
				dsPush(ge,i);
				components++;
				candidates[i] = FALSE;
			}
		}
		if(dsSize(ge) > 1)
		{		
			store_block(b, ge, co);
			/*another_print_bc(fo, b, bnumber);*/
			print_bc(fo, b, bnumber++);
		}